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Abstract. Nitrous acid (HONO) is an important precursor to
hydroxyl radical (OH) that determines atmospheric oxidative
capacity and thus impacts climate and air quality. Wildfire is
not only a major direct source of HONO, it also results in
highly polluted conditions that favor the heterogeneous for-
mation of HONO from nitrogen oxides (NOx =NO+NO2)
and nitrate on both ground and particle surfaces. However,
these processes remain poorly constrained. To quantitatively
constrain the HONO budget under various fire and/or smoke
conditions, we combine a unique dataset of field concentra-
tions and isotopic ratios (15N / 14N and 18O / 16O) of NOx
and HONO with an isotopic box model. Here we report the
first isotopic evidence of secondary HONO production in
near-ground wildfire plumes (over a sample integration time
of hours) and the subsequent quantification of the relative im-
portance of each pathway to total HONO production. Most
importantly, our results reveal that nitrate photolysis plays
a minor role (<5 %) in HONO formation in daytime aged
smoke, while NO2-to-HONO heterogeneous conversion con-
tributes 85 %–95 % to total HONO production, followed by
OH+NO (5 %–15 %). At nighttime, heterogeneous reduc-
tion of NO2 catalyzed by redox active species (e.g., iron ox-
ide and/or quinone) is essential (≥ 75 %) for HONO produc-
tion in addition to surface NO2 hydrolysis. Additionally, the
18O / 16O of HONO is used for the first time to constrain

the NO-to-NO2 oxidation branching ratio between ozone
and peroxy radicals. Our approach provides a new and criti-
cal way to mechanistically constrain atmospheric chemistry
and/or air quality models on a diurnal timescale.

1 Introduction

Vastly increased wildfire activity and intensity is a challeng-
ing issue in many parts of the world including the western
US, and it is strongly linked to warming surface temperatures
and earlier spring snowmelt (Westerling, 2016). Wildfire is
a significant source of nitrogen oxides (NOx =NO+NO2)
and nitrous acid (HONO), as well as other important trace
gases and particulate matter. NOx serves as a key precursor to
atmospheric ozone (O3) and secondary aerosols in the pres-
ence of organic compounds; in wildfire plumes NOx can be a
limiting factor to O3 production owing to high emission mo-
lar ratios of non-methane organic carbon (NMOC) to NOx
(Akagi et al., 2011; Jaffe and Briggs, 2012). HONO is a ma-
jor daytime photolytic precursor of hydroxyl radical (OH) via
Reaction (R1) that determines the atmospheric oxidative ca-
pacity and therefore the lifetimes of many other species in the
atmosphere. Wildfire-emitted HONO supplies the majority
of OH in the first few hours after smoke emission in the day-
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time, and it greatly counteracts reduced OH production from
O3 photolysis caused by high particle loading reducing ac-
tinic flux (Jaffe and Briggs, 2012; Peng et al., 2020; Theys et
al., 2020). Wildfire-emitted NOx and HONO not only greatly
impact the atmospheric chemistry in local regions close to
the fire but also contribute significantly to the reactive ni-
trogen (RN) burden thousands of kilometers downwind via
transport and RN cycling, especially when mixed with fossil
fuel combustion emissions (Jaffe et al., 2013; McClure and
Jaffe, 2018; Westerling et al., 2006; Westerling, 2016).

HONO(g)
hν
−→ OH+NO (R1)

Despite their important impacts on air quality, climate, and
human and ecosystem health, the budgets of wildfire-derived
NOx and HONO are poorly constrained due to limited field
measurements, high reactivity and large spatiotemporal het-
erogeneity. Bottom-up approaches rely on limited emission
factor measurements with uncertainty in HONO sources and
chemistry; top-down approaches (i.e., satellite observations)
have limited sensitivity in the lower troposphere and bound-
ary layer and again are limited by large uncertainties in
HONO sources and chemistry to interpret the satellite mea-
surements. Although gas-phase reaction between OH and
NO (Reaction R2) ubiquitously produces HONO, it is far
from sufficient to explain the observed HONO levels in nu-
merous studies given the fast photolysis during the day (Su
et al., 2011). HONO, along with NOx , can be directly emit-
ted from various sources including vehicle exhaust, biomass
burning (BB) and microbially driven soil emissions. In ad-
dition, it has been proposed that HONO can be produced
from other RN species (e.g., NO2 and nitrate) via various het-
erogeneous pathways (Fig. 1). Major secondary HONO pro-
duction pathways during the day include heterogeneous NO2
conversion on photoactive surfaces (Reaction R3) (Ammann
et al., 1998; George et al., 2005; Stemmler et al., 2006) and
heterogeneous photolysis of nitrate including particulate ni-
trate (p-NO−3 ) and nitric acid (HNO3) via Reaction (R4) (Ye
et al., 2016; Zhou et al., 2011). In past studies, heterogeneous
conversion of NO2 to HONO on photoactive surfaces such
as organic surfaces (Reaction R3) has been proposed to ex-
plain a missing HONO source (Ammann et al., 1998; George
et al., 2005; Stemmler et al., 2006; Wong et al., 2012). Or-
ganic surfaces exist in both aerosol particles and soils at the
surface (e.g., humic acids), but there is major uncertainty
associated with quantifying available surface area and the
NO2 uptake coefficient. During the night, surface (soils and
aerosols) uptake is the predominant sink for HONO (Reac-
tion R5), and heterogeneous conversion of NO2 to HONO
has been widely accepted as the major secondary HONO
production source during the night (Reaction R6 and/or Re-
action R7). Although it is clear that heterogeneous NO2 hy-
drolysis (Reaction R6) can be a major pathway for night-
time HONO production (Finlayson-Pitts et al., 2003), recent
work has also shown compelling evidence for faster HONO

formation via reduction of NO2 on inorganic surfaces (e.g.,
iron-bearing minerals) and organic surfaces (e.g., quinone-
rich humic acid) in soils and particulate matter (Reaction R7)
(Scharko et al., 2017; Kebede et al., 2016; Martins-Costa et
al., 2020). While the emission sources and heterogeneous
pathways were hypothetically used to account for missing
HONO sources (Stemmler et al., 2006; Su et al., 2011; Ye et
al., 2016; VandenBoer et al., 2014; Donaldson et al., 2014a;
Kebede et al., 2016; Scharko et al., 2017), their relative im-
portance is poorly quantified due to large uncertainties asso-
ciated with emission heterogeneity, surface area and compo-
sition, environmental condition (day versus night, tempera-
ture, relative humidity), quantification of heterogeneous re-
action rate, and knowledge gaps in detailed mechanisms. As
a result, the HONO budget in the atmospheric boundary layer
remains poorly constrained.

HO + NO + M→ HONO + M

(M = third body gas molecules, e.g., nitrogen) (R2)

NO2(g) + DSS
hν
−→ HONO + DSS

(g = gas;DSS= daytime surface substrate) (R3)

HNO3
hν
−→ HONO + O (R4)

HONO(g)→ HONO(a)

(a = adsorbed to surfaces) (R5)
2NO2(a) + H2O(a)→ HONO + HNO3 (R6)

NO2(a) + NSS→ HONO + NSS

(NSS = nighttime surface substrate) (R7)

Stable isotopes hold unique promise to provide rig-
orous constraints on sources, chemical processing path-
ways and sinks of RN species as they reflect iso-
topic signatures associated with these processes. δ15N
(= [(15N / 14N)sample / (15N / 14N)air−N2 − 1]× 1000 ‰) has
shown great potential to trace the atmospheric origin
of NOx and its fate as nitrate (Hastings et al., 2009),
whereas δ18O (= [(18O / 16O)sample / (18O / 16O)VSMOW−

1]× 1000 ‰; VSMOW is Vienna Standard Mean Ocean Wa-
ter) serves as a sensitive indicator for the relative importance
of major oxidants (i.e., O3, RO2 and OH) that lead to NOx
conversion (Thiemens, 2006). In particular, O3 has an exclu-
sively high δ18O as a result of mass-independent fraction-
ation associated with its formation in the atmosphere, and
this anomaly is transferred to oxidized products such as NO2,
HONO and HNO3 (Thiemens, 2006).

Using our recently developed and validated sampling tech-
niques in combination with offline isotopic composition
analyses (Chai et al., 2019), we characterized for the first
time δ15N of NOx and HONO, as well as δ18O-HONO, in
ground-level wildfire plumes in the western US as part of
two major field campaigns: Western Wildfire Experiment for
Cloud Chemistry, Aerosol Absorption and Nitrogen (WE-
CAN) in summer 2018 and Fire Influence on Regional and
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Figure 1. The schematics of loss and secondary production of HONO in areas impacted by wildfire smoke in daytime (Reactions R1–R4)
and nighttime (Reactions R5–R7). We conducted our sample collection<30 km from the edge of the wildfires, with smoke ages ranging from
a few minutes to half a day. M is bath gas including N2, O2, CO2, etc. DSS is daytime substrate surface including terrestrial surfaces and
aerosol particles that incorporate photoactive metal oxides (e.g., TiO2), humic-like organics (e.g., quinone), etc. In essence, solar radiation
induces reduction of these substrates with H, and this facilitates H abstraction by NO2 (or H transfer). NSS is nighttime substrate surface
(terrestrial and aerosol surfaces) containing iron-bearing minerals and/or humic acid (quinone). Note other sinks during both day and night
(e.g., OH+HONO) are negligible compared to the major sinks shown here. Isotopic enrichment factors for N and O result from kinetic
isotopic effects associated with each reaction and are calculated and expressed as 15εi and 18εi , where the subscript i indicates the reaction
number, and the superscripts 15 and 18 denote the isotopic composition 15N/14N and 18O/16O, respectively.

Global Environments Experiment – Air Quality (FIREX-
AQ) in summer 2019. Here we report our findings based on
samples collected in a mobile laboratory platform from three
different wildfires; Rabbit Foot fire (RF) in eastern Idaho,
Williams Flats fire (WF) in central Washington, and Nethker
fire (NF) in northern Idaho (Figs. S1 and S2 in the Supple-
ment). Surface-based mobile sampling allowed us to char-
acterize young nighttime (YN), young daytime (YD), mixed
daytime (MD), aged nighttime (AN) and aged daytime (AD)
smoke. Physical smoke age determination using meteorolog-
ical parameters near the ground is challenging due to large
variations in wind speed and direction. Proxies involving to-
tal RN, NOy and ammonia (NH3) relative to carbon monox-
ide (CO) can only be used to qualitatively evaluate smoke age
due to large uncertainties in source emission factors and com-
plexity caused by photochemistry (Selimovic et al., 2019;
Kleinman et al., 2007). In contrast, the concentration ratio
between PM2.5 and CO (PM2.5 /CO) has shown potential
for estimating smoke age (Yokelson et al., 2009; Selimovic
et al., 2020). In this work, we determined the smoke condi-

tions (young versus aged) primarily by comparing the field
δ18O-HONO results with those obtained in our previous lab
study that represents fresh emissions, with additional eval-
uation involving δ15N-HONO and relative concentration of
HONO and NO2 (Fig. 2). Note young and aged smoke refers
to negligible and large proportions of secondarily produced
HONO, respectively. We also take into account smoke sam-
pling locations (i.e., approximate distance from the wildfire)
to confirm the smoke age estimate. In brief, largely elevated
δ18O-HONO in field samples compared with those from the
lab-controlled fires signifies significant atmospheric process-
ing, and this will be discussed in detail below. Our group-
ing method using δ18O-HONO shows fairly consistent re-
sults with those suggested by PM2.5 /CO for WF and NF fire
plumes (Kaspari et al., 2021). In addition to distinguishing
aged smoke from young smoke, the grouped δ18O and δ15N
also allow us to characterize potential mechanisms of sec-
ondary HONO formation in the aged smoke, as well as NO-
to-NO2 oxidation pathways, with the HONO budget evalu-
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Figure 2. Box-whisker plots for concentration of NO2 (left) and
HONO (right) (a), δ18O-HONO (b) and δ15N-HONO (c) for each
sample. Individual data points are plotted within each box grouped
by various field smoke conditions including young nighttime smoke
(YN), young daytime smoke (YD), mixed daytime smoke (M) that
contains smoke contributed by either night smoke or fresh smoke,
aged nighttime smoke (AN) and aged daytime smoke (AD). Data
from three wildfires are shown here, including Rabbit Foot (RF) fire
during the 2018 WE-CAN campaign, Williams Flats (WF) fire and
Nethker fire during the 2019 FIREX-AQ campaign. N is sample
number measured for each condition. Each box-whisker presents
the 5th, 25th, 50th, 75th and 95th percentile of sample values in
each group.

ated using the synergistic measurement of HONO, NO and
NO2 concentrations in the field.

2 Methodology

2.1 Description of mobile laboratory platforms: Molab
and MACH-2

During the WE-CAN campaign in August 2018, we con-
ducted our measurements and sampling using the NOAA
Chemical Science Division mobile laboratory (Molab),
which was a cargo van with all instruments mounted on it.
Meteorological instrumentation on the roof of the Molab pro-
vides temperature, relative humidity, wind speed, wind di-
rection, altitude and GPS coordinates. All additional instru-
ments were mounted onto the interior floor, and ambient air
is sampled through 1 or 2 m Teflon inlets that exit the roof of
the Molab via boreholes. NO and NOx concentrations were
measured with a Thermo Scientific Model 42i chemilumi-
nescence NO /NOx analyzer owned by Brown University,
with ± 0.4 ppbv precision and 0.2 ppbv zero noise at 1 min
time resolution. Note the NOx concentration measured using
the chemiluminescence analyzer can be falsely elevated due

to known interferences from NOy species, e.g., HONO and
PAN. However, these data provide an upper limit of NOx
level that supports the isotopic collections of NOx , HONO
and nitrate. HONO and HNO3 concentrations were measured
using the University of New Hampshire’s dual mist cham-
ber and ion chromatograph (MC/IC) system with an uncer-
tainty of 3 % at 5 min resolution (Chai et al., 2019; Scheuer
et al., 2003). During the FIREX-AQ field campaign in July–
August 2019, we mounted our sampling instruments onto
the NASA Langley mobile aerosol characterization platform
(MACH-2) (Kaspari et al., 2021).

2.2 Description of sampling location and strategy

While our sampling strategy was similar in both years, the ac-
tual sampling approach differed in response to fire condition
and accessibility to fresh smoke from the mobile platforms.

During the 2018 WE-CAN campaign, our ground mea-
surements and sampling targeted smoke from Rabbit Foot
(RF) fire in the Challis area of Salmon–Challis National For-
est in central Idaho, from 9 to 18 August 2018 (Salmon-
Challis National Forest, 2018). Measurements were made at
various locations around the Challis area of Idaho impacted
by the RF fire, consisting of five different conditions: young
smoke during nighttime (YN), young smoke during day-
time (YD), aged smoke during nighttime (AN), aged smoke
during daytime (AD) and mixed daytime smoke (M) that
contains smoke contributed by either night smoke or fresh
smoke. To sample the young smoke, we drove the Molab
to Morgan Creek Road (MCR), which extends into a valley
that was several kilometers away from the edge of the fire.
We observed heavy smoke that based on distance and wind
speed was expected to transport from the RF fire burning lo-
cations to the valley within a few hours or less. Three night
trips and two day trips were made to MCR. While the night-
time measurements were conducted while driving, the day-
time work was carried out while parked at a spike camp (i.e.,
a campsite for firefighters and support personnel) at the upper
end of MCR; the spike camp was about 2 km from the fire,
which we were able to see while conducting the measure-
ments. The aged smoke was sampled at three stationary sites
located around the Challis area, each less than 30 km away
from the RF fire. All of these sites were recreational vehi-
cle parks that allowed for power plugins. A total of 7 nights
and 4 d were measured. The sampling locations and driving
map are shown in Fig. S1 with detailed information on the
measurements listed in Table 1.

During 2019 FIREX-AQ, we investigated five wildfires in
the western US including Shady fire (Idaho), Black Diamond
fire (Montana), Williams Flats fire (Washington), Nethker
fire (Idaho) and Little Bear fire (Utah) from 24 July to
22 August 2019. We intensively sampled the emissions from
Williams Flats fire and Nethker fire based on the large size
and easy access to sampling locations (Fig. S2). Similar to
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Table 1. Sampling condition and isotopic composition and concentration results for NOx and HONO for Rabbit Foot (RF) fire during
the 2018 WE-CAN campaign (a), as well as Williams Flats (WF) fire and Nethker fire during the 2019 FIREX-AQ campaign (b). Smoke
conditions include young nighttime smoke (YN), young daytime smoke (YD), mixed daytime smoke (MD), aged nighttime smoke (AN) and
aged daytime smoke (AD). The conditions are determined primarily by comparing the field data with the lab data involving three factors:
δ18O-HONO, δ15N relationship between HONO and NOx , and HONO /NOx (or HONO /NO2) ratio, along with the smoke sampling
locations. Specifically, significantly elevated δ18O-HONO indicates secondary production of HONO. Note that during the 2019 campaign,
NOx concentrations were not measured due to instrumental breakdown.

(a)

Start time End time Fire (smoke δ18O-HONO δ15N-HONO δ15N-NOx [HONO] [NOx ] [NO2] HONO /NO2 HONO /NOx
(MDT) (MDT) condition) ppbv ppbv ppbv

08/09/18 10:11 08/09/18 19:10 RF (AD) 50.2 ‰ 3.8 ‰ 1.3 ‰ 0.06 1.8 1.42 0.04 0.03
08/09/18 21:51 08/10/18 08:29 RF (AN) 37.3 ‰ −5.0 ‰ −2.5 ‰ 0.06 1.3 1.35 0.04 0.05
08/10/18 09:50 08/10/18 20:26 RF (AD) 61.4 ‰ −1.7 ‰ −3.6 ‰ 0.20 1.5 1.30 0.16 0.13
08/10/18 20:31 08/11/18 08:08 RF (AN) 60.4 ‰ −4.6 ‰ −2.9 ‰ 0.15 1.4 1.39 0.11 0.11
08/11/18 22:43 08/12/18 09:38 RF (AN) 51.8 ‰ −5.8 ‰ −3.5 ‰ 0.09 1.1 1.07 0.09 0.08
08/12/18 21:25 08/13/18 03:33 RF (AN) 62.1 ‰ −3.9 ‰ −2.6 ‰ 0.26 0.8 0.81 0.33 0.33
08/13/18 03:53 08/13/18 07:05 RF (YN) 16.4 ‰ 7.4 ‰ 8.7 ‰ 0.92 1.9 1.59 0.58 0.48
08/14/18 04:11 08/14/18 06:12 RF (YN) 16.1 ‰ −0.4 ‰ 1.3 ‰ 0.18 1.7 1.62 0.11 0.11
08/14/18 10:38 08/14/18 17:18 RF (AD) 57.0 ‰ 1.6 ‰ −4.3 ‰ 0.24 1.8 1.56 0.16 0.13
08/14/18 17:22 08/14/18 22:11 RF (AD) 78.0 ‰ 3.8 ‰ −2.6 ‰ 0.05 1.5 1.44 0.03 0.03
08/15/18 00:08 08/15/18 04:36 RF (YN) 9.8 ‰ 1.1 ‰ 2.0 ‰ 0.98 5.5 4.90 0.20 0.18
08/15/18 05:52 08/15/18 07:12 RF (YN) 13.9 ‰ 3.0 ‰ 3.7 ‰ 1.99 11.7 10.70 0.19 0.17
08/15/18 19:59 08/16/18 09:19 RF (AN) 41.6 ‰ −2.2 ‰ −1.5 ‰ 0.15 5.9 5.78 0.03 0.03
08/16/18 15:56 08/16/18 17:51 RF (AD) 62.2 ‰ −2.7 ‰ −4.3 ‰ 0.39 6.5 6.03 0.07 0.06
08/16/18 21:22 08/17/18 06:25 RF (AN) 59.0 ‰ −6.7 ‰ 2.0 ‰ 0.42 15.6 15.34 0.03 0.03
08/17/18 08:28 08/17/18 10:31 RF (M) 51.7 ‰ −6.0 ‰ −2.6 ‰ 0.44 13.5 11.40 0.04 0.03
08/17/18 21:55 08/18/18 09:12 RF (AN) 63.5 ‰ −6.6 ‰ −1.1 ‰ 0.25 12.3 12.15 0.02 0.02

(b)

Start time End time Fire (smoke δ18O-HONO δ15N-HONO δ15N-NOx [HONO] [NO2] HONO /NO2
(MDT) (MDT) condition) ppbv ppbv

08/03/19 23:15:57 08/04/19 07:27:02 WF (AN) 44.6 ‰ −4.5 ‰ −3.9 ‰ 0.31 5.7 0.05
08/04/19 18:25:49 08/05/19 09:40:08 WF (AN) 49.7 ‰ −6.3 ‰ −4.3 ‰ 0.04 0.8 0.05
08/06/19 00:20:11 08/06/19 09:40:38 WF (YN) 16.3 ‰ −0.3 ‰ 1.8 ‰ 0.37 0.7 0.49
08/06/19 14:11:24 08/06/19 23:02:12 WF (M) 54.7 ‰ −6.1 ‰ −3.3 ‰ 0.60 4.0 0.15
08/06/19 23:47:43 08/07/19 09:44:16 WF (YN) 32.3 ‰ 2.2 ‰ 2.9 ‰ 0.18 2.2 0.08
08/09/19 12:32:42 08/09/19 14:56:34 Nethker (YD) 25.6 ‰ 3.4 ‰ 3.5 ‰ 2.49 20.4 0.12
08/10/19 21:07:49 08/11/19 01:47:41 Nethker (YN) 25.1 ‰ 2.2 ‰ 1.8 ‰ 1.23 2.3 0.54
08/12/19 03:24:15 08/12/19 11:24:47 Nethker (YN) 25.0 ‰ −0.6 ‰ 0.1 ‰ 1.69 3.5 0.48
08/13/19 21:38:03 08/14/19 01:28:27 Nethker (YN) 4.8 ‰ 5.3 ‰ 5.2 ‰ 0.85 4.1 0.21
08/15/19 20:05:55 08/15/19 22:43:35 Nethker (AN) 34.3 ‰ −4.8 ‰ −0.8 ‰ 1.01 3.4 0.30
08/15/19 22:57:07 08/16/19 06:28:04 Nethker (YN) 19.2 ‰ 0.7 ‰ 2.1 ‰ 0.85 1.3 0.64

the 2018 field campaign, the measurements were conducted
under YN, YD, AN, AD and M conditions.

2.3 Collection of HONO, NOx and nitrate for isotopic
analysis

Nitrogen oxides (NOx =NO+NO2), nitrous acid (HONO),
particulate nitrate (p-NO−3 ) and nitric acid (HNO3) were
captured in the field using recently developed methods and
sent to Brown University for analyses of isotopic com-
position (Chai et al., 2019; Fibiger and Hastings, 2016;
Chai and Hastings, 2018; Fibiger et al., 2014). In brief,
HONO was completely captured at a pumping flow rate
of ∼ 10 L min−1 with an annular denuder system (ADS),
comprised (in order) of a Teflon particulate filter to re-

move p-NO−3 and a Nylasorb filter to remove HNO3, fol-
lowed by two annular denuders, each coated with a pre-
mixed Na2CO3−glycerol−methanol−H2O solution follow-
ing a standard Environmental Protection Agency (EPA)
method (Chai and Hastings, 2018). Within 24 h after each
collection, the coating was extracted in 10 mL of ultrapure
water (18.2 M�) in two sequential 5 mL extractions. Particu-
late nitrate on the upstream Millipore filters and HNO3 from
the Nylasorb filters, if there was any, were extracted by soni-
cating the filters in∼ 30 mL ultrapure H2O (18.2 M�). Sam-
ples with [NO−3 ]>1 µM were analyzed for isotopic compo-
sition (concentration techniques detailed below).

The denuder-extracted solution with a pH of ∼ 10 was
frozen and transported to Brown University for concentration
and isotopic analysis, which was completed within 2 months
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after the sampling. The timescales for sample extraction and
isotopic analysis preserve both the solution concentration
and isotopic composition of HONO in the form of nitrite
(Chai and Hastings, 2018). The two-denuder setup allows
for the minimization of the interference for both concentra-
tion and isotopic analysis from other N-containing species
that could be trapped and form nitrite in residual amounts on
the denuders, especially NO2. Note that HONO levels were
above the minimum detection limit (0.07 µM in extraction so-
lution) and that the breakthrough amount of HONO threshold
is far from being reached given the concentrations (Table 1),
flow rate (∼ 8 L min−1) and collection times. Isotopic analy-
sis of nitrite required the collection of a minimum amount
of 10 nmol. NOx was completely collected in an imping-
ing solution containing 0.25 M KMnO4 and 0.5 M NaOH
which oxidizes NO and NO2 to NO−3 by pumping sampled
air through a gas washing bottle at a flow rate of∼ 4 L min−1.
Collection time for HONO ranged from 2 to 12 h and that for
NOx ranged from 0.75 to 2.5 h depending on their mixing
ratios to make sure sufficient samples were captured against
blanks for isotopic analysis (Fibiger et al., 2014; Fibiger and
Hastings, 2016; Wojtal et al., 2016). Particulate filters and
Nylasorb filters were collected over 7–12 h due to the low
concentration of particulate nitrate and HNO3.

The samples from each collection system were retrieved
and processed following the procedures described in Chai et
al. (2019). All treated samples from NOx , HONO, p-NO−3
and HNO3 collection and their corresponding blanks were
analyzed offline for concentrations of NO−2 and NO−3 with a
WestCo SmartChem 200 discrete analyzer colorimetric sys-
tem. The reproducibility of the concentration measurements
was ± 0.3 µmol L−1 (1σ ) for NO−2 and ± 0.4 µmol L−1 for
NO−3 when a sample was repeatedly measured (n= 30). A
detection limit of 0.07 µmol L−1 for NO−2 and 0.1 µmol L−1

for NO−3 was determined, and no detectable nitrite or nitrate
was found in the blank denuder coating solution, whereas
blank NO−3 concentrations of∼ 5 µM are typical for the NOx
collection method (Fibiger et al., 2014; Wojtal et al., 2016).
We only report the samples whose concentrations were at
least 30 % above NO−3 present in the blank KMnO4 solu-
tion upon purchase to avoid increasing the error associated
with the isotopic composition (Fibiger et al., 2014). Note that
NO−3 concentration was measured on the ADS solutions to
verify whether and to what extent NO−2 was oxidized to NO−3
on denuder walls because the denitrifier method will convert
both NO−3 and NO−2 to N2O for isotopic analysis (see below).

Note that the complete collection of HONO and NOx have
been verified in various environments including biomass
burning emissions. During the FIREX fire lab experiment,
we applied the same method to quantify the HONO and
NOx isotopic composition (Chai et al., 2019). The concen-
trations of HONO captured with our ADS compared well
with four other high-time-resolution concentration measure-
ment techniques, including mist chamber and ion chromatog-
raphy (MC/IC), open-path Fourier transform infrared spec-

troscopy, cavity-enhanced spectroscopy, and proton-transfer-
reaction time-of-flight mass spectrometer. In the same work,
the NOx concentrations collected in the permanganate im-
pinger were verified by real-time measurement with a chemi-
luminescence NOx analyzer. In addition, our NOx collection
technique has been verified with real-time NOx concentra-
tions in on-road, near-road and urban background environ-
ments (Wojtal et al., 2016; Miller et al., 2017). These agree-
ments verify complete capture of HONO and NOx associated
with biomass burning emissions using our techniques, which
preserve the isotopic signatures without isotopic fractiona-
tion during the sampling process.

2.4 Isotopic analysis

The denitrifier method was used to complete nitrogen
(15N / 14N) and oxygen (18O / 16O) isotope analyses of sep-
arate NO−3 samples converted from NOx and NO−2 sam-
ples converted from HONO by quantitative conversion to
N2O by denitrifying bacteria P. aureofaciens (Casciotti et
al., 2002; Sigman et al., 2001). The isotopic composition of
N2O is then determined by a Thermo Finnigan Delta V Plus
isotope ratio mass spectrometer at m/z 44, 45 and 46 for
14N14N16O, 14N15N16O and 14N14N18O, respectively. Sam-
ple analyses were corrected against replicate measurements
of the NO−3 isotopic reference materials USGS34, USGS35
and IAEA-NO-3 (Böhlke et al., 2003) and that of the NO−2
isotopic reference materials N7373 and N10219. Precisions
for δ15N-NOx , δ15N-HONO and δ18O-HONO isotopic anal-
ysis across each of the entire methods are ± 1.3 ‰, ± 0.6 ‰
and ± 0.5 ‰, respectively (Chai and Hastings, 2018; Fibiger
et al., 2014).

3 Results and discussion

3.1 Concentrations of HONO and NOx

Among the three fires, increased HONO concentrations were
observed in young smoke during both night (0.2–2.0 ppbv)
and day (2.5 ppbv), while HONO level is significantly lower
in aged smoke during both night (0.06–1.0 ppbv) and day
(0.05–0.6 ppbv) as shown in Fig. 2a. Although median val-
ues show young night and day are significantly higher than
aged smoke day and night, there is significant overlap be-
tween young nighttime and aged day and night for WF and
Nethker fires. These parts per billion volume to sub-parts per
billion volume HONO concentrations can be a major OH
source in areas that are impacted by wildfire. We also de-
termined the molar ratio HONO /NO2 from the concentra-
tions for each sample (Fig. 3), and the values represent the
upper bound of [HONO] / [NOx] (Table 1a). Median ratios
of [HONO] / [NO2] for the five smoke conditions are 0.35
(YN), 0.12 (YD), 0.07 (AN), 0.09 (AD) and 0.04 (MD). The
median ratios of [HONO] / [NO2] for the young smoke fall
in the range of fresh emissions measured in the lab (0.13–
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0.53) and the field (0.05–0.33) (Yokelson et al., 2009; Se-
limovic et al., 2020, and references therein). Our results
for YN are also in agreement with airborne measurements
(0.34± 0.08) from the BB-Flux campaign that occurred in
parallel with WE-CAN but are lower than the WE-CAN air-
borne observation of 0.72± 0.34 during the day (Theys et
al., 2020; Peng et al., 2020). It is worth noting that the ma-
jority of the WE-CAN airborne data overlap with the BB-
Flux results and our measurements, and Peng et al. (2020)
associate very high ratios with different transport dynamics
of fresh plumes. The concentration results for the ADS col-
lected [HONO] agree well with that measured via MC/IC
in real time and averaged over the ADS sampling periods
(Fig. S3). The good agreement between these techniques
sampling the same plumes near the ground and previous
agreement with other HONO and NOx observation methods
suggest the concentrations are accurate (see also Sect. 2.3).
It is important to also consider possible interference of per-
oxyacetyl nitrate (PAN) with NOx collected in the alkaline
permanganate solution for biomass burning conditions (Jaffe
and Briggs, 2012). There is minimum PAN formed in fresh
biomass burning (BB) emissions and young smoke of less
than half an hour, based upon previous lab and field measure-
ments, as well as modeling studies (Stockwell et al., 2014;
Yokelson et al., 2009; Alvarado et al., 2010, 2015). In aged
BB plumes in the upper troposphere, PAN can form rapidly
at low temperatures and act as a temporary NOx reservoir,
reaching a maximum PAN /NOy ratio of 0.3 (comparable to
NOx /NOy) within∼ 2 to 4 h of aging after emission (Yokel-
son et al., 2009; Liu et al., 2016; Akagi et al., 2012). Though
we note that these results are all from airborne measure-
ments. There are no ground-level measurements for PAN in
BB plumes during WE-CAN or FIREX-AQ, nor from other
field studies to the best of our knowledge. PAN is thermally
unstable in the boundary layer during summertime, and its
main loss process in the atmosphere is thermal decomposi-
tion to release NO2. The lifetime of PAN is on the order of
1 h or less at 20 ◦C and above (Talukdar et al., 1995; Fischer
et al., 2010). We therefore expected PAN in near-ground air
to maintain low levels or less due to photochemistry and ther-
mal decomposition. Thus, given the short lifetime and the
sample integration time of over 40 min to 2 h timescale, PAN
is unlikely to interfere with our NOx results.

In the aged smoke, [HONO] / [NO2] are greatly reduced
to median values of 0.05 and 0.07 observed for AN and AD,
respectively, lower than the lab-derived range (Fig. 3). Wild-
fire plumes near ground level are expected to be more diluted
than those directly injected upwards during the day, and the
loss of HONO due to photolysis in the plume and/or sur-
face reactions would be expected to be much faster than that
in higher altitude dense plumes. The very low ratios indicate
that HONO was lost faster than NOx ; however, given the 10–
20 min lifetime of HONO against photolysis during the day
and up to a couple of hours during the night (Nie et al., 2015),
and considering aged smoke was sampled tens of kilome-

Figure 3. HONO /NO2 concentration ratio summarized in box-
whisker plot for each sampling condition. The red cross indicates
an outlier. The whiskers from bottom to top represent 5 %, 25 %,
50 %, 75 % and 95 % quartiles.

ters from the fire, HONO levels may be maintained via sec-
ondary chemistry due to the high particle loadings and other
terrestrial surface reactions in wildfire plumes (Alvarado and
Prinn, 2009). While the concentration data are valuable for
the ground-based setting near the fires, considerable uncer-
tainty exists in the rate coefficients of the heterogeneous pro-
cesses in daytime, as well as the HONO and NO2 uptake co-
efficient and surface area densities (Appendix A). This makes
it challenging to quantify the relative contribution of each po-
tential pathway to the observed HONO budget.

3.2 Isotopic signatures of HONO and NOx

In the 2016 FIREX fire laboratory experiment, we obtained
δ15N of NOx and HONO, as well as δ18O of HONO, in
direct emissions from controlled burning of various vegeta-
tion biomasses representative of the western US (Chai et al.,
2019). The lab-based δ15N and δ18O results serve as source
signatures of biomass burning (BB) emissions: δ15N-NOx
(−4.3 ‰ to +7.0 ‰) and δ15N-HONO (−5.3 ‰ to +5.8 ‰)
are derived from biomass N and the transformation in the
combustion process, and δ18O-HONO (5.2 ‰ to 15.2 ‰) in-
corporates δ18O of molecular oxygen and water via combus-
tion reactions (Chai et al., 2019). In the field, we expect that
once NOx and HONO are released and transported, atmo-
spheric processing including photochemistry and nighttime
chemistry would cause the isotopic composition of emitted
NOx and HONO to change.

By directly comparing the field-measured δ18O-HONO
with that measured from lab-controlled burning, we sepa-
rate the data observed in young smoke from those in aged
smoke. Very young smoke largely reflects fresh wildfire
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emissions without significant atmospheric processing, while
aged smoke δ18O-HONO should deviate from the lab val-
ues due to the influence of secondary chemistry involving
RN cycling. The δ18O-HONO of young nighttime smoke
ranged from 4.8 ‰ to 32.3 ‰ with a median value of 19.0 ‰,
while the value in a single young daytime sample was 25.6 ‰
(Fig. 2b). There is a major overlap between the lab results
and young nighttime smoke but with some higher δ18O-
HONO values in the field observations. These results sug-
gest the HONO sampled in young smoke was dominated by
primary BB emissions from the nearby wildfire but included
contributions of secondarily produced HONO. By contrast,
δ18O-HONO is greatly elevated in aged smoke from all three
fires both day and night. In addition, two aged smoke sam-
ples are labeled as mixed smoke because the collection inter-
val included both sunlit and dark periods. The enrichment
of δ18O-HONO (up to 78 ‰), regardless of location and
time, suggests that HONO in these conditions is produced by
secondary chemistry involving NO, NO2 and nitrate, which
transfer high δ18O values due to O3 influence via photochem-
istry (Appendix B) (Thiemens, 2006; Michalski et al., 2003).
The varying δ18O-HONO values reflect different oxidizing
environments, i.e., NO-to-NO2 conversion via RO2 versus
O3. These branching ratios can be determined if we resolve
the dominant pathways for HONO production.

The δ15N-HONO in the young smoke ranges from−0.3 ‰
to+7.4 ‰ with a median value of 2.8 ‰ for YN and+3.4 ‰
for YD, whereas that in the aged smoke shows decreased
median values of −2.9 ‰ and −1.8 ‰ for AN and AD, re-
spectively. In addition, the daytime aged smoke exhibits the
largest variability (Fig. 2c), and this likely reflects daytime
HONO secondary chemistry. It is noted that δ15N-NOx and
δ15N-HONO measured across the entire period of all three
fires at ground level ranges from −4.3 ‰ to +8.7 ‰ and
−6.7 ‰ to +7.4 ‰, respectively, with the majority overlap-
ping with the corresponding ranges found in the fire labora-
tory experiment and no significant difference in mean val-
ues (p value>0.5) (Chai et al., 2019; Fibiger and Hastings,
2016). This consistency suggests δ15N is a reliable tracker
generally for BB-derived NOx and HONO, although there
is clear variability between the different smoke conditions
that can refine our understanding of reactive N cycling. We
note again that, although no near-ground PAN measurements
in BB plumes are available, the isotopic results also suggest
that PAN interference is not important to the δ15N-NOx re-
sults. For aged smoke, we would expect δ15N-NOx to de-
crease from that in fresh emissions due to partial transforma-
tion of NOx to additional oxidized N products (e.g., PAN),
as well as isotopic exchange between NOx and these oxi-
dized species; both processes will leave 15N depleted in NOx
and 15N enriched in PAN (Walters and Michalski, 2015). If
PAN existed at significant concentrations that were (1) com-
parable with NOx in the atmosphere and (2) completely col-
lected in the permanganate solution, then the δ15N would re-
flect the overall δ15N of NOx+PAN in the final reduced per-

manganate solution. In this case, we would expect that aged
smoke would not shift from the δ15N-NOx range of young
smoke because δ15N shifts in both PAN and NOx could off-
set each other. However, our observed δ15N-NOx mean val-
ues for both aged daytime and nighttime smoke are signifi-
cantly (p<0.05) lower than that of the young smoke, a good
indicator of a lack of PAN interference on the isotopic results
(see also Miller et al., 2017).

Our prior lab-controlled burning study revealed a linear re-
lationship between δ15N-HONO and δ15N-NOx , with δ15N-
HONO slightly more negative than δ15N-NOx in fresh BB
emissions (Chai et al., 2019). This δ15N relationship is plot-
ted as a solid line, together with all field observations, to il-
lustrate the potential influence of atmospheric processing on
the δ15N-HONO and δ15N-NOx (Fig. 4). The plot can be
sub-divided into three regimes. In regime I, we find all of the
δ15N of NOx and HONO in young smoke from both daytime
and nighttime. In this young smoke regime, more positive
δ15N than that of the rest of our samples is found for both
species, and all samples concur with the δ15N relationship
found for fresh emissions (Fig. 4). This, along with the low
δ18O-HONO associated with these samples (Fig. 2b), con-
firms HONO is not significantly affected by secondary chem-
ical processing in the air mass captured from fresh smoke.
Regime II is filled with the results of daytime aged smoke
∼ 30 km away from the RF fire; these results exhibited much
more positive δ15N-HONO than δ15N-NOx by 3 ‰ to 6 ‰,
as well as the largest (positive) discrepancy from the BB
δ15N relationship line, as shown in the upper left region of
Fig. 4. The daytime aged smoke also exhibited the high-
est values of δ18O-HONO observed (Fig. 2). All samples
of aged nighttime smoke that were collected fall in regime
III. While the majority of the regime III data fall within the
95 % confidence interval for the lab-based δ15N relationship,
there is a tendency for these samples to have δ15N-HONO
that was more negative than δ15N-NOx to different degrees
of up to −8.7 ‰. In particular, we hypothesize that the com-
bination of more negative δ15N-HONO values and elevated
δ18O-HONO indicate secondary production of HONO. We
next explore quantitative use of δ15N-NOx , δ15N-HONO and
δ18O-HONO to understand the isotopic shifts in terms of sec-
ondary chemistry involving RN cycling.

3.3 Isotopic mass balance modeling

In aged smoke, the observed δ18O-HONO enhancement and
shift of δ15N values away from the δ15N NOx–HONO line,
as a result of RN cycling, would be expected to be de-
rived from the integrated kinetic isotopic fractionation (ex-
pressed as enrichment factor 18ε and 15ε) associated with
each of the loss/production processes (Fig. 1) weighted by
their relative contribution to the budget. By definition, ε =
(α− 1)× 1000 ‰, with fractionation factor α referring to
the rate coefficient ratio between the heavy isotopologue and
the light isotopologue. For δ18O-HONO, we also took into
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Figure 4. Relationship between wildfire-derived δ15N-HONO and
δ15N-NOx . Samples from plumes of three wildfires including Rab-
bit Foot fire (RF; 2018), Williams Flats fire (WF; 2019) and Nethker
fire (2019) are shown as different colors. Different symbols indicate
different smoke conditions including young nighttime smoke (YN),
young daytime smoke (YD), aged nighttime smoke (AN) and aged
daytime smoke (AD). Note that the mixed smoke samples displayed
in Fig. 2 are not shown here due to their large uncertainty. The
solid black line (δ15N-HONO= 1.01δ15N-NOx−1.52; R2

= 0.89,
p<0.001) is derived from lab-controlled burning emissions during
the 2016 FIREX fire lab study (Chai et al., 2019) and within the
95 % confidence interval (dashed magenta lines) predicts much of
the field-based δ15N-HONO versus δ15N-NOx . The field data are
further grouped into three regimes – young smoke in both day and
night (I, light purple shading), aged daytime smoke (II, pink shad-
ing) and aged nighttime smoke (III, gray shading) based upon the
δ18O-HONO results.

account the transferring effect of oxygen from different O-
containing reactants that produce HONO (as explained in
Appendix B). In order to elucidate the relative role each pro-
cess plays in the HONO budget, we constructed an isotopic
mass balance model for δ15N and for δ18O.

In aged smoke, a deviation in δ15N, represented as
1δ15NHONO−NOx (= δ15N-HONO − δ15N-NOx), is simu-
lated following Eq. (1), where f is the fraction of reaction i
(reaction numbering in Sect. 1) to total loss (L) or production
(P) of HONO. δ18O-HONO is simulated following Eq. (2), in
which the change in δ18O-HONOi,P arises from, in addition
to kinetic isotopic fractionation, the transferring of δ18Oi,t
(Eq. 3) in the reactant (OH, NO, NO2, H2O and NO−3 ) to the
product HONO as HONO contains two O atoms that may
stem from more than one reactant (Appendix B). The δ18O
values of all possible reactions that produce HONO are eval-
uated, as tabulated in Table S1 in the Supplement, to help
determine δ18O of NO, NO2 and HONO. The isotopic en-
richment factors 15ε and 18ε associated with each of Reac-
tions (R1)–(R7) are computed via theoretical principles as

none of these key parameters are currently available in the
literature (Appendix B).

1δ15NHONO−NOx =
∑

i,L

(
fi,L×1δ

15Ni,L
)

+

∑
i,P

(
fi,P×1δ

15Ni,P
)

(1)

δ18O−HONO=
∑

i,L

(
fi,L×

18εi,L

)
+

∑
i,P

(
fi,P× 1δ

18O−HONOi,P
)

(2)

1δ18O−HONOi,P = δ18Oi,t+ 18εi,P (3)

3.3.1 Modeling of δ15N of HONO and NOx in aged
daytime and nighttime smoke

We first simulated 1δ15NHONO−NOx for both daytime and
nighttime aged conditions using this model. According to the
potential HONO–NOx chemistry in ground areas impacted
by wildfire smoke plumes (Fig. 1), HONO is expected to be
predominantly lost to photolysis (Reaction R1) during the
day. It is well known that HONO can be produced via a
gas-phase radical recombination reaction between NO and
OH (Reaction R2) (Platt et al., 1980). However, the rate of
Reaction (R2), calculated from the rate coefficient, the typ-
ical daytime OH concentration (1–2× 106 molecule cm−3)
(de Gouw et al., 2006) in biomass burning plumes and our
measured mean NOx concentration, can only account for up
to 15 % of the HONO production rate (Appendix A and Ta-
ble A1). Under a typical pseudo-steady-state approximation
(PSSA) (d[HONO]/dt ≈ 0), additional sources of HONO
must be included to balance the HONO budget. Thus, we
modeled three scenarios varying the relative contribution of
Reaction (R2) as 5 %, 10 % and 15 %. With rapid photolytic
loss, HONO has a lifetime nearly 2 orders of magnitude
shorter than the lifetime of NO in Reaction (R2), as well as
that of NO2 in Reaction (R3) and nitrate in Reaction (R4);
thus, the 1δ15NHONO−NOx is mostly sensitive to the change
in δ15NHONO immediately upon photolysis but overall re-
mains constant, associated with Reactions (R2)–(R4) within
the timescale of HONO photolysis. We quantify the remain-
ing HONO fraction from secondary production, frp, to rep-
resent HONO that has been produced but not yet photolyzed.
Thus, the daytime 1δ15NHONO−NOx for aged smoke was
simulated as a function of frp following a Rayleigh-type iso-
topic fractionation scheme (Fig. 5 and Sect. B2.1). Generally,
1δ15NHONO−NOx follows an exponential increase as frp de-
creases. In other words, as more photolysis occurs the dif-
ference in the remaining δ15N-HONO and the δ15N-NOx
increases, and this is driven by the negative value of 15ε1
which tends to enrich 15N in the HONO reactant (Reac-
tion R1). The simulation was carried out for two different
sets of HONO production mechanisms, with HONO pho-
tolysis being the dominant loss pathway. With mechanism
M1 (solid lines in Fig. 5), photo-induced surface NO2-to-
HONO conversion (Reaction R3) is the major pathway in
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addition to gas-phase OH+NO (Reaction R2) to produce
HONO. As 15ε2 has a positive value, a larger Reaction (R2)
contribution leads to higher 1δ15NHONO−NOx . With mech-
anism M2 (dashed line in Fig. 5), nitrate photolysis (Reac-
tion R4) is included in addition to Reactions (R2) and (R3)
in the HONO production mechanism. Taking the contribu-
tion of Reaction (R2) of 10 % as a constant, three scenar-
ios were modeled by varying the relative contribution of
Reaction (R3) (75 %–85 %) and Reaction (R4) (5 %–15 %).
The results suggest larger Reaction (R4) contribution yields
lower 1δ15NHONO−NOx due to severe 15N depletion associ-
ated with nitrate photolysis (15ε4 ≤−47.9 ‰) (Appendix B).
Importantly, the addition of Reaction (R4) in M2 also lowers
1δ15NHONO−NOx compared to M1. By applying the field-
observed 1δ15NHONO−NOx for the aged daytime smoke to
the model, we solved frp for all scenarios and plotted these as
circles in Fig. 5. All five aged daytime datasets from RF can
be reproduced by M1 under all three scenarios; by contrast,
via M2, none of the three scenarios can explain the two high-
est 1δ15NHONO−NOx values observed in the field. As such,
we conclude that Reaction (R4) plays a minor role (<5 %) in
the secondary HONO production in the aged daytime smoke
during our sampling periods. Rather, HONO forms primarily
via Reactions (R2) and (R3) during the day in the areas im-
pacted by aged wildfire smoke. However, there are two lim-
itations to the modeling results. First, as the 15N / 14N frac-
tionation associated with Reactions (R3), (R6) and (R7) are
not distinguishable with our current parameterization (Ap-
pendix B1.2 and B2.2), we cannot rule out the potential im-
portance of heterogeneous NO2-to-HONO conversions (Re-
actions R6 and R7) in daytime. Second, it should be noted
that the results represent our best estimate of the average
relative importance of Reactions (R2)–(R4) for HONO pro-
duction during our HONO sampling periods (2–10 h) for
the aged daytime plume. Due to the long sample integration
time, our samples were influenced by both aged smoke and
near-background air when the smoke was very diluted. Un-
der the NOx-limited condition (low NOx<1 ppbv) in remote
background air, nitrate photolysis is expected to be the major
secondary HONO source (Ye et al., 2016; Zhou et al., 2011),
which cannot be ruled out by our results. Isotopic measure-
ment techniques with higher time resolution will be required
to achieve real-time quantification of the HONO budget.

For the nighttime smoke, we simulated that the
HONO budget is maintained by Reactions (R5)–(R7).
1δ15NHONO−NOx reflects the combination of kinetic isotopic
fractionation 15ε5 associated with the HONO loss (Reac-
tion R5) and production reactions (Reactions R6 and R7 in
proportion). With our calculated uptake 15ε5 (−2 ‰) and es-
timated 15ε6 or 15ε7 (ranging from −2.9 ‰ to −4.5 ‰), we
obtained 1δ15NHONO−NOx ranging from −0.9 ‰ to −2.5 ‰
when uptake and production occur at a similar timescale
(rate coefficient), and this can explain the majority of ob-
served aged nighttime results (regime III; Fig. 4). Two
aged nighttime points sampled for RF (16 and 17 Au-

Figure 5. Modeling results of δ15N for aged daytime smoke via two
plausible mechanisms (M1 and M2) for secondary HONO produc-
tion. The isotope mass balance model (Eq. 1) is used to simulate the
δ15N difference (1δ15NHONO−NOx = δ

15NHONO− δ
15NNOx ) as

a function of the fraction of HONO remaining after photolysis (frp)
in a pseudo-photochemical steady state. The calculated kinetic frac-
tionation factors used here are explained in Appendix B. In the first
mechanism (M1, solid lines), Reaction (R3) is the major HONO
production pathway with a varying relative contribution from Reac-
tion (R2), which is constrained as producing no more than 15 % of
the observed HONO concentrations. In the second mechanism (M2,
dashed lines), nitrate photolysis (Reaction R4) is included in addi-
tion to Reactions (R2) and (R3) for HONO production. Taking the
contribution of Reaction (R2) of 10 % as a constant, three scenarios
were modeled by varying the relative contribution of Reaction (R3)
(75 %–85 %) and (R4) (5 %–15 %).

gust 2018) fall outside of the predicted range, with much
lower1δ15NHONO−NOx (−8.7 ‰ and−5.5 ‰, respectively).
These two samples were associated with 2–10 times elevated
NOx concentration compared to the previous 4 nights and
likely higher concentrations of particulate matter (Figs. 2a;
Fig. S4 in the Supplement). This could cause an accelerated
conversion of NO2-to-HONO, which is not accounted for in
the steady state estimation above, leading to the much lower
1δ15NHONO−NOx values that were observed.

3.3.2 Modeling of δ18O of HONO in aged daytime and
nighttime smoke

The δ18O-HONO of daytime aged smoke was modeled fol-
lowing M1 (Reactions R1–R3) derived based upon the δ15N
modeling results: NO and NO2 are cycled via NO2 photol-
ysis and NO oxidation by O3 and/or peroxy radicals (RO2
including HO2) during the day, through which δ18O of O3
and RO2 can be passed to NO and NO2 via mass transfer
(Eqs. B10–B12). O3 is known to have an intrinsically high
δ18O value of up to∼ 117 ‰ caused by unique isotopic frac-
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tionation associated with photochemical gas-phase O3 for-
mation (Thiemens, 2006), while OH and RO2 have very low
δ18O values (Thiemens, 2006). O3 participation in reactive N
cycling involving NOx (Reaction R8) results in high δ18O of
NO2 (Michalski et al., 2003; Walters et al., 2018). In pseudo-
photochemical steady state, NO and NO2 are expected to
have similar δ18O which is a result of competition between
O3 and RO2 oxidation (Reactions R8–R10), expressed as
f NO

O3/(O3+RO2)
via Eqs. (4) and (5) below.

NO + O3→ NO2+O2 (R8)
NO + HO2/RO2→ NO2+HO/RO (R9a)

→ HONO2/RONO2(5%) (R9b)
NO2+hν+O2→ NO + O3 (R10)

δ18O−NO≈ δ18O−NO2 = f
NO
O3/(O3+RO2)

× δ18O−O3

+

(
1− f NO

O3/(O3+RO2)

)
× δ18O−RO2 (4)

f NO
O3/(O3+RO2)

=
kNO+O3 [O3]

kNO+O3 [O3]+ kNO+RO2 [RO2]
(5)

The δ18O signature is subsequently passed to HONO when it
is produced from NO (Reaction R2) and NO2 (Reaction R3)
during the day and from NO2 (Reactions R6 and R7) during
the night, and thus δ18O-HONO is a positive linear function
of f NO

O3/(O3+RO2)
if kinetic isotopic fractionation (18ε) associ-

ated with these processes are fixed values (as calculated in
Appendix B). Given that HONO is predominantly produced
via Reactions (R2) and (R3) in aged daytime smoke (Fig. 5),
δ18O-HONO was simulated following the three M1 scenar-
ios with the contribution of Reaction (R2) varying from 5 %
to 15 %. All three scenarios reproduced the range of our field
results for aged daytime smoke, further pointing to M1 as ex-
plaining the HONO in this environment. In addition, the vari-
ation in δ18O was driven by differing oxidation that is deter-
mined by f NO

O3/(O3+RO2)
, which depends on the relative con-

centration of O3 to RO2 (Figs. S5 and S6). The f NO
O3/(O3+RO2)

corresponding to each observed δ18O-HONO were solved
and plotted in Fig. 6a. We found f NO

O3/(O3+RO2)
decreased by

less than 0.02 as the contribution of Reaction (R2) to to-
tal HONO production decreased from 15 % to 5 %. On the
other hand, δ18O-HONO changes sensitively with varying
f NO

O3/(O3+RO2)
, increasing from 50.2 ‰ to 78.0 ‰ as the frac-

tion of NO oxidized by O3 rather than RO2 increases from
0.34 to 0.65.

The δ18O-HONO of nighttime aged smoke was modeled
following the nighttime chemistry (Reactions R5–R7), i.e.,
taking NO2 conversion as the source and surface uptake as
the sink. In areas impacted by nighttime aged smoke, HONO
forms from wildfire-derived NO2 residing in the nocturnal
boundary layer. As the two pathways (Reactions R6 and
R7) for heterogeneous NO2 conversion lead to very differ-
ent δ18O-HONO stemming from different δ18O transfer (Ap-
pendix B), we examined the relative importance of the two

Figure 6. Model prediction of fraction of NO oxidized to NO2
via O3 to that via O3 and RO2 together (fNO

O3/(O3+RO2)
) on the

basis of field-measured δ18O-HONO for aged daytime (a) and
nighttime (b) smoke. During the day (a), the contribution of Re-
action (R2) to HONO production is varied from 5 % to 15 % fol-
lowing M1 in Fig. 5, and Reaction (R3) accounts for the remaining
secondary HONO contribution. The modeling results are shown in
Fig. S5 and Table S3 in the Supplement. During the night (b), three
scenarios with various contributions of Reactions (R6) and (R7) are
modeled (Fig. S6 and Table S4). fNO

O3/(O3+RO2)
is predicted to be

over unity for the last four observed δ18O-HONO values if Reac-
tion (R6) is assumed as the only nighttime pathway.

pathways for HONO production by varying the relative con-
tribution between the two pathways and comparing it to the
observed δ18O-HONO (Fig. 6b). If HONO is constrained to
exclusively form via Reaction (R6) (surface hydrolysis), the
model would require an unrealistic f NO

O3/(O3+RO2)
>100 % to

explain δ18O-HONO>55‰. Even for samples with lower
δ18O-HONO values (34 ‰ to 52 ‰), the high branching ra-
tio f NO

O3/(O3+RO2)
(>0.6) required to create such large en-

richment is unrealistic for BB environments. In particular,
[O3] / [RO2] converted from f NO

O3/(O3+RO2)
solved under this

mechanism is at least twice as large as values derived from
the previous field measurement of aged wildfire smoke (Bay-
lon et al., 2018). By contrast, the inclusion of Reaction (R7)
in addition to Reaction (R6) in rate ratios 3 : 1 and 20 : 1
based on previous lab studies (Kebede et al., 2016; Scharko
et al., 2017) can elevate the modeled δ18O-HONO and ex-
plain all observed δ18O-HONO values. This suggests NO2-
to-HONO heterogeneous conversion catalyzed by surface-
hosted iron oxides and quinone (Reaction R7) in the night-
time aged smoke proceeds significantly faster than NO2 hy-
drolysis (Reaction R6). Our isotopic analyses provide evi-
dence for the participation of such a pathway in BB envi-
ronments and also shows the capability to constrain the rela-
tive importance between these two pathways. Although the
daytime δ18O-HONO can be larger than that of nighttime
aged smoke, similar [O3] / [RO2] ratios are derived from our
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solved f NO
O3/(O3+RO2)

and are consistent with the limited field
measurements (Parrington et al., 2013; Baylon et al., 2018),
and they further indicate the important role peroxy radicals
play as an oxidant in wildfire-smoke-impacted environments.

4 Conclusions

As wildfire has enormously impacted climate, air quality and
ecosystems in the past and is expected to worsen (Wester-
ling, 2016), accurately tracking wildfire-derived reactive ni-
trogen species (i.e., NOx and HONO) and their cycling is
extremely important for quantifying and mitigating key pol-
lutants such as O3 in wildfire-impacted areas both close to
the fire and thousands of kilometers downwind. We show
δ15N-HONO and δ15N-NOx can serve as a powerful tool to
track BB sources and constrain secondary HONO production
pathways. With the help of field-observed δ18O-HONO, we
grouped our measured relationship between the δ15N-HONO
and δ15N-NOx into three different regimes, which clearly
distinguish between young wildfire plumes, aged daytime
plumes and aged nighttime plumes. The δ15N results allow
for constraining the daytime HONO budget and particularly
secondary production mechanisms via the isotope mass bal-
ance simulation. The use of excess δ15N (1δ15NHONO−NOx )
also provides an approach for constraining HONO budgets
in other environmental settings, such as urban ambient ar-
eas and remote areas including forest and polar regions. Fur-
thermore, by combining δ15N emission source signatures
and chemical fractionation characteristics, we could poten-
tially track the impact and relative role of wildfire-derived
reactive nitrogen more extensively when the plume transfers
thousands of kilometers downwind and mixes with other air
such as urban plumes. In addition, the δ18O-HONO results
not only offer direct evidence for secondary production of
HONO that allows for the determination of the NO oxidiz-
ing branching ratio between O3 and RO2 but also constrains
nighttime HONO production mechanisms. We expect to ap-
ply the δ18O-HONO approach to a variety of atmospheric
settings for constraining the HONO budget and its cycling
with other reactive nitrogen species, as well as O3. As such,
online isotopic measurement techniques with higher time
resolution will benefit the use of stable isotopes and broaden
its application in atmospheric chemistry. In the meantime, in
order to more accurately quantify the relative contribution of
these potential pathways, further experimental and theoreti-
cal investigations on isotopic fractionation characteristics of
each pathway under various environmental conditions are re-
quired.

Atmos. Chem. Phys., 21, 13077–13098, 2021 https://doi.org/10.5194/acp-21-13077-2021



J. Chai et al.: Isotopic evidence for dominant secondary production of HONO 13089

Appendix A: Overview of HONO budget quantification
under different conditions based upon concentrations

A common approach to quantitatively understand the
wildfire-derived HONO budget – its direct emissions, sec-
ondary productions and sinks – is to use concentration-based
mass balance calculation. Ideally, if we know the rate coeffi-
cients and reactant concentrations for each of the pathways,
we would be able to quantify the relative contribution of each
pathway to the total HONO concentration measured in the
field under the assumption of pseudo-steady-state approxi-
mation (PSSA) as described in Eq. (A1), where Remission,
Rproduction andRloss are rate of emission, production and loss,
respectively. In aged smoke, we expect HONO is almost ex-
clusively produced from secondary formation. During the
day, HONO is predominantly lost to photolysis with a co-
efficient depending on solar zenith angle differing with time
of the day, while one or more reactions of Reactions (R2)–
(R4) may be responsible for producing HONO. Under PSSA,
using the well quantified rate coefficient k2, observed NO
and HONO concentrations, estimated OH concentration, and
TUV-model-calculated (tropospheric ultraviolet and visible)
HONO photolysis coefficient jHONO, we estimated the ratio
of Reaction (R2) to the total HONO production (POH+NO)
via Eq. (A2) and found Reaction (R2) can only contribute
2 %–15 % (Table A1) of the total HONO production under
the ambient conditions when the five aged daytime samples
were collected. This suggests at least 85 % of HONO was
produced from heterogeneous HONO formation via Reac-
tion (R3) and/or Reaction (R4).

d[HONO]
dt

= Remission+Rproduction−Rloss ≈ 0 (A1)

POH+NO =
k2 [OH] [NO]
jHONO[HONO]

(A2)

HONO production from photo-enhanced NO2 conversion
has been proposed to take place on various types of surfaces.
However, the uptake coefficient (γ hνNO2→HONO), which indi-
cates the probability of NO2 collisions with a surface that
results in the formation of a HONO molecule, varies by at
least 3 orders of magnitude depending on the specific type of
surface materials. For instance, γ hνNO2→HONO on soot particles
was found to range from 3.7× 10−4 to 1.1× 10−3 s−1 (Am-
mann et al., 1998), while that on surfaces comprised of hu-
mic acid was measured as 2–8×10−5 s−1 in several lab stud-
ies (Stemmler et al., 2006; Scharko et al., 2017). The latter
is consistent with daytime modeling results of 6× 10−5 s−1

(Wong et al., 2013). Additionally, a much smaller (10−7–
10−6 s−1) γ hνNO2→HONO value was obtained for metal oxide
surfaces such as TiO2 and SiO2 (Ndour et al., 2008).

Daytime photolysis of nitrate (HNO3 and pNO−3 ) via Re-
action (R4) has also been proposed as an important renoxi-
fication pathway that produces HONO and NO2 in low NOx
remote environments (Zhou et al., 2011), as well as high
NOx urban settings with abundant urban grime (Baergen and

Donaldson, 2016, 2013). The p-NO−3 and surface-adsorbed
HNO3 were found to be photolyzed with rate coefficients
2–3 orders of magnitude larger than gas-phase HNO3 and
possess lifetimes as short as a few hours (Ye et al., 2017).
However, the rate coefficient of Reaction (R4) is poorly con-
strained. Not only have the branching ratios between the
NOx-producing channel and HONO-forming channel been
poorly known (Baergen and Donaldson, 2016), but previous
laboratory-measured nitrate photolysis rate coefficients also
vary by up to 3 orders of magnitude (Ye et al., 2017). The
uncertainty is even greater because it is complicated by de-
pendence on relative humidity, particle composition and pH.

During the night, HONO is primarily lost to uptake on sur-
faces including aerosols and soils, and the uptake coefficient
can be expressed by Eq. (A3).

L
uptake
HONO = 0.25 × γHONO × ωHONO × S/V × 100 (A3)

In this equation, ωHONO is the mean thermal HONO molec-
ular velocity calculated by ωHONO =

√
8RT/πM , where

R, T and M are the gas constant, absolute temperature
and molecular weight. S/V is the surface-to-volume ratio
(cm2 cm−3). The uptake coefficient γHONO was measured to
be 10−5 for soil surface and in the range of 10−5–10−3 for
aerosol particle surface (Donaldson et al., 2014b; Wong et
al., 2012). In addition, OH+HONO occurs at rates 1–2 or-
ders of magnitude smaller than the uptake and therefore plays
a minor role. The combined loss processes lead to a HONO
lifetime of about 4 h during the night.

HONO is generally assumed to be produced via hetero-
geneous NO2 hydrolysis disproportionation (Reaction R6)
(Finlayson-Pitts et al., 2003), and the production rate of
HONO is estimated by Eq. (A4), expressed in the unit of
ppbv-HONO ppbv−1-NO2 s−1.

P
night
HONO = 0.5×Rsurface

NO2→HONO

= 0.5 × γNO2 × ωNO2 × S/V × 100, (A4)

where ωNO2 is the mean NO2 molecular velocity, and S/V
is the surface-to-volume ratio of particles, which could range
from 9.0× 10−6 to 3.0× 10−4 cm2 cm−3 for normally pol-
luted areas and highly polluted areas, respectively (Spataro
and Ianniello, 2014). The S/V in biomass burning smoke
plumes has huge uncertainty; additionally, ground surface is
also expected to play an important role in nighttime HONO
production given our ground sampling location (Tuite et al.,
2021; Scharko et al., 2017; Kebede et al., 2016; Stemmler et
al., 2006); however, its S/V is not well defined/quantified.

Overall, considerable uncertainty remains regarding the
rate coefficient of the heterogeneous processes in the day-
time, as well as the HONO and NO2 uptake coefficients and
S/V ratio. This uncertainty, complicated further with large
variability in fire behavior and emissions, make the HONO
budget quantification extremely challenging.
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Table A1. HONO budget estimation.

[OH]= 1× 106 [OH]= 2× 106

molecule cm−3 molecule cm−3

Start time Stop time [HONO] [NO] [NO2] jHONO k[OH] POH+NO/ k[OH] POH+NO/

(MDT) (MDT) ppbv ppbv ppbv s−1 s−1 LHONO s−1 LHONO

08/16/18 15:56 08/16/18 17:51 0.39 0.51 6.03 1.2× 10−3 1.2× 10−5 0.01 2.4× 10−5 0.03
08/09/18 15:38 08/09/18 19:10 0.06 0.41 1.42 1.1× 10−3 1.2× 10−5 0.08 2.4× 10−5 0.15
08/14/18 10:38 08/14/18 17:18 0.24 0.22 1.56 1.4× 10−3 1.2× 10−5 0.01 2.4× 10−5 0.02
08/14/18 17:22 08/14/18 20:11 0.05 0.07 1.44 6.1× 10−3 1.2× 10−5 0.03 2.4× 10−5 0.06
08/10/18 09:50 08/10/18 20:26 0.20 0.22 1.30 1.1× 10−3 1.2× 10−5 0.01 2.4× 10−5 0.02

Note: LHONO = jHONO[HONO].
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Appendix B: Quantification of isotopic fractionation
factor

B1 Nighttime processes

B1.1 Isotopic fractionation of N and O associated with
nighttime uptake

Surface uptake is the major sink for HONO during the night.
Surface uptake of HONO has been found to be kinetically
limited by bulk diffusion in particles containing viscous
organic-water matrices, and it incorporates two simultane-
ous processes: (1) reactive uptake of HONO on the bare par-
ticle/mineral surface and (2) accommodation and reaction
of HONO in the bulk aqueous layer that is affected by pH
and diffusion in the organic-water matrix (Donaldson et al.,
2014b). The uptake coefficient of HONO is determined by
the competition between these two processes as a function
of fraction of water coverage on the surfaces, θH2O, rang-
ing from 0 to 1 in Eq. (B1), where γ0 and γ1 are the reac-
tive uptake coefficients of HONO onto particle (mineral/soil)
surfaces at dry (θH2O = 0) and wet (θH2O = 1) conditions, re-
spectively. Under completely dry conditions (θH2O = 0 or rel-
ative humidity (RH)= 0 %), the former process is dominant,
and the isotopic fractionation can be estimated by the ratio of
the square root of inverse mass, which is caused by different
thermal velocities (ωHONO) of two isotopologues following
Eq. (B2), where R is the gas constant, T is absolute temper-
ature, and M is the molecular weight. Thus, heavier isotopes
are depleted in HONO, resulting in −10 ‰ and −20 ‰ for
15ε and 18ε, respectively. By contrast, under wet conditions
when RH is 30 % which results in a monolayer water cover-
age on particle surfaces (θH2O = 1), the aqueous layer uptake
becomes dominant, and the wet uptake coefficient γ1 can be
mechanistically simulated with a resistor model simplified as
Eq. (B3) (Hanson, 1997; Pöschl et al., 2007). In Eq. (B3), α
is the accommodation coefficient describing the probability
that a HONO molecule striking a water-coated particle en-
ters into the bulk liquid phase, and 0b is the solubility of
HONO in the bulk water in the particles or soils. 0b can be
calculated with Eq. (B4), where Da is the apparent diffusion
coefficient of HONO in the particle–water (soil (organics)–
water) matrix, and τ is the exposure time.Heff is the effective
Henry’s law constant that depends on the absolute Henry’s
law constant for HONO, pH, and acid dissociation constants
for HONO (Ka1) and H2NO+2 (Ka2).

γHONO =
(
1− θH2O

)
γ0+ θH2O γ1 (B1)

ωHONO =

√
8RT
πM

(B2)

γ1 = (
1
α
+

1
0b
)−1 (B3)

0b =
4HeffRT
ωHONO

√
Da

πτ
(B4)

Figure B1. Absorption wavelengths shift for HO15NO, H18ONO
and HON18O compared with the most abundant form of HONO
(H16O14N16O). The spectra of HO15NO, trans-H18ONO and
trans-HON18O are blue shifted 0.23–0.43, 0.21–0.39 and 0.25–
0.46 nm, respectively, spanning 293–398 nm. Note that the blue
shift illustrated here is 2 nm (larger than the actual shift) in order
to demonstrate the shift clearly.

ku-HONO ∝
γ1×ωHONO

4
(B5)

Taking the previously measured HONO γ1 of 2× 10−5

as that for the light isotopologue and α of 5.8× 10−5 as a
constant (Donaldson et al., 2014b), 0b (H16O14N16O) is cal-
culated to be 1.36× 10−5 following Eq. (B3). As derived
from Eqs. (B2) and (B4), 0b ratio between two isotopo-
logues equals the ratio between the two molecular weights,
and therefore 0b(H16O15N16O) and 0b(H16O15N16O) were
calculated and used to derive the corresponding γ1 val-
ues. The fractionation factor associated with HONO uptake
(αu-HONO), defined as the ratio between heavy and light rate
coefficients (kH/kL), was calculated following the relation-
ship determined by Eq. (B5). On the basis of this model, we
estimate that the isotopic fractionation associated with the
wet uptake process is −2 ‰ and −4 ‰ for 15ε and 18ε, re-
spectively. From our calculation, RH clearly influences iso-
topic fractionation in the range of 0 %–30 %, with the wet up-
take of HONO favoring a smaller kinetic isotope effect than
dry uptake.

B1.2 Isotopic fractionation of N and O associated with
each nighttime HONO production pathway

Heterogeneous conversion of NO2 to HONO has been widely
accepted as the major secondary HONO production source
during the night. However, the mechanism via which the
conversion occurs remains disputed. Additionally, the kinetic
isotopic fractionation factor (KIF) associated with this pro-
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Table B1. Vibrational frequencies of HONO and its isotopologues.

Vibrational frequency of trans-HONO (cm−1) Vibrational frequency of cis-HONO (cm−1)

Vibrational mode ν 1ν 1ν 1ν ν 1ν 1ν 1ν

(t-HONO) (t-HO15NO) (t-H18ONO) (t-HON18O) (c-HONO) (c-HO15NO) (c-H18ONO) (c-HON18O)

ν1 (O–H stretch) 3590.71 0.01 12.17 0.01 3426.2 0.01 11.57 0
ν2 (O=N stretch) 1699.76 32.5 0.27 39.28 1640.52 31.54 3.21 31.56
ν3 (HON bending) 1263.21 1.62 10.02 1.39 1302 0.57 8.89 6.24
ν4 (O–N stretch) 790.12 15.73 10.76 2.14 851.94 12.47 21.38 2.57
ν5 (O–N–O bending) 595.6 2.88 14.91 13.96 609 1.95 3.62 1.23
ν6 (torsion) 543 1.25 1.11 1.26 638.5 6.27 7.28 14.91
1ZPE (cm−1) 27 24.62 29.02 26.41 27.98 28.26

cess has never been measured or calculated. NO2 hydroly-
sis (Reaction R6) on a variety of surfaces was determined
to be a major source of HONO production. A compelling
mechanism proposed by Finlayson-Pitts (Finlayson-Pitts et
al., 2003) suggests Reaction (R6) consists of a series of key
steps including (1) dimer N2O4 formation from the recom-
bination of two NO2 molecules in the gas phase and up-
take of gaseous N2O4 by thin water film on the top surface
layer, (2) aqueous-phase isomerization of symmetric N2O4 to
asymmetric ONONO2 which is subsequently autoionizing to
NO+NO−3 and reacting with H2O to form HONO and HNO3,
and (3) desorption of HONO from aqueous to gas phase. Re-
cently it was shown that reduction of NO2 on iron-bearing
minerals and quinone-rich humic acid in soils and particulate
matter (Reaction R7) leads to faster HONO production than
NO2 hydrolysis. Although differing in reaction mechanism,
the two possible pathways (Reactions R6 and R7) proceed in
three steps including uptake of NO2 into the surface aqueous
layer, reactions in aqueous phase and desorption of HONO
from aqueous to gas phase. The first two steps are limited by
aqueous diffusion, and it is reasonable to assume diffusion-
limited processes in the aqueous phase create no KIF. As
HONO desorption may involve hydrogen bond breaking of
complex HONO–(H2O)n, this process likely determines the
KIF associated with the heterogeneous NO2-to-HONO con-
version (αd ), as calculated by Eq. (B6), where µl and µh are
the reduced mass for the light and heavy isotope contain-
ing pair, respectively (Shi et al., 2019). As a result, 15ε and
18ε are estimated to be −2.9 ‰ (n= 1) to −4.5 ‰ (n= 2)
and −5.7 ‰ (n= 1) to −8.9 ‰ (n= 2), respectively. For the
isotope mass balance modeling, mean values of 15ε (3.7 ‰)
and 18ε (7.4 ‰) were generally used for steady-state Reac-
tions (R3), (R6) and (R7) under steady-state conditions, and
the low (n= 2) and high (n= 1) values were used to evaluate
the lower and upper bound.

αd =
√
µl/µh (B6)

B2 Daytime

B2.1 HONO photolysis

The isotopic effect associated with photolysis (PIE) of
HONO is calculated for the first time following the 1ZPE
approach proposed by Yung and Miller (1997) to determine
the PIE of N2O photolysis. In principle, the absorption spec-
trum for the same kind of electronic transition is expected
to be similar in shape and intensity upon isotopic substitu-
tion, based on the assumption that the electronic potential en-
ergy surface is constant for each isotopologue. This assures
the continuum levels (leading to photolysis) of the excited
state are not significantly changed, while the vibrational lev-
els of the ground state vary with isotopic substitutions due to
mass difference. The latter results in a lower ground state
zero point energy (ZPE) for a heavy isotopologue than a
light one and causes blue shift in the absorption spectrum
of the heavy isotopologue relative to the light one (Miller
and Yung, 2000). When exposed to sunlight in the tropo-
sphere (>290 nm), HONO is known to feature a set of pro-
gressive absorption bands between 310 and 370 nm arising
from electronic excitation (X̃1A′→ Ã1A′′), which results in
HONO photolysis to OH and NO with nearly unity quantum
yield (Cox et al., 1980; Suter and Huber, 1989). Under the
aforementioned assumptions, we calculate the spectra blue
shift of all three heavy isotopologues (HO15NO, H18ONO
or HON18O) relative to that of HONO using the 1ZPE ap-
proach as shown in Fig. B1 and Tables B1 and B2.

We calculated 1ZPE from 1/261νi , where 1νi is the
ground state vibrational frequency difference between the
normal isotopologue (HONO) and the heavier isotopologue
(HO15NO, H18ONO or HON18O) for each vibrational mode
calculated via forced field by Monse et al. (1969). Note
only HO15NO UV absorption was measured in a previous
study that reported an average blue shift of ∼ 20 cm−1 (8–
40 cm−1) relative to HONO, and this is consistent with our
calculation (Table B1). Note trans-HONO / cis-HONO abun-
dance ratio is 2.5 at room temperature (Suter and Huber,
1989), and the difference of 1ZPE for trans-HONO and
cis-HONO is less than 0.5 % for 15N and 2 % for 18O (Ta-
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Table B2. Parameters used for TUV solar actinic flux modeling. The modeled enrichment coefficients for HONO photolysis for HO15NO,
H18ONO and HON18O are presented in a data repository (https://doi.org/10.26300/k056-fs32).

Start time (MDT) Latitude Longitude Altitude j (HONO) j (HO15NO) j (H18ONO) j (HON18O) ε15 ε (H18ONO) ε (HON18O)
(m) s−1 s−1 s−1 s−1 ‰ ‰ ‰

08/16/18 15:56 44.6726 −114.2339 1700 1.412E-03 1.408E-03 1.408E-03 1.407E-03 −2.6 −2.2 −3.0
08/16/18 17:51 44.6726 −114.2339 1700 9.319E-04 9.287E-04 9.291E-04 9.283E-04 −3.4 −3.0 −3.8
08/09/18 15:38 44.5048 −114.2320 1500 1.486E-03 1.482E-03 1.483E-03 1.482E-03 −2.5 −2.2 −2.9
08/09/18 19:10 45.3870 −113.9619 1117 4.733E-04 4.724E-04 4.726E-04 4.722E-04 −1.9 −1.4 −2.3
08/14/18 10:38 44.7173 −114.0226 1412 1.257E-03 1.253E-03 1.254E-03 1.253E-03 −2.8 −2.4 −3.3
08/14/18 17:18 44.7173 −114.0226 1412 1.101E-03 1.098E-03 1.098E-03 1.097E-03 −3.1 −2.7 −3.5
08/14/18 12:00 44.7173 −114.0226 1412 1.496E-03 1.492E-03 1.492E-03 1.491E-03 −2.5 −2.2 −2.9
08/14/18 13:30 44.7173 −114.0226 1412 1.596E-03 1.592E-03 1.593E-03 1.592E-03 −2.4 −2.1 −2.8
08/14/18 15:00 44.7173 −114.0226 1412 1.534E-03 1.530E-03 1.531E-03 1.530E-03 −2.5 −2.1 −2.8
08/14/18 17:22 44.7173 −114.0226 1412 1.085E-03 1.082E-03 1.082E-03 1.081E-03 −3.2 −2.7 −3.4
08/14/18 20:11 44.7173 −114.0226 1412 1.027E-04 1.023E-04 1.024E-04 1.023E-04 −4.2 −3.7 −4.7
08/14/18 18:40 44.7173 −114.0226 1412 6.329E-04 6.304E-04 6.307E-04 6.302E-04 −3.9 −3.5 −4.3
08/10/18 09:50 45.3870 −113.9619 1117 1.052E-03 1.049E-03 1.046E-03 1.045E-03 −3.2 −5.5 −6.3
08/10/18 20:26 45.3870 −113.9619 1117 7.373E-05 7.342E-05 7.346E-05 7.339E-05 −4.3 −3.7 −4.7
08/10/18 12:00 45.3870 −113.9619 1117 1.495E-03 1.491E-03 1.491E-03 1.490E-03 −2.6 −2.2 −2.9
08/10/18 14:00 45.3870 −113.9619 1117 1.592E-03 1.588E-03 1.589E-03 1.587E-03 −2.4 −2.0 −2.8
08/10/18 16:00 45.3870 −113.9619 1117 1.403E-03 1.400E-03 1.400E-03 1.399E-03 −2.7 −2.3 −3.0
08/10/18 18:00 45.3870 −113.9619 1117 9.014E-04 8.984E-04 8.988E-04 8.980E-04 −3.4 −2.9 −3.8

ble B1). The effect of the difference on j calculation is
negligible. With the measured absorption cross-section of
HONO between 293 and 400 nm and the quantified blue
shift of all three isotopologues, we calculate each photol-
ysis rate coefficient following Eq. (B7), which is the in-
tegral of photolysis quantum yield 8a(λ) (≈1), absorption
cross-section σa(λ) and solar actinic flux I (λ) as a function
of wavelength. I (λ) is computed with the radiation trans-
fer model TUV (http://www.acd.ucar.edu/TUV, Madronich
and Flocke, 1998) at various locations and times during our
sampling period. With these j values listed in Table B2 (j ,
j15N, j18O1

, j18O2
), the fractionation constant (15ε and 18ε,

‰) associated with HONO photolysis is calculated follow-
ing Eq. (B8), where j ′ and j are photolysis rate coefficients
of heavy and light isotopologues, respectively. Note we take
the average of j18O1

and j18O2
as j18O assuming the 18O is

equally distributed between the two O sites of HONO. Re-
sults show that 15ε and 18ε range from −1.9 ‰ to −4.3 ‰
(mean=−3.0 ‰, 1σ = 0.7 ‰, n= 18 ‰) and −1.9 ‰ to
−5.9 ‰ (mean=−3.1 ‰, 1σ = 1.0 ‰, n= 18 ‰), respec-
tively, when the HONO photolysis rate decreases from 1.4×
10−3 to 5.3× 10−4 s−1.

j =

∫
σa (λ) 8a (λ) I (λ) d(λ) (B7)

ε =

[(
j ′

j

)
− 1

]
× 1000 ‰ (B8)

The negative values of 15ε and 18ε suggest both 15N and
18O will be enriched in the remaining HONO upon photol-
ysis. Applying a Rayleigh fractionation model described by
equation Eq. (B9), we obtain δ15N and δ18O of HONO (δf )
as a function of the fraction of HONO left after photolysis
(f ). The initial isotopic composition of HONO (δ0) is taken

from nighttime young smoke mean values in Table 1, as they
are the best estimate of the fresh emission from the fires we
investigated.

ln
(
δf + 1000 ‰

)
= ε ln(f )+ ln(δ0+ 1000‰) (B9)

B2.2 Isotopic fractionation of N and O associated with
each daytime HONO production pathway

OH+NO (Reaction R2) is a radical–radical recombination
reaction, which is characteristic of the stabilization of acti-
vated complex HONO∗ via collisional energy transfer. This
reaction type is characteristic of large KIF that enriches heav-
ier isotopologues in the product at the low-pressure limit
but almost no KIF at the high-pressure limit. The closer a
reaction system is to the high-pressure limit, the less frac-
tionation occurs (Chai and Dibble, 2014). Under the atmo-
spheric pressure, the rate coefficient k1 is in the fall-off re-
gion but close to the high-pressure limiting rate coefficient
katm = 1/3k∞ (Forster et al., 1995). Therefore, we expect a
moderate positive 15ε (∼ 10 ‰) and 18ε (∼ 15 ‰) (Chai and
Dibble, 2014; Burkholder et al., 2019). Kinetic isotopic frac-
tionation (KIF) associated with photo-enhanced NO2 conver-
sion is not known. Similar to the nighttime heterogeneous
NO2 conversion, Reaction (R3) is also expected to occur in
the surface aqueous phase, and the overall KIF is largely de-
termined by that associated with the desorption of HONO
from aqueous to gas phase. Thus, 15ε3 and 18ε3 are the same
as that of Reactions (R6) and (R7) (Appendix B1.2).

KIF associated with HNO3 and p-NO−3 photolysis (Reac-
tion R4) in the atmosphere has never been measured exper-
imentally, and the lack of p-NO−3 absorption spectroscopy
hinders calculation. The 15N enrichment factor (15ε) for pho-
tolysis of snow-surface-adsorbed HNO3 under natural sun-
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light was theoretically determined to be ≤−47.9 ‰ follow-
ing the 1ZPE approach Yung and Miller (1997), which ex-
plained well the laboratory-measured 15ε for snow surface
nitrate photolysis under the radiation of simulated sunlight
(Berhanu et al., 2014; Frey et al., 2009). If we take this 15ε

value and the measured δ15N of nitrate (8 ‰ to 20 ‰), the
HONO produced from surface nitrate photolysis will be very
negative (−38.9 ‰ to−27.5 ‰) within 2 h of photolysis. The
18O enrichment factor (18ε) for photolysis of snow-surface-
adsorbed HNO3 has been measured to range from 6.0 ‰ to
12.5 ‰ (Frey et al., 2009; Berhanu et al., 2015).

B3 The δ18O transferring coefficient by different
pathways

For 18O, in addition to KIF (enrichment factor, εiO in ‰),
δ18O transferring from different reactants greatly influence
δ18O-HONO (δ18Oi,t), especially when the two O atoms of
HONO are derived from different reactants. That is, HONO
formed from different pathways (Reactions R2, R3, R6, R7)
consists of δ18O of each O-containing reacting partner in a
proportion determined by stoichiometry of reaction i, ex-
pressed with Eqs. (10)–(12). In Reaction (R2), OH and NO
equally contribute their O atom to HONO expressed with
Eq. (10). In Reactions (R3) and (R7), NO2 is the exclu-
sive O source of HONO, while H3O+ only contributes a
H+ to HONO (Ammann et al., 1998; George et al., 2005;
Stemmler et al., 2006; Scharko et al., 2017; Kebede et al.,
2016). In Reaction (R6), the hydrolysis mechanism discussed
in Appendix B suggests the H2O-derived OH− and NO2-
derived NO+NO−3 equally contribute their O atom to HONO
(Finlayson-Pitts et al., 2003).

δ18O2,t =
1
2
δ18O−OH +

1
2
δ18O−NO (B10)

δ18O3(or 7),t = δ
18O−NO2 (B11)

δ18O6,t =
1
2
δ18O−H2O +

1
2
δ18O−NO2 (B12)

During the day, NO–NO2 equilibrium is maintained via
NO2 photolysis and NO oxidation by O3 and/or RO2 fol-
lowing Reactions (R8) and (R9), and NO and NO2 are ex-
pected to possess similar δ18O, and this can be expressed as
δ18O-NOx . During the night, due to increased sink of NOx
and decreased O3 concentration, δ18O-NOx is expected to
be lower than during daytime. NOx resulting from Reac-
tions (R8) and (R9) should carry δ18O of RO2 and O3, re-
spectively, via transfer; as RO2 and O3 have very different
δ18O values ∼+23 ‰ and +117 ‰, respectively, the com-
petition between Reactions (R8) and (R9) critically affects
δ18O-NOx , as described by equations Eqs. (11) and (12). OH
radical in the troposphere has been calculated to be −35 ‰
depleted in 18O relative to H2O as a result of isotopic ex-
change at 298 K (Walters and Michalski, 2016); by taking the
18O values for summertime precipitation water in the western

US (−10 ‰ to −5 ‰) (Welker, 2000) and the H2O liquid-
to-vapor enrichment factor εg−l of +9 ‰ at 298 K derived
from the literature with Eq. (B13) (Michalski et al., 2012),
δ18O-OH is estimated in the range of −35 ‰ to −30 ‰ if
we ignore the unknown KIF derived from OH oxidation reac-
tion with the vast majority of atmospheric species. The over-
all δ18O-HONO is modeled using the isotope mass balance
model.

εg−l =−7.68+ 6.71

(
103

T

)

− 1.67

(
106

T 2

)
+ 0.35

(
109

T 3

)
(B13)
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