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Abstract. An accurate emission inventory is a crucial part
of air pollution management and is essential for air quality
modelling. One source in an emission inventory, an indus-
trial source, has been known with high uncertainty in both
location and magnitude in China. In this study, a new real-
location method based on blue-roof industrial buildings was
developed to replace the conventional method of using pop-
ulation density for the Chinese emission development. The
new method utilized the zoom level 14 satellite imagery (i.e.
Google®) and processed it based on hue, saturation, and
value (HSV) colour classification to derive new spatial sur-
rogates for province-level reallocation, providing more re-
alistic spatial patterns of industrial PM2.5 and NO2 emis-
sions in China. The WRF-CMAQ-based PATH-2016 model
system was then applied with the new processed industrial
emission input in the MIX inventory to simulate air qual-
ity in the Greater Bay Area (GBA) area (formerly called
Pearl River Delta, PRD). In the study, significant root mean
square error (RMSE) improvement was observed in both
summer and winter scenarios in 2015 when compared with
the population-based approach. The average RMSE reduc-
tions (i.e. 75 stations) of PM2.5 and NO2 were found to be
11 µg m−3 and 3 ppb, respectively. Although the new method
for allocating industrial sources did not perform as well as
the point- and area-based industrial emissions obtained from
the local bottom-up dataset, it still showed a large improve-
ment over the existing population-based method. In conclu-
sion, this research demonstrates that the blue-roof industrial
allocation method can effectively identify scattered industrial
sources in China and is capable of downscaling the industrial

emissions from regional to local levels (i.e. 27 to 3 km resolu-
tion), overcoming the technical hurdle of ∼ 10 km resolution
from the top-down or bottom-up emission approach under
the unified framework of emission calculation.

1 Introduction

The emission inventory is essential for air quality manage-
ment and climate studies. Various applications, including set-
ting up regional emission reduction targets and performing
numerical air quality forecasts, rely upon an accurate inven-
tory for sound assessment and judgement (Krzyzanowski,
2009; Zhao et al., 2015). As the purpose and type of emission
inventories (e.g. point, mobile, and area) vary largely, data
requirements and collection methods can be quite different
(Kurokawa et al., 2013). In point source inventory, collecting
large point sources (i.e. power plant) is generally straightfor-
ward, while obtaining data from scattered industrial sources
often poses challenges and requires tremendous effort to col-
lect and process. In developed countries like the USA, indus-
trial sources are usually large, but they do not always con-
tribute to a dominant portion in the emission inventory (e.g.
10 %–15 % in PM10 and 25 %–60 % in NMVOC), and the
data collection process is commonly incorporated into rou-
tine permitting exercise, making it easy to be included in their
national inventory (ECCC, 2017; Janssens-Maenhout et al.,
2015; Lam et al., 2004). Unfortunately, this is not the case for
developing countries like China where industrial sources are
considered as a major emitter; Li et al. (2017) reported that
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industrial sources from non-power generation (NPG) are the
largest contributors of PM10 and NMVOC in the MIX inven-
tory. With the infinite numbers of small factories scattered
across the continent and frequent changes of location caused
by urban redevelopment, these industrial sources are often
treated as an area or non-point source regardless of whether
it is a point source (e.g. stack) or not. Hence, there are large
spatial uncertainties in the inventory.

In recent years, various Asian emission inventories (e.g.
REAS, MIX, and MICS-ASIA) have been developed for the
purpose of air pollution modelling and have been widely used
for studying transboundary air pollution among Asian coun-
tries (Chen et al., 2019; Tan et al., 2018). The top-down or
semi-bottom-up approach based on the unified framework
of source categories, calculating method, chemical specia-
tion scheme, and spatial and temporal allocations was com-
monly used in the emission inventory development, where
emissions were handled separately for different source cat-
egories (e.g. power, industry, transport, residential/domestic,
and agriculture) with limited spatial resolutions ranged from
10 to 27 km (Kurokawa et al., 2013; Li et al., 2017; Ohara
et al., 2007; Streets et al., 2003). In some cases, higher-
resolution emission inputs were achieved via GIS spatial in-
terpolation for subregional (i.e. 10–15 km resolution) appli-
cation. Information such as stack location, road network, and
population density was applied as surrogate data for spatial
reallocation (Du, 2008). For the case when ultra-high reso-
lution (i.e. 1–3 km resolution) was needed, it was often sup-
plemented with the bottom-up approach using the detailed
activity data (i.e. exact emission locations and its relevant
emission amounts) in the emission inventory development
(HKEPD, 2011). For the category of small to medium indus-
trial sources where location information was frequently miss-
ing in the top-down or semi-bottom-up emission approach,
the population density was used as the surrogate, given the
fact that population density was considered a good proxy
for accessing employment, goods, and services (Giuliano and
Small, 1993). Historically, this approach seemed to be quite
robust to capture the factory location due to (1) the Dan-
wei/socialist work units which enforced jobs and residences
to be close to each other to reduce travel distance (Yang,
2006), and (2) factory jobs typically included accommoda-
tion (i.e. dormitory) for attracting foreign workers. With lim-
ited transport infrastructure, dormitories were usually within
a few kilometres away from the factories. However, in recent
years, the land-use and housing reforms in China have led
to a spatial separation of jobs and residences, and the strong
factory-residence pattern has slowly diminished in Chinese
cities as efficient public transportation has emerged. With the
adaptation of industrial parks in the urban renewal process,
the separation of industrial-related employment (on the out-
skirts of the city) from residential space (city centre) was fur-
ther expedited (Zhao et al., 2017). As a result, there is a need
to reconsider how industrial emissions are handled in the top-

down or semi-bottom-up emission approach, searching for a
suitable surrogate for the emission reallocation.

In this study, the concept of a blue-roof industrial surrogate
was introduced for the first time for Chinese industrial emis-
sion allocation. The approach assumed the majority of indus-
trial buildings (both factories and warehouses) in China were
single-story non-concrete buildings with their rooftop made
out of galvanized metal coated with blue epoxy. In this devel-
opment, satellite imagery with zoom level 14 (i.e. Google®)
was adopted and processed with HSV-based colour classi-
fication for generating the province-level spatial surrogate.
The Community Multi-Scale Air Quality (CMAQ) PATH-
2016 platform with 3km MIX inventory was then applied to
evaluate the impacts of air quality predictions between pop-
ulation and blue-roof-based methods, and the simulated re-
sults of PM2.5, NO2, and O3 were then compared to local
observation data and CMAQ results from the point- and area-
based bottom-up approach (hereafter referred to as “btmUp
case”) from Zhang et al. (2020) to assess its model perfor-
mance (HKEPD, 2011; Li et al., 2017).

2 Methodology

A new allocation method called “blue-roof” industrial alloca-
tion was introduced in the top-down or semi-bottom-up emis-
sion approach for better allocating the scattered NPG indus-
trial emissions in China. In this study, the CMAQ model and
the regional Asian emission inventory MIX were applied to
evaluate the effectiveness of the new allocation method on
the performance of air quality prediction. The target simu-
lation year is 2015, and the details of each component are
described below.

2.1 Study area, simulation domain, and observation
network

The Guangdong–Hong Kong–Macao Greater Bay Area
(GBA), also known as the Pearl River Delta (PRD), was
adopted as the study area for the industrial allocation test.
The characteristic of diverse industrial clusters (e.g. garment,
electronics, and plastic factories) scattered across the area
creates an ideal testbed for spatial examination. The GBA
area consists of two special administrative regions (Hong
Kong and Macao) and nine Chinese municipalities, includ-
ing Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou, Dong-
guan, Zhongshan, Jiangmen, and Zhaoqing in Guangdong
Province with a total area coverage of over 56 000 km2. It
is classified as one of the world-class manufacturing hubs
in China. In this study, the CMAQ-based PATH-2016 was
adopted to evaluate the influence of air quality prediction
from the new allocation method. The PATH-2016 modelling
platform consists of four nested domains, including East
Asia and Southeast Asia (D1), southeastern China (D2),
GBA/PRD (D3), and Hong Kong (D4) with resolutions of
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27, 9, 3, and 1 km, respectively. For this study, only D1–
D3 was applied as it already covered the entire GBA with
a reasonable spatial resolution (e.g. 3 km) for regional air
quality simulation, as shown in Fig. 1. Details of PATH-
2016 and its model setting are discussed in a later sec-
tion. For evaluating the performance of CMAQ air quality
prediction, the China National Environmental Monitoring
Centre (CNEMC) and the Guangdong-Hong Kong-Macao
Pearl River Delta Regional Air Quality Monitoring Network
(HKEPD, 2016) with over 75 surface observation stations
were adopted (available at http://www.cnemc.cn/, last access:
10 September 2020). These stations measure various air pol-
lutants, including PM2.5, PM10, SO2, NO2, and O3.

2.2 PATH-2016 and MIX inventory

The PATH-2016 is a WRF-CMAQ (Community Multi-Scale
Air Quality model) Air Quality system used by the HK-
SAR government for air-quality-related policy. It has been
validated in several studies (HKEPD, 2011, 2019; Zhang,
2020). In this study, CMAQ version 5.0.2 with an AERO5
aerosol module and CB05CL carbon bond chemical mecha-
nism driven by WRF version 3.7.1 was adopted for air qual-
ity simulation. The model set-up for CMAQ simulation is
summarized in Table 1, and WRF meteorological validation
can be found in Zhang (2020) and HKEPD (2019). The ini-
tial and boundary conditions for the outermost domain, D1,
were generated from the global model GEOS-Chem out-
puts for Asian pollution background (Lam and Fu, 2010).
In terms of the model emissions, the majority of the anthro-
pogenic emissions were adopted from the Asian emission
inventory, MIX. The MIX is a regional emission inventory
developed to support the Model Inter-Comparison Study for
Asia (MICS-Asia) and the Task Force on Hemispheric Trans-
port of Air Pollution (TF HTAP) (Li et al., 2017). It consists
of five anthropogenic emission source categories, including
point, industry, transport, residential, and agriculture (NH3
only) with a resolution of 0.25◦ (∼ 27 km), and its emis-
sion base year is 2010. In this study, the MIX inventory was
first scaled to the target simulation year of 2015 based on
available sector-based control technologies (Li et al., 2019;
Zhang, 2020; Zheng et al., 2018). The derived emission totals
from each sector, except for the industrial emissions, were
then temporally and spatially interpreted into 27 km (D1),
9 km (D2), and 3 km (D3) resolutions using the top-down
emission method described in Du (2008). Detailed method-
ology and validation of the base year 2015 emission inven-
tory were extensively discussed and can be found in our
previous publications (Zhang et al., 2021, 2020). As Hong
Kong emissions were not well presented in the MIX inven-
tory due to the limitation of spatial resolution, the bottom-
up emissions from the PATH-2016 platform were adopted
for Hong Kong emissions. For the remaining sectors that
were not available from the MIX inventory, it was adopted
from the PATH-2016 study (Zhang, 2020). These include

MEGAN biogenic, GFED biomass burning, marine, and sea-
salt emissions (Athanasopoulou et al., 2008; Giglio et al.,
2013; HKEPD, 2019; Ng et al., 2012).

2.3 Case study for non-point source industrial
allocation

The purpose of CMAQ simulation is to evaluate the perfor-
mance of the new industrial allocation method on air qual-
ity prediction in China. Two CMAQ scenarios tailored for
the industrial allocation methods were proposed and tested
with the MIX inventory. These scenarios are (1) a population-
based method and (2) a blue-roof-based method. Details of
each method are described in the later section. For each sce-
nario, two months of CMAQ air quality simulation were per-
formed. The selection of winter (January) and summer (Au-
gust) months from 2015 was to allow better reflection of air
quality impacts from the change of Asian monsoon in south-
ern China. The choice of using 2015 as the based year was to
permit more local observation data to be available in the GBA
area from the Chinese national observation network (oper-
ated after late 2013), moreover, to better fit with the mod-
elling effort in 2016 Air Quality Objectives (AQOs) review
that has also applied PATH-2016 model (Zhang, 2020).

2.3.1 Base case – population-based method

The population-based method (hereafter referred to as “base
case”) is commonly applied in the top-down emission inven-
tory to allocate residential (area) or NPG industrial sector, in
the regional emission inventory (Du, 2008; Li et al., 2017;
Ohara et al., 2007). It utilizes population or population den-
sity as a spatial proxy to distribute the sectorial emissions
into the simulation grids. It assumes a strong association is
present between population and industrial emissions. In this
study, the Oak Ridge National Laboratory (ORNL) Land-
Scan global population data with the resolution of ∼ 1 km
(30′′× 30′′) gridded spatial resolution was applied to allo-
cate industrial emissions. To allow the separation of the ur-
ban population from the rural population in LandScan grids,
a threshold value of 1500 people per square kilometre was
adopted, in which any grid values that were greater than this
number were considered as urban grids (Liu et al., 2003). The
basic equation for estimating the gridded emissions (Em,n)
using urban population is shown in Eq. (1). Em is the total
emission in a province (m), and U_popn/U_popm is the ratio
of urban population from a grid (n) to the province total. This
value is commonly referred to as the spatial allocation factor,
and it is a dimensionless value ranging between 0 and 1. The
collection of spatial allocation factors in the gridded matrix
is called a spatial surrogate. In this study, all the calculations
and the spatial interpretation were performed in ArcGIS to
yield CMAQ-ready emissions.

Em,n = Em×
U_popn

U_popm

, (1)
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Figure 1. (a) CMAQ simulation domains and (b) D3 domain with observations.

Table 1. Configuration of CMAQ air quality simulation.

Configuration Options

Model code CMAQ version 5.0.2
Horizontal grid mesh D1 – 27 km/D2 – 9 km/D3 – 3 km

(D3 – 152× 110 grids with total area of ∼ 180 000 km2)
Vertical grid mesh 26 Layers
Grid interaction One-way nesting
Initial conditions GEOS-CHEM global chemistry model for 27 km domain;

finer grid domains based on next coarser grid
Boundary conditions GEOS-CHEM global chemistry model for 27 km domain

Emissions

Emissions processing MIX with a top-down approach
Subgrid-scale plumes No PinG

Chemistry

Gas-phase chemistry CB05

Aerosol chemistry AE5/ISORROPIA
Secondary organic aerosols SORGAM
Cloud chemistry RADM
N2O5 reaction probability 0.01–0.001

Horizontal transport

Eddy diffusivity K-theory

Vertical transport

Eddy diffusivity ACM2
Deposition scheme M3Dry

Numeric

Gas-phase chemistry solver EBI
Horizontal advection scheme PPM

where Em,n is the emission in the nth grid for the mth
province, Em is the total emission in the mth province,
U_popn is the urban population count in the nth grid, and
U_popm is the total population in the mth province.

2.3.2 Blue-roof case: blue-roof-based method

The “blue-roof-based method” (hereafter referred to as
“blue-roof case”) adopted the concept of rooftop colour for
associating the location of industrial buildings. In China,
warehouse and industrial rooftops are commonly made out of
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galvanized metals with a coat of colour epoxy (i.e. light blue,
green, pink, or purple). As more than 90 % (by general obser-
vation) of these industrial roofs are in light blue, this unique
feature was captured and applied to develop the new alloca-
tion method. To derive the allocation factor for each grid for
the modelling domain, satellite imagery was used. Among
different imagery products (e.g. Google®, Bing®, Baidu®,
Latsat8, and SPOT7), the Google imagery was selected for
the basis of the analysis, as it provided their products with
less processing effort for different zoom levels. Overall, the
zoom level 14 or above (∼ 9.5 m per pixel or above) has been
confirmed to be sufficient for use in the colour detection pro-
cess for major industrial rooftops in China. Considering the
study required a relatively large area to be processed, the
lowest possible zoom level (i.e. 14) was preferred. In this
development, the QGIS platform v2.16 with two plugins (i.e.
OpenLayers and Python) was adopted to provide a smooth
process of overlaying satellite imagery with the Google Maps
API v3 and to perform a pixel-based HSV colour detection
(i.e. OpenCV) in QGIS. The colour detection method uti-
lized HSV colour space for better identifying blue colours
in given images. The choice of using OpenLayers (OL) at
that time was to avoid the violation of the terms of service
(TOS) regarding the direct usage of Tile Map Services. As
for now, this type of operation is no longer allowed under
the updated TOS by Google®. To perform a similar process,
one may choose to use Google Earth Engine or Bing/Baidu
Maps API with OL. Figure 2 shows the basic flow chart of
the process. Overall, about 2000 map tiles that contained a
“blue roof” were processed using the HSV algorithm for the
area of the D3 domain. Finally, the identified blue roofs were
then converted into polygons and stored in a shapefile. As
the HSV algorithm was unable to distinguish the blue ocean
and river features from blue roofs, a removal process us-
ing the shapefiles of coastal line and inland waterbody was
applied to eliminate the falsely identified waterbody using
ArcGIS. The resulted blue-roof shapefile was then spatially
interpreted with China administrative (i.e. province) bound-
aries and CMAQ raster grids to yield the information of grid-
ded blue-roof areas (B_arean) and total blue-roof areas for
each province (B_aream). This information was further ap-
plied to province total emission (Em) to calculate the gridded
emissions (Em,n) using Eq. (2):

Em,n = Em×
B_arean

B_aream

, (2)

where Em,n is the emission in the nth grid for the mth
province, Em is the total emission in the mth province,
B_arean is the total blue-roof area in the nth grid, and
B_aream is the total blue-roof area in the mth province.

3 Results and discussion

3.1 HSV value selection, data training, and results of
blue-roof colour identification

The satellite imagery of Google Map Tiles with zoom level
14 (which was retrieved between 2015–2016 for this study)
had exhibited a colour variation due to the inconsistent envi-
ronmental conditions (e.g. cloud cover, visibility, and bright-
ness of the day) when the images were taken. As these col-
lective images were taken from different seasons or years,
the aggregated images might not reflect a single snapshot
of a specific time. To determine suitable parameters for
the HSV algorithm, an optimization process that iteratively
searches for high hit rates, low false detection, and false
alarm rates (see Eqs. S1–S3 in the Supplement for defini-
tion) was applied. Three urban areas, Jing–Jin–Ji (Baoding
area with 332 km2), Yangtze River Delta (Shanghai area with
1336 km2), and GBA (Fushan area with 1194 km2), were
picked as the training dataset as we recognized that cities
and regions might have their own building styles and devel-
opment patterns, choosing these three regions not only al-
lowed more diverse samples to be included in the training
dataset but also incorporated the potential effect of solar inci-
dent angles on image colour (i.e. different brightness) under
different latitudinal positions and time of satellite passing. To
obtain the “ground truth” reference for iterative comparison,
manual digitization of blue roofs using the zoom level 16
data was performed for those three areas. The result of the
iterative process shows that not a single set of HSV ranges
was sufficient to capture the blue colour variation exhibited
in the Google images. As there was a broad spectrum of blue
colours (e.g. low cyan, cyan blue, low blue) found in the
satellite images, four sets of HSV ranges were used for the
blue roof identification algorithm, in which each set of HSV
ranges was adopted to identify an independent section of
“blue colour” from the HSV solid cylinder. It should be noted
that as the ranges of HSV values are considered as business
confidential information under the project agreement, the ex-
act values are not disclosed here. In general, the applied HSV
values ranged between 193 and 230◦ for hue (H), 17 % and
90 % for saturation (S), and 40 % and 100 % for value (V).
Figure 3a–c show samples of training images (100 km2) in
Baoding, Shanghai, and GBA, and Table 2 shows the sum-
mary of the training performance.

Overall, 74 % to 88 % (hit rates) of the blue roof areas were
successfully identified by the algorithm, while the false de-
tection rates and false alarm rates ranged between 35 % and
51 % and between 0.1 % and 0.5 %, respectively. The low
percentages of false alarm rates indicate only a small amount
of non-blue-roof areas were included by the algorithm. A
closer look at the results of false detection rates reveals that
the false identification was mainly concentrated around the
building boundaries because of the fuzziness of the building
edges from the zoom level 14 satellite images. The percent-
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Figure 2. System flowchart for extract blue-roof industrial buildings.

Figure 3. Selected locations for data training (a–c) and data validation (d–j): (a) Baoding, (b) Shanghai, (c) GBA, and d) Nagqu, (e) Baoji,
(f) Kaifeng, (g) Xi’an, (h) Zhengzhou, (i) Taklimakan Desert, and (j) Yunnan (© Google Earth).

Table 2. Test results of selected locations for the blue-roof identifi-
cation algorithm. NA – blue roofs are not available in the image.

Region Area Hit False False
(size in km2) rate detection alarm

rate rate

Baoding∗ Urban (332) 88 % 51 % 0.5 %
Shanghai∗ Urban (1336) 76 % 38 % 0.2 %
GBA∗ Urban (1194) 74 % 35 % 0.4 %
Nagqu Urban (100) 92 % 9 % 0.3 %
Baoji Suburban (100) 87 % 54 % 0.2 %
Kaifeng Suburban (100) 76 % 31 % 0.2 %
Xi’an Suburban (100) 76 % 24 % 0.3 %
Zhengzhou Suburban (100) 91 % 8 % 0.1 %
Taklimakan Desert Remote (100) NA 0 % 0.0 %
Yunnan Remote (100) NA 0 % 0.0 %

∗ Training areas (only a subarea of its region).

ages of false detection rates varied for images in different
areas as the clearness of satellite images depended on the at-
mospheric conditions (e.g. cloudiness, air pollution) at the
time they were taken. Compared with the images of Shang-
hai and GBA, the Baoding image has a relatively higher de-
gree of blurriness which explained why the false detection
rate for the Baoding was higher than those in the other two

training areas. While the false selection around the building
edges may incur different levels of errors to the blue-roof
identification result, however, it does not generally affect the
spatial distribution of the blue roof areas selected by the algo-
rithm. It is observed that the GBA area has a low hit rate (i.e.
74 %) due to more scattered or isolated development than
the other areas. In Boading and Shanghai, industrial parks
are more common than in GBA. Buildings clustered together
might have contributed to higher hit rates but at the same
time caused high false detection rates, as the gap between
buildings was also included as blue roof. To better evalu-
ate the algorithm response to different environmental condi-
tion, another 7 areas (approximately 100 km2 each) covering
a wide variety of geographical locations and features were
selected to validate the blue-roof identification algorithm, as
shown in Fig. 3d–j. The results in Table 2 show that the algo-
rithm achieved 76 %–92 %, 9 %–54 %, and 0 %–0.3 % for the
hit rates, false detection, and false alarm rates, respectively.
These similar results found in Nagqu, Baoji, Kaifeng, Xi’an,
and Zhengzhou indicate that the algorithm is relatively sta-
ble across the continent of China. For the remote areas in the
Taklimakan Desert and Yunnan (Fig. 3i and j), it should be
noted that the “ground truth” blue-roof areas were zero, so
the hit rates were inapplicable for these two test images.
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3.2 Blue-roof allocation process and CMAQ ready
emission

A large amount of spatial data with various geospatial infor-
mation (e.g. province shapefile) was processed through Ar-
cGIS to create the gridded emissions for the CMAQ model.
As mentioned, the selected blue-roof areas from the HSV al-
gorithm have first undergone a spatial operation to remove
the falsely identified water bodies from the blue-roof dataset.
The data were then used to compute the gridded total blue-
roof areas in each grid (see Fig. 4a). Furthermore, the total
blue-roof areas in each province (i.e. Guangdong, Guangxi,
and Jiangxi) within the domain were also generated. Fig-
ure 4b shows the province spatial surrogate (i.e. B_arean

B_aream
in

Eq. 2) that was created for the GBA emission allocation. The
values in each grid in the surrogate file should fall between
0 and 1, and the total in the province should sum up to 1.0
for data integrity. The yellow grids (values greater than 0)
were clustered around the centre of PRD, reflecting that the
high density of blue-roof buildings was identified along the
Pearl River, and the yellow lines extended from PRD indicate
that small remote industrial areas were built along the major
highways in GBA. The grids with magenta (values with 0)
were confirmed to be hilly areas, forests, or water reservoirs,
and no blue-roof building was identified.

Finally, to generate the final gridded industrial emissions,
the spatial surrogate was applied to the MIX industrial emis-
sions to spatially allocate the province-level emissions into
the CMAQ grids. All sectoral emissions, including power,
transportation, industrial, residential, agriculture, and others
were aggregated together with the newly produced industrial
emissions to generate the CMAQ ready gridded emissions for
air quality simulation. Figure 5 shows the daily column total
of CMAQ ready PM2.5 emissions (1 January 2015) for the
base case, blue-roof case, and point- and area-based btmUp
case from Zhang et al. (2020). In general, more spatial spread
is observed in the blue-roof case than in the base case within
the GBA area, but the spread is not as wide as in the point-
and area-based btmUp case. The widespread PM2.5 emission
in the btmUp case is attributed to the inclusion of both indus-
trial point and industrial area sources, which was not applied
the same way as in the base and blue-roof cases. In the base
case (Fig. 5a), emission (over 200 g s−1 per grid of PM2.5)
is intensely clustered around the city centres of Guangzhou
(GZ) and Foshan (FZ). A circular belt of intense PM2.5 emis-
sion is observed along the coast of Zhujiang River Estuary in
Shenzhen (SZ). In contrast, PM2.5 emission in the blue-roof
case (Fig. 5b) is more widely spread across the region, with
additional focuses in Dongguan (DG) and north of Zhong-
shan (ZS). The hotspots of PM2.5 exhibited in (Fig. 5b) are
strongly aligned with the spatial pattern of hotspots from Cui
et al. (2015), which was generated from the source apportion-
ment method. In Shenzhen, the circular belt of high emission
previously observed in the base case has disappeared. Further
investigation shows that the coastal area along the Zhujiang

River Estuary has already been converted into recreation and
residential areas. Due to the high population density found in
the area, the base case had allocated a large amount of PM2.5
emission to the area. For small industrial areas, the blue-roof
case also seems to outperform the base case as it has identi-
fied more scattered industrial areas in the region. As shown
in BE (Fig. 5), the blue-roof method is capable of capturing
the small industrial towns (see Fig. S1 in the Supplement)
along the major highways. For this particular example, the
industrial area captured by the blue-roof method is located in
the rural area of Qingyuan with over 20 petrochemical fac-
tories or warehouses, which were missed in the base case.
When comparing the blue-roof case with the point- and area-
based btmUp case (Fig. 5c), clear spots of PM2.5 underesti-
mation were observed which are shown in the square boxes
of Fig. 5b pointing at the northeastern and southwestern sides
of PRD, and north of Guangzhou. The focus of the study is
to investigate the improvement of the blue-roof surrogate in
the MIX industrial sector, rather than the performance differ-
ences between the MIX unified emissions and local bottom-
up emissions. Therefore, instead of showing the uncertainty
of emission inventory, which is infeasible here, we have de-
veloped a spatial blue-roof surrogate (Fig. 4b), the compari-
son of the model-ready emissions (Fig. 5), and the time series
plots of typical stations (Fig. 7) to illustrate the performance
of the blue-roof algorithm.

3.3 CMAQ-simulated air quality and statistical
comparison

3.3.1 Performance comparison between the base case
and blue-roof case

The CMAQ simulation was performed on both base case and
blue-roof case to evaluate the air quality impacts of using
different allocation methods for industrial emissions. In
addition, to better understand how well the blue-roof method
performs, the CMAQ results using the local point- and
area-based btmUp emission method adopted from Zhang et
al. (2020) were also included in the comparison. Figure 6
shows the simulated monthly average surface PM2.5 for
the base case (panels a, d), blue-roof case (panels b, e),
and point- and area-based btmUp case (panels c, f); the
left (panels a–c) and right (panels d–f) panels represent the
January and August cases, respectively. As expected, the
base case (panels a, d) has much lower spatial spread when
compared with the blue-roof (panels b, e) and the point- and
area-based btmUp (panels c, f) cases illustrated in the earlier
section. The wider spreading of PM2.5 in the blue-roof case
(panels b, e) was attributed to the redistribution of industrial
emissions from highly populated areas (i.e. Guangzhou,
Foshan, and Shenzhen) found in the base case into other
areas of GBA. The redistribution process has lowered the
CMAQ prediction for those three urban areas, moreover,
to reduce the PM2.5 prediction along the coast of Zhujiang
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Figure 4. (a) Snapshot of D3 (3 km) domain grids, and (b) calculated spatial surrogate.

Figure 5. Daily column total of PM2.5 emission from D3 (3 km) domain: (a) base case, (b) blue-roof case, and (c) point- and area-based
btmUp case. Note: blue arrows indicate Foshan (FS), Guangzhou (GZ), Shenzhen (SZ), Dongguan (DG), Zhongshan (ZS), and BE (blue-roof
example). Boxes indicate the locations with large spatial differences between the blue-roof and the btmUp cases.

River Estuary at the circular belt of Shenzhen, which was
mentioned in Fig. 5a. As monsoon wind moves differently in
summer and winter, it affects the regional pollutant transport
and air quality prediction in the GBA area. For the winter
case, with the effect of the northeast prevailing wind in
January, the reduction of Guangzhou and Foshan emissions
and pollution (See Fig. S2) has a strong positive impact on
both local and downwind regions (i.e. south of Guangzhou –
Zhongshan, Zhuhai, and Macau). This is illustrated by the

PM2.5 time-series plot of Zhongshan station (22◦31′16.0′′ N
113◦22′36.8′′ E) shown in Fig. 7a) where the large PM25
overestimation in the base case (grey line) was significantly
reduced into the more acceptable range shown in the blue-
roof case (blue line). The root mean square error (RMSE)
was trimmed down by nearly half to about 23.0 µg m−3 (from
49.2 µg m−3 in the base case to 26.2 µg m−3 in the blue-roof
case), demonstrating the effectiveness of using the blue-roof
allocation method in the top-down emission approach. This
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is not entirely the same case for summer (August) when the
prevailing wind is from the southwest and brings a clean
marine boundary to the region. Although, in some situations,
due to the presence of distant typhoon (e.g. Soudelor,
4–11 August, and Goni, 21–25 August), the outermost
typhoon circulation had forced the wind direction to change
to northeasterly and resulted in a similar transport phe-
nomenon that caused the PM2.5 spikes in summer (Lam et
al., 2018). For the general situation during the non-typhoon
conditions, stronger PM2.5 underestimation is observed in
the blue-roof case than in the base case, worsening the mean
bias (MB) from −7.0 in the base case to −12.4 µg m−3

in the blue-roof case. In terms of RMSE, there is nearly
no difference between the base case (i.e. 20.47 µg m−3)
and blue-roof case (i.e. 20.48 µg m−3), as the performance
degradation observed during the non-typhoon period was
compensated by the improvement during the typhoon pe-
riod. Figure 8 shows the comparison of spatial performance
between the base and blue-roof cases. The “RMSE im-
provement” means that the blue-roof case has outperformed
the base case (RMSEblue-roof case−RMSEbase case < 0),
while the “RMSE impact” means that the blue-
roof case has worsened the CMAQ performance
(RMSEblue-roof case−RMSEbase case≥ 0). In general, the
majority of stations in Guangzhou, Foshan, and Dongguan
have received a substantial improvement in both January and
August, as shown in yellow colour, while some outer stations
in the southern and eastern parts of PRD and Hong Kong
get worse (i.e. RMSE impact), shown in red colour. These
stations with the “RMSE impact” designation are primarily
suburban areas where a mixed land-use pattern was identi-
fied. Overall, stations with “RMSE improvement” yield an
average RMSE of 45.8 and 30.6 µg m−3 for the base and
blue-roof cases in January, respectively, which translates to
about −12.3 µg m−3 for the RMSE improvement. This num-
ber is much larger than +0.7 µg m−3 in magnitude obtained
from the group with the “RMSE impact” designation, which
illustrates the improvement has outweighed the impact.
For August, the differences in RMSE(blue-roof case− base case)
under the “RMSE improvement” and “RMSE impact” are
−4.5 and +0.73 µg m−3, respectively. Although there are
quite a number of stations (∼ 25+) falling into the category
of “RMSE impact”, their actual RMSE differences are
relatively small (e.g. ∼ 75 % of stations with RMSE less
than 1 µg m−3). Hence, it does not cause any concern for
the blue-roof method. Detailed statistical results for each
station have been incorporated into Tables S1 and S2, and
the corresponding station locations are available in Fig. S3.

3.3.2 Performance comparison between the blue-roof
case and point- and area-based btmUp case

It is essential to evaluate the performance of the blue-roof
case using observations, while it is also interesting to inves-
tigate the difference between the performance of the blue-

roof allocation method and the local point- and area-based
bottom-up method using relatively fine resolution (i.e. 3 km).
In general, the CMAQ-simulated PM2.5 using the blue-roof
method (Fig. 6b and e) has shown a lower spatial spread
than the one using the point- and area-based btmUp approach
(bottom panel of Fig. 6). The low spread of PM2.5 in the
blue-roof case may be attributed to the insufficient separa-
tion of existing industrial emissions. As the blue-roof emis-
sion approach took all industrial emissions and treated them
as location-based emissions without assigning any portion of
them to area source, the lack of the representation of indus-
trial area sources (e.g. fugitives) in the inventory may have
resulted in a less spatial spread, as shown in Fig. 5b. More-
over, the base unit of industrial emissions in the current ap-
proach is “province-level”, which is insufficient to distin-
guish the industrial speciality for different cities or counties
within the domain. From the time-series analysis shown in
Fig. 7a and b, the RMSE performance of the blue-roof case
(blue line) is quite comparable with the point- and area-based
btmUp case (orange line) and observations (yellow dots).
This particular example of the blue-roof case (Fig. 7b) can
even outperform the point- and area-based btmUp case in
predicting PM2.5. From Tables S1 and S2, the average RMSE
in January (August) for the base, blue-roof and btmUp cases
are 44.8 (25.7), 33.3 (22.4), and 27.8 (18.3) µg m−3, respec-
tively. This illustrates the blue-roof case has outperformed
the base case but still is not as good as the local point-
and area-based btmUp case. Figure 9 shows the PM2.5 per-
formance of different station types (see Fig. S3). As ex-
pected, the point- and area-based btmUp case has the lowest
RMSE among the cases for all station types, while there is
a clear improvement of RMSE in urban stations in the blue-
roof case; implementing the blue-roof method has eliminated
some of the extreme outliers from the base case, forming a
much more narrowed RMSE range. In terms of rural and sub-
urban stations, minor RMSE improvements (i.e. mean val-
ues) have been observed. It should be noted that the wider
RMSE range showed in the blue-roof case (as compared with
the base case) for the suburban category in Fig. 9a is just a
visual illusion. The maximum RMSE value of the base case
in the suburban category has been plotted as an outlier (dot)
instead of a regular line in the upper whisker. Hence, the
RMSE range (the two-end whiskers) in the blue-roof case
is visually taller than the one in the base case. Figure S4
shows the station (i.e. CN_1352A) that corresponds to the
maximum RMSE in the suburban category, and better perfor-
mance has been obtained from the blue-roof case (blue line).
In the station, the RMSEs in January (August) for the base
and blue-roof cases are 84.4 (36.0) and 50.0 (27.5) µg m−3,
respectively.

3.3.3 Performance of other air pollutants

Finally, to better understand the overall impacts on local air
quality prediction, Table 3 shows the comparison of perfor-
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Figure 6. CMAQ-predicted monthly surface PM2.5: (a) January base case, (b) January blue-roof case, (c) January point- and area-based
btmUp case, (d) August base case, (e) August blue-roof case, and (f) August point- and area-based btmUp case.

Figure 7. Time series of PM2.5 at station CN_1379A (22◦31′16.0′′ N, 113◦22′36.8′′ E) – Zhongshan: (a) January and (b) August.
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Figure 8. Spatial comparison of RMSE performance between the base case and blue-roof case: (a) January and (b) August. Stations
with yellow colour indicates “RMSE improvement” where the RMSE of the blue-roof case is lower than the RMSE of the base case
(RMSEblue-roof case−RMSEbase case < 0). Stations with red colour refer to “RMSE impact” (RMSEblue-roof case−RMSEbase case≥ 0),
meaning that the situation gets worse after using the blue-roof algorithm (© Google Earth).

Figure 9. Performance of PM2.5 under different station types: (a) January and (b) August.

mance statistics among the base case, blue-roof case, and
point- and area-based btmUp case for PM2.5, NO2, and O3.
In general, all three pollutants received some improvements
when switching from the population-based method to the
blue-roof allocation method. A more significant improve-
ment of RMSE is observed in PM2.5 and NO2, which ranges
from 3.3–11.5 µg m−3 for PM2.5 and 2.3–2.7 ppb for NO2.
The result is somewhat expected as industrial sector is the
largest contributor of PM2.5 and NO2 emissions in the MIX
inventory. In terms of MB, slight degradation is observed in
PM2.5, which may either be caused by the slight underesti-
mation of total PM2.5 emission in GBA or insufficient gen-
eration of secondary organic PM2.5 from CMAQ, which is
commonly observed in version 5.02. For NO2, a slight im-

provement is observed, which resulted from the removal of
large overestimations in the city centres of GZ, FZ, and SZ.
Among 75 observation stations, on average, 25 stations re-
ceived an improvement in RMSE for PM2.5 and NO2. The
largest RMSE improvement is observed in the Foshan area
with −151 µg m−3 improvement in PM2.5 (See Fig. S2) and
33 ppb in NO2. This result clearly reflects the weakness and
limitation of the population-based method for industrial al-
location in the fine-resolution grid. In some stations (i.e.
seven), higher RMSEs (i.e. an average of 1.8 µg m−3 for
PM2.5 and 1.9 ppb for NO2) are observed. For ozone, a minor
improvement (i.e. 0.2 and 0.6 ppb in RMSE) has been found
which may be attributed to the improvement in NO2 pre-
diction and consequently affect the NOx titration process in
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Table 3. Summary of performance statistics in the case study.

Pol Mon RMSE MB Improvement (RMSE) Worsening (RMSE)

Base BR btmUp Base BR btmUp No. of BR- Max. No. of BR Max.
case case case case case case stations Base stations Base

PM2.5 Jan 44.8 33.3 27.8 −10.5 −15.4 −0.7 23 −22 −151 8 2 4.6
(µg m−3) Aug 25.7 22.4 18.3 −11.3 −13.7 −6.4 17 −8 −64 8 1.6 2.3

NO2 Jan 28.5 25.7 26.1 4.6 2.8 −18.7 30 −5 −33 2 1.2 1.3
(ppb) Aug 26.2 23.9 18.6 5.2 3.7 −11.9 28 −5 −31 11 2.6 4.1

O3 Jan 24.1 23.9 24.2 −4.5 −3.5 −8.8 11 −2 −5 5 1.6 1.9
(ppb) Aug 31.6 31 29.9 7.2 8 −4.9 13 −2 −10 1 1.4 1.4

Note – Pol: pollutant; Mon: month; BR: blue-roof case; RMSE: root mean square error; MB: mean bias; Max: maximum. The RMSE sections on the right only reflect the
number of stations that have RMSE changes greater than ±1.

ozone chemistry. As the improvement is at a marginal level,
it is concluded that the improvement is limited.

When comparing the blue-roof case with the local point-
and area-based btmUp case, a lower RMSE of PM2.5 has
been observed in the blue-roof case (Table 3). The difference
in the RMSE reflects that there is still room for improvement
in the blue-roof method. From the large negative MB ob-
served in the MIX emission cases of PM2.5, one suggestion
would be to scale up the sectorial PM2.5 totals from the MIX
inventory using an inverse modelling approach (e.g. satellite
inversion or source apportionment), which may lead to a bet-
ter initial PM2.5 emission for CMAQ modelling. In terms of
NO2 and O3, comparable results (i.e. RMSE) are obtained
between the blue-roof and point- and area-based btmUp
cases. Although there is slightly higher RMSE (23.9 ppb vs.
18.6 ppb in August) in one of the blue-roof cases, in gen-
eral, they all fall within a similar range of values. In terms of
MB, the values in the blue-roof case vary across the seasons,
with positive MB of NO2 and negative MB of O3 in Jan-
uary, and positive MB of both NO2 and O3 in August. For
the point- and area-based btmUp case, negative MB has been
observed in both January and August. Among the seasons,
it is noted that reducing NO2 emission in the blue-roof case
in January may improve the MB of both NO2 and O3 as it
reduces the NO2 titration effect in the ozone formation pro-
cess and causes higher ozone. However, since the MBs (i.e.
3 to 5 ppb) of NO2 are relatively small (as compared with the
MB of PM2.5, −10 to −15 µg m−3), no NO2 adjustment is
recommended.

4 Concluding remarks

In this work, we developed a new method called the “blue-
roof allocation method” for assigning industrial emissions
for the gridded air quality simulation. The proposed method
not only provides an alternative way of handling Chi-
nese industrial emissions from the existing population-based
method but also allows a higher resolution (up to 3 km) to be

generated for local air quality study. As the rapid urban re-
development and mature public transportation network (e.g.
metro/train system) were emerging in China, the relationship
of proximity between living place and the workplace was
slowly diminished. Hence, the traditional method using pop-
ulation density as a spatial proxy for industrial emissions has
become obsolete.

In the blue-roof allocation method, satellite images from
zoom level 14 were applied as the basis for blue-roof ex-
traction. An HSV colour detection algorithm was developed
and trained to carry out blue-roof identification. The captured
blue-roofs were then converted and stored as individual poly-
gons for further processing. The sequence of ArcGIS subpro-
cesses was applied to generate spatial surrogate and gridded
emissions. The gridded emissions were tested with CMAQ
air quality simulations for January and August of 2015. The
results show that large improvements are observed in both
PM2.5 and NO2 predictions when compared with the tradi-
tional method (i.e. population-based method). By using the
blue-roof method, not only were the emission errors from
large metropolitan areas reduced, but also the emissions from
scattered industrial areas located in the rural area were accu-
rately captured. The emission allocation using the blue-roof
method has decluttered the urban emissions, allowing bet-
ter spread across the region. We are confident that the new
method is capable of generating high-resolution input (up to
3 km) for local air quality modelling and yielding reasonable
air quality results. Please be aware that the assumption of
the blue-roof method that larger blue roofs have more emis-
sions may not always be sufficient under different resolu-
tions. Therefore, further increasing the spatial resolution to
lower than 3 km (e.g. 1 km) should be performed with cau-
tion. Before the point- and area-based bottom-up approach
with the unit process data is fully available in China, this
method will be a useful technique for handling industrial
emissions in China.
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