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Abstract. There is a rising interest in improving the repre-
sentation of clouds in numerical weather prediction models.
This will directly lead to improved radiation forecasts and,
thus, to better predictions of the increasingly important pro-
duction of photovoltaic power. Moreover, a more accurate
representation of clouds is crucial for assimilating cloud-
affected observations, in particular high-resolution observa-
tions from instruments on geostationary satellites. These ob-
servations can also be used to diagnose systematic errors
in the model clouds, which are influenced by multiple pa-
rameterisations with many, often not well-constrained, pa-
rameters. In this study, the benefits of using both visible
and infrared satellite channels for this purpose are demon-
strated. We focus on visible and infrared Meteosat SEVIRI
(Spinning Enhanced Visible InfraRed Imager) images and
their model equivalents computed from the output of the
ICON-D2 (ICOsahedral Non-hydrostatic, development ver-
sion based on version 2.6.1; Zängl et al., 2015) convection-
permitting, limited area numerical weather prediction model
using efficient forward operators. We analyse systematic de-
viations between observed and synthetic satellite images de-
rived from semi-free hindcast simulations for a 30 d sum-
mer period with strong convection. Both visible and infrared
satellite observations reveal significant deviations between
the observations and model equivalents. The combination of
infrared brightness temperature and visible reflectance facili-
tates the attribution of individual deviations to specific model
shortcomings. Furthermore, we investigate the sensitivity of
model-derived visible and infrared observation equivalents
to modified model and visible forward operator settings to
identify dominant error sources. Estimates of the uncertainty

of the visible forward operator turned out to be sufficiently
low; thus, it can be used to assess the impact of model mod-
ifications. Results obtained for various changes in the model
settings reveal that model assumptions on subgrid-scale wa-
ter clouds are the primary source of systematic deviations in
the visible satellite images. Visible observations are, there-
fore, well-suited to constrain subgrid cloud settings. In con-
trast, infrared channels are much less sensitive to the sub-
grid clouds, but they can provide information on errors in the
cloud-top height.

1 Introduction

As the share of renewable energy in the world’s total elec-
tricity supply is rising, there is an increased need to improve
cloud and radiation forecasts. Solar photovoltaic (PV) power
production is one of the fastest-growing forms of renewable
energy, with a global increase of 22 % in 2019 (IEA, 2020). It
will soon become challenging to integrate PV power with its
strong weather-related fluctuations into the electricity grid.
Therefore, a more accurate prediction of renewable power
generation based on numerical weather prediction (NWP)
models is important to maintain network safety and allow
for the efficient usage of alternative power sources (Tuohy
et al., 2015). The output power of a photovoltaic power plant
is mainly determined by solar irradiance, which in turn is
mainly affected by cloud cover (Zack, 2011). According to
Köhler et al. (2017), the main shortcomings of NWP in this
context are related to the prediction of low stratus and fog,
the spatial and temporal resolution of convection, shallow
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cumulus, and Saharan dust outbreaks. Kurzrock et al. (2018)
also demonstrated that clouds, in particular the representa-
tion of low stratus in the model, dominate the uncertainty of
PV power production. Advances in the prediction of clouds,
radiation and PV power generation are possible by improv-
ing the representation of clouds in NWP models; this can be
achieved by including more accurate physical parameterisa-
tions or tuning existing parameterisations related to clouds.

Moreover, a good representation of clouds in NWP mod-
els is also a prerequisite for assimilating cloud-related ob-
servations, which improves the initial state from which fore-
casts are started and, thus, also subsequent forecasts. Cloud-
related observations like satellite images in the solar or ther-
mal spectrum can only be assimilated if observed and simu-
lated clouds exhibit a similar climatology. Unfortunately, this
is not necessarily the case in current NWP systems (Gustafs-
son et al., 2018; Tuohy et al., 2015). Therefore, understand-
ing and mitigating these systematic deviations will be an es-
sential ingredient for the operational assimilation of such ob-
servations. Some studies have already shown the benefit of
assimilating cloud-affected satellite radiances in the infrared
(e.g. Geer et al., 2018; Honda et al., 2018) and in the visi-
ble (Scheck et al., 2020) in experimental set-ups or idealised
experiments (Schröttle et al., 2020). The assimilation led to
significant improvements in cloud-related quantities and dy-
namical variables, as clouds are often associated with me-
teorologically sensitive areas (atmospheric instability) (Mc-
Nally, 2002). However, current convection-permitting re-
gional NWP systems still do not assimilate cloud-affected
satellite observations (Gustafsson et al., 2018), mainly due
to systematic deviations.

Cloud-related observations can also be used to diagnose
systematic errors in the model clouds and get information
on which processes or parameterisations in the model need
to be improved. Satellite images obtained by instruments on
geostationary or polar-orbiting satellites are well-suited for
this purpose, as they contain high-resolution information on
the location and properties of clouds. As discussed in more
detail in Sect. 2.2, the solar and thermal channels of these
instruments provide complementary information on clouds’
properties and can also depend, often in an ambiguous way,
on the thermodynamic state of the atmosphere, aerosols and
trace gases. In prior model evaluation studies, the satellite ra-
diance has often not been used, with researchers instead opt-
ing for easier to interpret quantities like cloud fraction, cloud
optical depth, and the cloud-top height derived from them
using retrieval algorithms (e.g. Zhang et al., 2005; Otkin and
Greenwald, 2008; Senf et al., 2020). These retrieved quan-
tities correspond directly to model variables or are closely
connected to them. The combination of information derived
from visible and infrared satellite observations like in the IS-
CCP (International Satellite Cloud Climatology Project; see
e.g. Rossow and Schiffer, 1991) approach that constructs
cloud type histograms of retrieved cloud optical thickness
and cloud-top pressure has been particularly helpful for de-

tecting shortcomings related to model clouds (e.g. Tselioudis
and Jakob, 2002; Otkin and Greenwald, 2008; Franklin et al.,
2013). These studies have shown that systematic cloud bi-
ases are present in most models and that the representation
of clouds depends on nearly every parameterisation in the
model (Webb et al., 2001).

While quantities retrieved from satellite observations like
cloud optical depth are easier to interpret than the observa-
tions themselves, they have the drawback that characterising
their errors is often problematic (Errico et al., 2007). Inter
alia, retrievals often incorporate model information leading
to error correlations between the model and the retrieved in-
formation used for evaluation. Therefore, in data assimila-
tion, the “direct assimilation” of observations by means of
forward operators is generally preferred over the assimilation
of retrievals. A reasonable characterisation of errors is crucial
not only for data assimilation but also for model evaluation.
Reliable conclusions can be drawn about model errors if the
errors in the evaluation method are sufficiently small.

The aim of this study is to demonstrate the benefits of eval-
uating the representation of clouds in NWP models using a
combination of visible and infrared satellite images. Our re-
sults are based on simulations with the ICON-D2 (ICOsa-
hedral Non-hydrostatic, development version based on ver-
sion 2.6.1; Zängl et al., 2015) preoperational convection-
permitting model of the Deutscher Wetterdienst (DWD; Ger-
man Meteorological Service) for a highly convective sum-
mer period of 30 d over Germany and neighbouring areas.
We will show that better insights into the origin of the sys-
tematic cloud errors can be gained using the two different
satellite channels. Moreover, it will be demonstrated that this
approach is also useful for assessing the impact of model
changes aimed at reducing errors in the clouds and can, thus,
directly support model tuning efforts.

Given the advantages related to error characterisation, we
will follow the forward operator approach in this study and
compare observed and synthetic images. For the genera-
tion of synthetic infrared images, we will rely on the fast
methods available in the RTTOV (Radiative Transfer for
TOVS) radiative transfer package (Saunders et al., 2018),
which is operationally used by many weather centres (e.g. the
European Centre for Medium-Range Weather Forecasts).
Several authors have examined the related uncertainties of
these methods (e.g. Senf and Deneke, 2017; Saunders et al.,
2017, 2018). For visible channels, we apply the newly de-
veloped VISible satellite image Forward OPerator (VISOP),
which is based on the Method for Fast Satellite Image Syn-
thesis (MFASIS) 1D radiative transfer method (Scheck et al.,
2016) and an extension to account for the most important
3D radiative transfer (RT) effects (Scheck et al., 2018). The
uncertainties of the visible forward operator will be discussed
in this study.

The remainder of the paper is structured as follows: the ex-
perimental set-up is presented in Sect. 2. Two selected days
with clouds on different levels are analysed in Sect. 3 to in-
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Figure 1. ICON-D2 domain in the observation space (grey shading)
and the reduced evaluation domain (red box). The orange x sym-
bols indicate the DWD pyranometer stations that measure global
horizontal irradiance.

troduce satellite observations and their characteristics. This is
followed by a discussion of the cloud statistics for a full test
period and associated systematic deviations. In Sect. 4, we
assess the sensitivity of synthetic satellite images to model
and visible operator settings. For visible reflectances, for-
ward operator uncertainties and model sensitivity are com-
pared. Conclusions are provided in Sect. 5.

2 Experimental set-up

2.1 Model set-up and sensitivity experiments

To evaluate the cloud statistics during this period, we use
the preoperational convection-permitting ICON-D2 (ICOsa-
hedral Non-hydrostatic, development version based on ver-
sion 2.6.1; Zängl et al., 2015) model configuration with
prescribed lateral boundary conditions (BCs) and a one-
way nesting. ICON-D2 replaced the operational COSMO-
D2 (Consortium for Small scale-Modelling with a grid spac-
ing of 2.2 km) model (Baldauf et al., 2018). Simulations
over Germany (Fig. 1) with a horizontal grid spacing of
2.1 km and 65 vertical levels are initialised once on 26 May
2016 at 00:00 UTC from downscaled ICON-EU analysis ini-
tial conditions. ICON-EU analysis BCs drive this semi-free
simulation with an hourly update and a forecast horizon of
30 d. The simulation period and domain size are sufficiently
large for the atmospheric model to develop its own cloud
distribution without perturbations from data assimilation or
nudging. In our reference simulation, the operational single-
moment bulk microphysical parameterisation accounting for
water vapour (qv), cloud water (qc), cloud ice (qi), snow (qs),
rain (qr) and graupel (qg) is used (Lin et al., 1983; Reinhardt
and Seifert, 2006).

The reference preoperational model configuration has
been reached through extensive tuning of many parameters
whose values are uncertain. As many of these parameteri-
sations are related to clouds, it would be very beneficial if

such parameterisations could be further constrained by satel-
lite observations. For this reason, we examine the sensitiv-
ity of solar reflectances and infrared brightness temperatures
(BTs) to variations in cloud-related parameterisations. We
performed six additional simulations in which cloud-related
parameterisations were modified within their range of uncer-
tainty, i.e. using perturbed values that are physically plausi-
ble. For this purpose, we modified the following four param-
eterisations:

1. The cloud droplet number concentration in ICON is
used to calculate the cloud optical properties and the
onset of precipitation. ICON employs the parameterisa-
tion of Segal and Khain (2006), which determines how
many droplets are in a cloud depending on an aerosol
number concentration derived from the climatology and
on an updraught velocity at nucleation. The determina-
tion of the updraught velocity in a 2km resolution model
is not straightforward because updraughts are under-
resolved. ICON assumes a constant updraught velocity,
which serves as a control parameter: the number of nu-
cleated droplets increases with the updraught velocity.

2. The turbulent subgrid-scale cloud parameterisation de-
termines the cloud cover due to the unresolved vari-
ability in the model. The resulting turbulent cloud
cover ccturb is combined with the detrainment cloud
cover, which is given by a diagnostic approximation of
the equivalent term in Tiedtke (1993). We focus on the
turbulent parameterisation of liquid clouds, as those are
the main source of subgrid-scale clouds in the summer
period chosen for the experiments.

The turbulent cloud parameterisation in ICON for liq-
uid clouds is based on the assumption of an asymmet-
ric probability distribution function (PDF) of total water
(including liquid and vapour). The cloud-cover function
that is used starts from this assumption, but it has been
empirically modified based on global and regional ex-
periments (Martin Köhler, DWD, personal communica-
tion, 2020). The final function reads

ccturb = ((qv+ qc+A1q − qsat)/(B1q))
2, (1)

where 1q is the variance of the total-water PDF and
is determined by the turbulence scheme; A and B are
tunable parameters that are described below; and qsat
is the water vapour at saturation using the mean tem-
perature and pressure in the grid box. Some limiters
and resolution-dependent corrections are then applied
to achieve the final cloud fraction, but their description
is not relevant for this paper.

The parameter A determines the asymmetry of the size
distribution: for larger A, clouds will be predicted at
lower relative humidities, so the cloud cover will be
higher. This is a common tuning parameter when chang-
ing the model configuration. For example, it is expected
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that the model requires less subgrid clouds as grid spac-
ing is reduced and more clouds are resolved. The pa-
rameter B was introduced in this study, and it scales the
cloud cover for a determined PDF asymmetry. Thus, it
allows for the cloud cover to be changed without mod-
ifying the relative humidities at which clouds are acti-
vated. In the preoperational configuration, these param-
eters are set to A= 3.5 and B = 1+A= 4.5.

3. The shallow-convection parameterisation of Bechtold
et al. (2014) predicts unresolved shallow convection in
the model and also contributes to subgrid clouds. The
model limits the parameterisation to clouds that are suf-
ficiently thin, so that thicker clouds have to be resolved
by the model. Thus, the thickness of the thickest non-
resolved cloud is an uncertain parameter that limits the
strength of the parameterisation.

4. The microphysical scheme describes the hydrometeors
dynamics. We check the effect of using the two-moment
parameterisation of Seifert and Beheng (2006), in which
the number concentrations of different variables are
treated as prognostic variables. This is a more com-
plex scheme and can potentially simulate more realis-
tic clouds. However, the two-moment scheme has never
been tuned like the operational one-moment scheme.

In order to investigate the sensitivity of satellite synthetic
observations to these parameterisations, we evaluated seven
simulations:

i. First, a reference simulation with preoperational model
configuration was evaluated.

ii. We then increased the cloud droplet number concen-
tration by increasing the updraught velocity at activa-
tion (from 0.25 to 1 m s−1). This produces liquid clouds
that are optically thicker, as the number concentration
of droplets increases roughly by a factor of 3.

iii. Next, we modified the distribution of turbulent subgrid
liquid clouds. The idea was to produce less and thicker
subgrid clouds in a way that the radiative balance of the
model remained unchanged. This was achieved after a
few trial-and-error experiments by using the parameters
A= 2.5 and B = 0.21.

iv. A stronger shallow-convection parameterisation was
then evaluated by doubling the thickness of the thick-
est unresolved cloud (from 2× 104 to 4× 104 Pa).

v. We then evaluated a simulation with the two-moment
scheme while all other parameterisations remained
equal to the operational configuration.

vi. Following this, we ran a two-moment scheme in which
the subgrid-cloud parameterisation for ice clouds was
switched off.

vii. Finally, we ran evaluated a two-moment scheme with
a strongly reduced asymmetry factor for subgrid-liquid
clouds (A= 1.5, B = 2.5) and no subgrid ice clouds.
This simulation was motivated by the fact that the two-
moment scheme reflected too much radiation; therefore,
we reduced the amount of subgrid clouds.

2.2 Satellite observations

The SEVIRI (Spinning Enhanced Visible InfraRed Imager)
instrument on board the Meteosat Second Generation (MSG)
has eight channels in the solar and thermal part of the atmo-
spheric window, with a spatial resolution of 3 km× 3 km at
the sub-satellite point and 6 km× 3 km in the ICON-D2 do-
main. The temporal resolution is 15 min for full disc scans
(Schmetz et al., 2002). In the solar regime, radiances are
dominated by the scattering of photons from the Sun to
the satellite sensor, whereas emission from the Earth’s sur-
face and cloud top is dominant in the thermal. In this pa-
per, we use the visible 0.6 µm channel (VIS006), which has
the advantage that the surface albedo is usually relatively
low (R < 0.15) at this wavelength; thus, errors in the albedo
at the above-mentioned wavelength are smaller than for the
0.8 µm channel (VIS008) that would also be available from
SEVIRI. Additionally, we use the 10.8 µm thermal infrared
window channel (IR108). At this wavelength, the signal is
not strongly affected by gaseous absorption within the at-
mosphere and is mainly determined by emission from the
ground and clouds at all heights. For a better understanding
and interpretation of our results, we discuss the sensitivity
of the VIS006 and IR108 signals to the liquid and ice wa-
ter paths (LWP and IWP respectively), as shown in Fig. 2.
The signals are computed using DISORT (DIScrete Ordi-
nates Radiative Transfer; Stamnes et al., 1988) for idealised
scenes with a single-layer water cloud at a height of 4 km or
a single-layer ice cloud at a height of 10 km.

Both solar reflectance and infrared brightness tempera-
ture strongly depend on the LWP and IWP, although in dif-
ferent ranges: VIS006 is most sensitive to LWP/IWP val-
ues in the [10−2, 100] kg m−2 range, whereas the sensitiv-
ity of IR108 is limited to thinner clouds with values in
the [10−2, 10−1] kg m−2 range due to fast saturation of
the signal by the absorption of photons. Figure 2b implies
that only cloud-top height and its corresponding tempera-
ture determines the observed BT for a single-layer water
cloud with LWP> 0.03 kg m−2 or a single-layer ice cloud
with IWP> 0.1 kg m−2. Hence, the IR signal can provide
the cloud-top temperature but does not allow for retrieval
of the LWP/IWP. In contrast, the solar reflectance is only
0.35 at these threshold values and can still provide infor-
mation on the water/ice content up to LWP/IWP values of
about 1 kg m−2. These different and complementary sensi-
tivities show that model evaluation with solar and thermal
channels has the potential to provide more information on
the nature of the systematic errors and to possibly identify
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Figure 2. Water and ice cloud signals with different effective particle radii from 0.6 µm SEVIRI solar reflectance (VIS006) (a) and 10.8 µm
SEVIRI brightness temperature (IR108) (b), computed using DISORT. Dashed lines indicate saturation in IR108 for water (red) and ice
(blue) clouds. The albedo was set to 0.1, the solar zenith angle was set to 30◦, the satellite zenith angle was set to 60◦ and the scattering angle
was set to 135◦.

specific shortcomings that would not be visible by only ex-
amining a single channel.

An interesting consequence of these different sensitivities
is that one would expect visible reflectance to provide more
information on the transmittance of solar radiation to the sur-
face than infrared radiances, as this process depends strongly
on the water content of the clouds. Therefore, visible re-
flectances should be more strongly correlated with the in-
coming radiation at the surface than infrared brightness tem-
peratures. This is confirmed by Fig. 3, which displays the
correlations between the observed signals of the two satellite
channels and normalised hourly averages of the global hori-
zontal irradiance (GHI) measured at 122 DWD pyranometer
stations (Fig. 1). There is indeed a strong negative correla-
tion between the visible reflectance and the surface radiation,
with a correlation coefficient ρobs =−0.75 (Fig. 3a). The
anticorrelation is strong but not perfect due to the follow-
ing reasons: (1) the instantaneous solar reflectance is com-
pared to the time-averaged quantity GHI, (2) reflectance is
averaged over pixels but GHI is a point measurement, and
(3) 3D radiative transfer effects modify reflectance and GHI
in different ways. For constant water content, surface radi-
ation should not be strongly correlated with the cloud-top
height or temperature. However, as many high clouds are
caused by convection and these clouds contain large amounts
of water, there is also some correlation between brightness
temperature and surface radiation (Fig. 3b), but it is weaker
(ρobs = 0.62) than for the visible reflectances. These results
indicate that by reducing the error of synthetic satellite im-
ages, in particular for visible satellite channels, it should be
possible to improve radiation forecasts.

2.3 Satellite forward operators

To compute model equivalents for visible satellite images
from the ICON model state, we employ the VISible satel-
lite image Forward OPerator (VISOP) that uses the MFA-
SIS 1D radiative transfer (RT) method (Scheck et al., 2016).

MFASIS is based on a compressed lookup table (LUT), com-
puted using the DISORT solver, where the aerosol optical
depth (AOD) is assumed to be zero. However, it is possible to
consider aerosols or different kinds of ice habits for the com-
putation of the MFASIS LUT (results in Sect. 4.2). VISOP
takes the slant satellite viewing angle into account (tilted in-
dependent column approximation; Wapler and Mayer, 2008)
and accounts for the most important 3D RT effect by us-
ing the cloud-top inclination correction (CTI) described in
Scheck et al. (2018). The surface albedo values required as
input for MFASIS are taken from the RTTOV BRDF atlas
(Vidot et al., 2018).

As we aim to achieve consistent assumptions in both the
operator and the NWP model, we decided to use effective
radii from the microphysics for water clouds directly. This
is based on the consideration that radiative transfer, micro-
physics and possibly operators should deal with the same op-
tical properties.

However, some adjustments are required for the ice
clouds, as will be motivated in the following. The micro-
physics scheme in the simulation predicts six hydrometeor
categories: cloud water, cloud ice and precipitating liquid
water, snow, hail, and graupel. Rain droplets, hail and graupel
particles are assumed to be much larger than cloud droplets
and cloud ice particles in the model. Therefore, for the same
mass, they are also much less effective at scattering radiation
and are, thus, neglected in the forward operators. However,
the distinction between snow and cloud ice particles in the
model is rather artificial. Model snow particles can be small
enough to cause non-negligible scattering effects (see discus-
sion in Hogan et al., 2001). Hence, as a (first) approximation,
we construct a frozen phase whose total mass, q tot

i , is the sum
of the diagnosed ice water content (grid- and subgrid-scale)
and snow content (only grid scale available) and whose “ef-
fective effective radius”,

r tot
i,eff =

q tot
i(

qdia
i /ri,eff+ qs/rs,eff

) , (2)
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Figure 3. The 0.6 µm SEVIRI solar reflectance (VIS006) (a) and 10.8 µm SEVIRI brightness temperature (IR108) (b) against the fraction of
incoming global horizontal irradiance (GHI/(cos(sza)E0)) at 12:00 UTC. Here, E0 (solar constant) is assumed to be 1367 W m−2, and the
number of co-located observations at pyranometer stations is 3365.

is defined using the simulated effective radii of cloud ice ri,eff
and snow rs,eff. The effective radii for ice and snow are cal-
culated under the assumption that both hydrometeors behave
as randomly oriented needles, and using the mass–size rela-
tionships, size distributions and number concentrations from
the microphysics (for details, see Fu et al., 1997, and Muska-
tel et al., 2021). This approximation assumes that the optical
thickness of the frozen phase is equal to the sum of the optical
thicknesses of the ice and snow phases, similar to the work of
Senf and Deneke (2017). The approximation becomes exact
in the case of wavelengths much smaller than the hydrome-
teors’ size (optical limit); therefore, it is quite appropriate for
visible channels.

In general, we use the diagnosed cloud water content and
ice content including subgrid contributions as input for VI-
SOP. If no subgrid-scale cloud is diagnosed in a particular
grid box, qdia

x = qx , where x could be either water or ice. We
assume no differences in the microphysical and optical prop-
erties of grid and subgrid clouds, so that the effective radius
calculation is the same for both cases.

An accurate calibration is a prerequisite for using satel-
lite observations, but unfortunately the calibration of SE-
VIRI VIS006 is uncertain. Meirink et al. (2013), for ex-
ample, found a bias of −8 % for VIS006 during the pe-
riod from 2004 to 2008 by comparing MSG SEVIRI and
MODIS (Moderate Resolution Imaging Spectroradiometer)
Aqua observations. For our purpose, we use the approach to
find a suitable bias correction by minimising the average his-
togram difference between the observed and simulated solar
reflectance distribution. Through this, we found a deviation
of −13 % between observations and our reference simula-
tion, which can be partly contributed to a calibration offset
(observations too dark) and a model bias.

To derive SEVIRI infrared brightness temperature from
the model state, we use the efficient methods implemented

in the RTTOV 12.1 package (Saunders et al., 2018), which is
used by many weather services.

For the evaluation, we applied both operators at the full
model resolution and interpolated solar reflectances and the
brightness temperature to the observation space afterwards
to avoid additional representativeness errors (Marseille and
Stoffelen, 2017).

2.4 Evaluation metrics

A combination of metrics is applied to evaluate synthetic
satellite imagery at 12:00 UTC with observations. The eval-
uation domain (red rectangle in Fig. 1) is smaller than the
ICON-D2 domain to exclude nesting effects at the domain
boundaries and signals from snow-covered surfaces in the
Alps that exhibit reflectances similar to clouds. We show
the VIS006 and IR108 probability density functions of our
simulations and observations P(R). The number of bins N
of the PDFs is 50, with R ∈ [0,1] and BT ∈ [200,310]K.
From that, we define the cloudiness (C) as the fraction of
pixels in which the solar reflectance is higher than a thresh-
old value Rc of 0.2. This value is an upper limit for the
clear-sky reflectance in the considered evaluation domain
(see discussion in Scheck et al., 2018). Violin plots are used
to visualise the daily bin-by-bin deviation of the PDF (de-
viation computed for each day d and bin n) from the refer-
ence run and model/operator sensitivity experiments: εPDF

n,d =

P(R)obs
n,d −P(R)

sim
n,d . This allows for a consistent comparison

of VISOP and model uncertainty by examining the median
deviation (the mean is always zero), the interquartile range
(difference between 75th and 25th percentile) as a measure of
variability and the range as the extent of deviations. We fur-
ther analyse clouds by constructing contoured 2D PDF plots
of brightness temperature and solar reflectance, comparable
to the ISCCP approach (Rossow and Schiffer, 1991) or to
contoured frequency by altitude diagrams (CFADs; Yuter and
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Figure 4. Time series of observed and simulated cloudiness at
12:00 UTC during the period from 26 May to 24 June 2016. The
cloudiness is defined as the fraction of pixels where 0.6 µm SEVIRI
solar reflectance R > 0.2.

Houze, 1995) of radar observations. We use the US Standard
Atmosphere 1962 (Sissenwine et al., 1962) to classify bright-
ness temperatures into three cloud categories (low, middle
and high clouds) as defined in the International Cloud Atlas
(Cohn, 2017). In the US Standard Atmosphere, the surface
temperature is 288 K and the (wet) temperature lapse rate is
0.65 K/100 m, leading to temperature ranges of T > 275 K
for the surface and low clouds, 275 K≤ T ≤ 243 K for mid-
dle clouds, and T < 243 K for high clouds.

2.5 Synoptic overview and cloudiness

A 30 d period from 26 May to 24 June 2016 is analysed,
which is dominated by strong summertime convection in
Germany. In the beginning, large parts of Europe were af-
fected by high-impact weather events over almost 2 weeks.
Atmospheric blocking and the interaction of low thermal sta-
bility and weak mid-tropospheric winds were the ingredients
for this exceptional sequence of thunderstorms and related
flash floods (Piper et al., 2016). Many authors have discussed
these 2 weeks (see e.g. Necker et al., 2020; Bachmann et al.,
2020; Keil et al., 2019; Necker et al., 2018; Zeng et al., 2018).
In the subsequent weeks (10–24 June), the wind direction
changed to a south-westerly flow, advecting warm and hu-
mid air masses from the Atlantic and the Mediterranean to
Germany and supporting cloud formation (Fig. 4). In gen-
eral, the simulated cloudiness (defined in Sect. 2.4) is pre-
dominantly overestimated, leading to a mean observed and
simulated cloudiness for the period of 0.73 and 0.76 respec-
tively. This convective period with high cloud cover at dif-
ferent levels is well-suited to examine cloud statistics and its
sensitivity to cloud-related parameterisations.

3 Reference run

3.1 Selected cases

In this section, we discuss 2 d of the period to illustrate
the methodology for evaluating clouds using visible and in-
frared satellite channels. On the first day (29 May), deep
convection and severe thunderstorms occurred, leading to a
flash flood that caused severe damage in Braunsbach, a small
town in the south-western part of Germany. The second day
(2 June) was dominated by low-level clouds. According to
Piper et al. (2016), warm, moist and unstable air masses char-
acterised both days. However, large-scale ascent dominated
on 29 May and subsidence dominated on 2 June. Figure 5
shows the VIS006 and IR108 satellite images as well as the
corresponding distributions of solar reflectance and bright-
ness temperatures on 29 May 2016. The VIS006 satellite im-
age (Fig. 5a, c) shows the early stage of a cyclogenesis over
Germany, characterised by a prominent vortex structure in
both the observations and model simulation. However, the
feature is shifted to the south-west in the simulation. The rel-
atively high cloudiness of 88 % in the observations and 89 %
in the simulation leads to a relatively uniform distribution of
observed solar reflectances (Fig. 5e). Overall, the agreement
between observed and simulated visible histograms is rela-
tively good given that the model is forced towards the current
weather only through the boundary conditions. The vortex
structure of the cyclogenesis is also apparent in the IR108 ob-
servations (Fig. 5b), but the simulation shows clear system-
atic errors. In the simulation, the cloud pattern is dominated
by relatively high ice clouds (Fig. 5d), which are less fre-
quent in the observations. The histogram confirms this pic-
ture: the signal of high clouds is overestimated in the simula-
tions, whereas the signal of medium clouds is underestimated
by 40 %.

On 2 June 2016, boundary layer clouds dominated in
both the observations and simulation (Fig. 6b, d). Addition-
ally, superimposed ice clouds are observed in some regions.
The simulated IR108 distribution fits the observed one rela-
tively well on this day (Fig. 6f). In the visible satellite im-
age (Fig. 6a, c), a high cloudiness is apparent, with 87 % in
the observations and 91 % in the simulation. In contrast to
29 May, however, the distribution (Fig. 6e) reveals an over-
estimation of medium thick clouds as well as an underesti-
mation of thick clouds (R > 0.6).

The examples discussed above show that the examina-
tion of a single channel (VIS or IR) can lead to opposite
conclusions with respect to forecast quality. The agreement
of the histograms for 29 May is good in the visible range
but not in the IR; the opposite is observed for the 2 June.
This shows that both channels provide complementary infor-
mation. In the following, we show that further information
can be obtained by using the combined information of both
channels in 2D PDF plots of brightness temperature and re-
flectance. We have already discussed how the IR histogram
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Figure 5. The (regional) distribution of 0.6 µm SEVIRI solar reflectance (a, c, e) and 10.8 µm SEVIRI brightness temperature (b, d, f) as
well as their corresponding distribution for 29 May at 12:00 UTC. The numbers in the legend of panel (e) indicate the cloudiness, i.e. the
fraction of pixels exceeding a reflectance of 0.2 (EUMETSAT).

shows an overestimation of high clouds on the 29 May. The
combined histograms (Fig. 7a, c) provide the additional in-
formation that this overestimation of clouds mostly happens
for thick clouds (R > 0.6). This indicates that the model pro-
duced overly strong deep convection. On 2 June, where lower
clouds dominated the scene, the observations and simulations
agree on the vertical location of the shallow cumulus clouds
(Fig. 7b, d). However, solar reflectances are primarily dis-
tributed around 0.7 in the observations and around 0.5 in the
simulation. Compared with the 1D reflectance histogram, the
2D PDF provides the additional information that the system-
atic reflectance errors are related to low clouds. These 2 d
with predominantly deep convective clouds (29 May) and
low clouds (2 June) are for different cloud types and forma-
tion processes. Thus, their analysis illustrates the benefit of
combining a visible and an infrared channel.

3.2 VIS006 and IR108 statistics for the full period

The analysis of individual cases presented above illustrates
certain characteristics, but longer periods are required to
identify systematic model deficiencies. To address this, we
now present results for the 30 d period. The observed mean
VIS006 solar reflectance distribution at 12:00 UTC reveals
a clear-sky peak at low reflectance values (R ∈ [0,0.2]),
a nearly uniform distribution for higher reflectances (R ∈
[0.2,0.8]) and a sharp decrease for reflectances higher
than 0.8 (Fig. 8a). The distribution of the reference simula-
tion overall looks similar, but it shows some deviations from
the flat plateau seen for the observations, with a surplus of
clouds around a reflectance of 0.5. Figure 8b presents a his-
togram of the 30 d mean IR108-BT at 12:00 UTC. There are
generally too many clouds with low brightness temperatures
(BT< 240 K). This, along with an underestimation of mid-
level clouds in our ICON simulations, is a well-known issue
that has been found for many global circulation or weather
prediction models using forward operators or retrievals for
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Figure 6. The (regional) distribution of 0.6 µm SEVIRI solar reflectance (a, c, e) and 10.8 µm SEVIRI brightness temperature (b, d, f) as
well as their corresponding distribution for 2 June 2016 at 12:00 UTC. The numbers in the legend of panel (e) indicate the cloudiness, i.e. the
fraction of pixels exceeding a reflectance of 0.2 (EUMETSAT).

evaluation (e.g. Illingworth et al., 2007; Pfeifer et al., 2010;
Böhme et al., 2011; Franklin et al., 2013; Keller et al., 2016).
Zhang et al. (2005) discussed possible reasons for the lack of
mid-level clouds and concluded that physical deficiencies in
the model might introduce these systematic deviations. The
distribution further reveals a clear-sky bias, where the model
underpredicts high BT values.

In general, the statistics for the full period, as shown by
the 2D PDFs in Fig. 8c and d, indicates that the model and
observation distributions have similar structures. Noticeable
differences in the distribution occur in boundary layer clouds.
The increase in solar reflectance with decreasing brightness
temperature (increasing height) is noticeably steeper in the
observations (indicated by dashed white lines in the plots).
This means that thick boundary layer clouds consistently
reach higher levels in the observations and suggests that shal-
low convection is too weak in the model. The 2D PDFs fur-
ther indicate that the surplus of clouds around a reflectance
of 0.5 in the model is related to boundary layer clouds, re-
vealing a deficiency in the model representation of liquid

water clouds. In addition, the simulation does not produce
enough mid-level clouds at all solar reflectances. Finally, a
secondary maximum at low BTs and high solar reflectance
(R ≈ 0.8) is apparent in the simulations but not in the obser-
vations. This maximum mainly corresponds to deep convec-
tive and precipitating clouds, which are either too active or
produce too much ice, similar to 29 May. High-level clouds
(cirrus as well as iced cloud tops) and low-level clouds are
generally overestimated.

The combined histograms clearly show important short-
comings in shallow and deep convection. Thus, combined
histograms can provide additional information on the na-
ture of the systematic errors evident in the 1D histograms
as well as very valuable information for model development,
showing which model configuration produces more realistic
clouds.
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Figure 7. Combined 0.6 µm SEVIRI solar reflectance (VIS006) and 10.8 µm SEVIRI brightness temperature (IR108) PDF of observa-
tions (a, b) and simulations (c, d) on 29 May (a, c) and 2 June 2016 (b, d) at 12:00 UTC.

4 Sensitivity of synthetic VIS006 and IR108 satellite
observations

4.1 Contributions of different clouds to the reflectance
distribution

To better understand the sensitivity of the synthetic visible
satellite images to changes in operator settings and model
modifications, it is helpful to determine the contribution of
different hydrometeor types and subgrid-scale clouds to the
reflectance histogram of the reference run (Fig. 8a). Figure 9
shows the observed and simulated VIS006 solar reflectance
distribution (OBS and REF are the same as in Fig. 8a), the
distribution that results from taking only grid-scale clouds
into account (REF-grid) and several distributions obtained
by using only certain types or combinations of hydromete-
ors. By comparing the contribution of a certain cloud type,
e.g. REF−REF-grid for the subgrid clouds, to the deviation
of REF from OBS, one can infer if tuning (i.e. slightly chang-
ing) parameters related to this cloud type in the model or the
operator could be helpful to reduce REF−OBS. The shapes
of the curves can provide further information regarding this

question. Cloudiness values C are provided for each case in
Fig. 9 to better quantify the relative importance of different
cloud contributions.

Grid-scale clouds only lead to a distribution with a nearly
flat plateau between reflectances of 0.3 and 0.7, a feature
that is also found in the distribution of the observed re-
flectances. However, the fraction of cloud pixels would de-
crease from C = 0.76 to 0.5 if only grid-scale clouds were
present. Adding subgrid clouds results in much better agree-
ment with the observed value of C = 0.73. It is, thus, es-
sential to take these additional subgrid clouds into account.
However, the imperfect parameterisation of subgrid clouds
also contributes to deviations in the shape of the distribution:
while the distributions of the observations and the grid-scale-
clouds-only simulation exhibit a relatively flat plateau, the
addition of subgrid clouds leads to a histogram curve with a
pronounced maximum at 0.5 and a minimum at 0.7.

When only water clouds are used as input to the opera-
tor (REF-W), the cloudiness falls off from C = 0.76 to C =
0.70. Primarily, reflectances larger than 0.5 become slightly
less frequent. In contrast, taking only ice clouds (including
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Figure 8. Individual PDFs for 0.6 µm SEVIRI solar reflectance (VIS006) (a), 10.8 µm SEVIRI brightness temperature (IR108) (b) and
combined VIS006–IR108 PDF (c, d) of observations (c) and simulations (d) at 12:00 UTC for the full test period. The numbers in the legend
of panel (a) indicate the cloudiness, i.e. the fraction of pixels exceeding a reflectance of 0.2.

snow) into account (REF-IS) has a more substantial impact
on the histogram and results in a much smaller cloudiness of
C = 0.29. Thus, water clouds play a much more substantial
role in the reflectance distribution than ice clouds. This re-
sult is not surprising, as the ice water path is much smaller
than the liquid water path, and larger ice particles are also
less effective at scattering light than smaller water droplets
(Fig. 2a).

In both the water-only and the ice-only cases, the cor-
responding subgrid clouds are included. The water-only
curve (REF-W) shows the same deviation from the plateau-
like shape of the observed distribution as the curve computed
for all clouds (REF), but the ice-only curve (REF-IS) does
not. Thus, it seems that the subgrid water cloud parameter-
isation needs to be improved to get better agreement in the
histogram shapes. Finally, ignoring the simulated snow con-
tent (REF-WI) has a small but detrimental effect. This em-
phasises the need to include snow in the computation of the
RT input variables, as discussed in Sect. 2.3.

4.2 Estimated uncertainty of VISOP

Forward operators use fast, approximate RT methods and
rely on the limited information that is available from the
NWP model. Due to missing 3D RT effects and missing in-
formation (e.g. on unresolved cloud properties), their output
is to some extent uncertain. While forward operators for ther-
mal infrared channels have been available for some time and
their uncertainties have been investigated in several studies
(e.g. Senf and Deneke, 2017; Saunders et al., 2017, 2018),
no such information is available for visible channels. In the
following, the uncertainty related to what we regard as the
most critical error sources will be estimated by varying the
corresponding operator settings.

The potential sources of uncertainty to be investigated are
related to missing 3D RT effects, unknown or inconsistent
overlap statistics of subgrid-scale clouds, the spatial and tem-
poral variation of aerosols, and the shape of cloud ice parti-
cles. To estimate the upper limits of the uncertainty in the
reflectance distribution related to these sources, we repeated
the computation of visible reflectances applying VISOP to
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Figure 9. The 0.6 µm SEVIRI solar reflectance histograms for the
test period computed for the observations (OBS) and the refer-
ence experiment (REF). The additional distributions were com-
puted using only the grid-scale clouds (REF-grid), only the water
clouds (REF-W) and only the ice clouds (REF-IS) of the reference
experiment respectively. For the red line (REF-WI), water and ice
clouds are taken into account, and only the snow contribution to
the ice clouds is omitted. The numbers in the legend indicate the
cloudiness, i.e. the fraction of pixels exceeding a reflectance of 0.2.

the reference simulation with deactivated cloud-top incli-
nation (CTI) parameterisation, random instead of random-
maximum subgrid cloud overlap, and aerosols or a differ-
ent kind of ice habit included in the MFASIS LUT. The
deviations in the reflectance distribution for the reference
run caused by changing these operator settings are shown in
Fig. 10.

The subgrid cloud overlap assumptions would not be a
source of operator uncertainty if the assumptions in the NWP
model and the operator were entirely consistent. However,
the near-operational version of ICON employed to perform
the model runs for this study uses inconsistent overlap as-
sumptions in the infrared and visible part of the spectrum.
This inconsistency will likely be corrected in future ver-
sions, but at the moment, it means that the operator can-
not be entirely consistent with the model. The deviation in
the reflectance distribution caused by changing the assump-
tion from maximum-random to random in the operator (or-
ange line in Fig. 10) can be regarded as an upper limit for
the impact. Changing the assumption shifts the peak around
R = 0.5 (which is related to subgrid clouds, as discussed in
Sect. 4.1) to higher reflectances but does not have much in-
fluence on reflectances larger than 0.7.

Missing or imperfectly modelled 3D RT effects are likely
the source of uncertainty that is most difficult to quantify. Ac-
cording to Scheck et al. (2018), the most important 3D effect
is related to the inclination of the cloud-top surface, which
influences the observed reflectance. The parts of the cloud-

Figure 10. Differences between the 0.6 µm SEVIRI solar re-
flectance PDFs obtained for the reference run with modified op-
erator settings and standard settings. The modified settings are
switching off the cloud-top inclination, using random instead of
maximum-random subgrid cloud overlap, including aerosols with
an optical depth of 0.1 and changing the cloud ice particle habit to
solid columns. For comparison, the difference between the observa-
tions and the reference run histogram is also shown (dashed curve).

top surface tilted towards the Sun appear brighter, and those
tilted away from the Sun appear darker. The cloud-top incli-
nation correction (CTI; see Scheck et al., 2018) accounting
for this effect has been shown to reduce the error with respect
to full 3D RT calculations and is included in the reference
run. The main effect of the CTI on the reflectance histogram
is to reduce the slope at the high-reflectance end of the distri-
bution and to bring it in better agreement with observations.
Switching off the CTI leads to an overly steep decline of the
distribution at high reflectances, which is visible as a double-
peak structure at R > 0.8 in Fig. 10. Other 3D RT effects like
cloud shadows may also play a role, in particular for larger
zenith angles. However, by focusing on observations near lo-
cal noon, their influence should be minimised.

According to retrievals based on measurements at
AERONET (AErosol RObotic NETwork) stations (see Giles
et al., 2019) in Germany, the mean AOD in June 2016 was in
the range of 0.06 to 0.12 at a wavelength of 675 nm, which
is similar to the wavelength of the visible channel consid-
ered here. To estimate the impact of these aerosols on the
reflectance histogram, an MFASIS LUT was computed that
includes aerosols (the “continental clean” aerosol mixture
available in libRadtran; see Emde et al., 2016) with an optical
depth of 0.1. Including aerosols in the MFASIS LUT (i.e. tak-
ing direct aerosols effect into account) influences the re-
flectance histogram in two ways. Under clear-sky conditions,
the reflectance increases because aerosols scatter photons to
the satellite, whereas under cloudy conditions, aerosols scat-
ter photons out of their path towards the satellite. Thus, in
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the presence of aerosols, the high-reflectance end of the dis-
tribution is shifted towards lower reflectances, and the low-
reflectance end is shifted towards higher reflectances. Shift-
ing the pronounced ground peak in the distribution causes a
double-peak structure at low reflectances in Fig. 10, whereas
shifting the flat high-reflectance end only causes a single neg-
ative peak. In general, the error introduced by direct aerosol
effects for events like (Saharan) dust outbreaks can be higher
and could potentially lead to significant errors in solar re-
flectances. Thus, days affected by such events, which did not
occur during our test period, should be excluded from model
evaluation studies.

Finally, the shape of cloud ice particles is also an uncertain
factor that influences the reflectances’ distribution. Changing
the shapes quite strongly from the baum_v36 general habit
mixture (Baum et al., 2014) to solid columns (using the op-
tical properties of Yang et al., 2005) basically only affects
the highest reflectances, which are slightly reduced. Hence,
the ice habit is not likely to cause large uncertainties in the
reflectance distribution for our test period, which is charac-
terised by a high low-level cloud cover and overlaying semi-
transparent cirrus clouds. For periods with more and thicker
ice clouds, the uncertainties could be higher.

4.3 Sensitivity to model settings

Figure 11 shows the deviations of the reflectance and BT dis-
tributions computed for model runs using modified settings
(see Sect. 2.1) with respect to the reference run. In general,
these deviations are of a similar magnitude to the systematic
deviations between the observations and the model equiva-
lents for the reference run discussed in Sect. 3 (see dashed
curve in Fig. 11). In Sect. 3, we identified several reasons for
systematic deviations between the simulations and observa-
tions: an underestimation of thick clouds (R ∈ [0.6,0.8]), an
overly low boundary layer height, too many high clouds and
an insufficient representation of low-level water clouds. As
further analysed in Sect. 4.1, we found that the discrepancy
in low-level clouds mainly arises from subgrid water clouds
(R ∈ [0.3,0.6]).

Figure 11a shows the effect of model modifications on
the reflectance distribution. The first modification (experi-
ment II), reducing the effective radii by increasing the up-
draught velocity and, thus, also the number of cloud conden-
sation nuclei, leads to more thick clouds with R > 0.7 and
less thin clouds with R < 0.5. Changing the subgrid cloud
parameters (experiment III) or reinforcing shallow convec-
tion (experiment IV) has a qualitatively similar but much
stronger impact on the reflectance distribution. Pixels with
dense clouds become more numerous, and the number of pix-
els with thin to medium clouds is reduced. These changes
are larger than the deviations of the reference run (experi-
ment I) from the observations (dashed line in Fig. 11a). In
the case of modified shallow convection, the cloudiness in-

creases from 0.76 to 0.8, which means that the deviation from
the observed value of 0.73 is considerably larger.

Switching to the double-moment microphysics scheme
(experiment V) mainly moves pixels with very high re-
flectances (R > 0.8) to somewhat lower reflectance values
between 0.6 and 0.8 and increases the cloudiness slightly.
Thin to intermediate clouds (0.2<R < 0.6) are only weakly
affected. Still using the two-moment scheme but turning off
subgrid-scale ice clouds (experiment VI) slightly decreases
the cloudiness but basically leads to the same distribution
as experiment V. Hence, ice subgrid-scale clouds cannot be
responsible for the surplus of pixels with solar reflectances
around R = 0.5 that was attributed to subgrid clouds in
Sect. 4.1. Finally, reducing the subgrid-scale water clouds
(experiment VII) also leads to much larger changes, with
negative peaks around R = 0.5 and R = 0.8 and positive val-
ues for R < 0.35. These changes point in the right direction
with respect to mitigating the deviations of the reference run
(dashed line in Fig. 11a). However, the modification is too
strong here, as cloudiness is dramatically underpredicted in
this case (C = 0.64). Compared with visible reflectances, the
changes in the BT distribution introduced by modified model
settings are more difficult to interpret because the signal de-
pends on cloud optical depth as well as on cloud-top height.
The modifications in experiments II and III only affect water
clouds and, thus, only lead to changes at higher BTs. These
changes are relatively small compared with those required
to correct the deviations in the reference run (dashed line).
Making shallow convection stronger (experiment IV) has a
stronger impact and increases the number of pixels with BT
values between 250 and 275 K at the expense of those with
higher values. Switching to the double-moment scheme (ex-
periment V) increases the number of middle to very high
clouds for BT< 270 K and introduces a substantial reduc-
tion of the clear-sky and low-level cloud signal (BT around
280 K). These changes indicate that the two-moment scheme
generates even more dense ice clouds than the one-moment
scheme in the reference run, which already predicts too many
of these clouds. These high clouds obscure lower clouds and
the surface, which leads to less pixels with high BTs. Switch-
ing off subgrid ice clouds in the two-moment simulation (ex-
periment VI) reveals that the peak around BT= 220 K is
related to grid-scale clouds in the double-moment scheme,
and the distribution of middle clouds is more like the single-
moment simulation. Additionally modifying the subgrid liq-
uid water clouds (experiment VII) again mainly affects the
clear-sky and lower-level cloud signal.

Comparing the changes in the reflectance and BT dis-
tribution that were introduced by modified model settings
within their estimated uncertainty leads to the following in-
terpretation: the reflectance distribution is mainly affected by
changes to water clouds and is only weakly influenced by
changes to ice clouds. In contrast, the BT distribution is most
strongly affected by changes in the ice clouds, but modified
water clouds also have some influence on higher BTs. The
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Figure 11. Differences in the 0.6 µm SEVIRI solar reflectance (a) and 10.8 µm SEVIRI brightness temperature (b) PDFs between perturbed
model simulations and the reference run. The perturbed model settings are (II) increased cloud droplet number concentration (smaller effec-
tive radius) due to increased updraught velocity at activation, (III) modified distribution of turbulent subgrid liquid clouds (less and thicker
subgrid clouds), (IV) stronger shallow-convection parameterisation due to doubled thickness of the thickest unresolved cloud, (V) simu-
lation with the two-moment scheme, (VI) is like (V) but without subgrid-ice clouds, and (VII) is like (VI) but with a reduced number of
subgrid-scale liquid clouds. For comparison, the difference between the observations and the reference run histogram is also shown (dashed
curve).

distinct changes in the distributions caused by the individual
model modifications allow one to assess which modification
could be useful to mitigate deviations from the observed dis-
tributions.

The results shown in Fig. 11a indicate that a modified
version of experiment VII with weaker modifications or a
combination of II, III and IV could be able to achieve the
corrections required for the reference run, i.e. to reproduce
the dashed line (OBS-REF). In both cases the subgrid water
clouds play an important role. Therefore, to correct system-
atic errors in the reflectance distributions, it seems particu-
larly important to tune or advance the subgrid cloud scheme.
While the reflectance distribution is not sensitive to changes
in subgrid ice clouds, these are clearly important for the
BT distribution (compare experiments V and VI in Fig. 11a
and b). The combined information from the two parts of the
spectrum can, thus, provide guidance on optimising the sub-
grid cloud scheme.

In contrast to visible reflectances, there is no obvious way
to scale or combine the model modifications in order to elim-
inate the errors of the reference run in the IR108 channel,
i.e. to reproduce the dashed line in Fig. 11b. Additional or
different model modifications appear to be required for this
purpose, but the results presented here already indicate that

particular modifications leading to less grid-scale ice clouds
are required.

It should be noted that the results presented in this study
were obtained for a summer period, in which the reflectance
was clearly dominated by water clouds. For situations in
which ice clouds play a more important role, the visible chan-
nel should still provide better information on the total (liquid
and frozen) water content than the infrared channel. How-
ever, it could be more problematic to attribute systematic de-
viations in the reflectance histograms to water or ice clouds,
and the error related to assumptions on the ice habit may be
larger. Also using the 1.6 µm channel, which allows for dis-
tinguishing water from ice clouds, may be helpful in these
cases.

4.4 Sensitivity intercomparison for visible reflectances

The comparison of Figs. 10 and 11a already indicates a con-
siderably larger effect of model modifications compared with
that of operator uncertainties on the reflectance distribution
for the full test period. To provide a clearer comparison of
the impact of model modifications and operator uncertain-
ties, we computed the individual changes on each day of the
test period in all of the reflectance bins (see Sect. 2.4). The vi-
olin plots in Fig. 12 show these daily bin-by-bin deviations of
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Figure 12. Distributions of daily bin-by-bin differences from the reference run in the 0.6 µm SEVIRI solar reflectance as a measure of
uncertainty in the visible forward operator (a) and the model (b). The modified forward operator settings are switching off the cloud-top
inclination (3D effects), using random instead of maximum-random subgrid cloud overlap (overlap), including aerosols with an optical depth
of 0.1 (aerosols) and changing the cloud ice particle habit to solid columns (ice habits). The perturbed model settings are (II) increased
cloud droplet number concentration (smaller effective radius) due to increased updraught velocity at activation, (III) modified distribution of
turbulent subgrid liquid clouds (less and thicker subgrid clouds), (IV) stronger shallow-convection parameterisation due to doubled thickness
of the thickest unresolved cloud, (V) simulation with the two-moment scheme, (VI) is like (V) but without subgrid-ice clouds, and (VII) is like
(VI) but with a reduced number of subgrid-scale liquid clouds. The horizontal dashed lines indicates 25th, 50th (median) and 75th percentiles.

the reflectance distribution caused by changes in the operator
settings and model modifications. Figure 12 indicates that the
changes due to model modifications are also much larger for
individual days of the test period than those related to oper-
ator uncertainty. The median deviation and the interquartile
range (difference between the 75th and 25th percentile) are
about 1 order of magnitude larger for the model uncertainty.
As already mentioned, aerosols will have a much stronger
impact during situations such as dust events, but such events
should not be included in test periods for the evaluation of
model clouds.

In general, the operator uncertainties are thus a second-
order effect compared with model modifications. Visible
satellite images are, therefore, well-suited to detect and over-
come model deficiencies and to provide guidance for model
tuning. Still, some of the deviations in the model reflectance
distribution could be related to operator deficiencies. An im-
proved cloud-top inclination or changes in the cloud ice op-
tical properties could mitigate some of the deviations at high
reflectances, and using the correct aerosol optical depth can
particularly improve the low-reflectance end of the distribu-
tion (see Fig. 10). However, for a broad range of reflectances,
between 0.2 and 0.8, it is only the inconsistency in the over-
lap assumption that makes the operator results uncertain. As
discussed above, this is actually only a temporary issue re-
lated to the current versions of the ICON model. As soon
as the overlap assumptions in the model are consistent, the
correct choice of the overlap assumption can be regarded
as a model setting, and model evaluation using visible re-
flectances can provide information on suitable choices.

5 Conclusions

We investigated systematic differences between satellite ob-
servations and corresponding synthetic observations from the
preoperational ICON-D2 model to better understand the rep-
resentation of clouds and radiation in NWP models. For
this purpose, a semi-free 30 d convection-permitting hind-
cast simulation was conducted that is only forced by low-
resolution analysis boundary conditions for a highly convec-
tive period in May/June 2016. Furthermore, additional simu-
lations with modified model settings were conducted to iden-
tify dominant error sources and identify potential approaches
for improving the representation of clouds in ICON-D2.

In contrast to previous studies, we did not compare quan-
tities retrieved from the satellite observations to the model
state; instead, we performed the comparison in observation
space using synthetic satellite images generated by forward
operators. The fact that the errors in the synthetic images are
easier to characterise than for retrievals is considered to be an
advantage of this approach. As using visible satellite images
generated by a fast forward operator in this approach is not
yet well established for evaluation, we conducted a number
of sensitivity experiments with modified operator settings to
investigate the recently developed forward operator’s uncer-
tainty transforming from model to observations space. The
comparison revealed that the operator uncertainty is roughly
1 order of magnitude smaller than the sensitivity of the re-
sults to modified model settings. This further emphasises the
usefulness of solar channels for model evaluation and im-
provement.

https://doi.org/10.5194/acp-21-12273-2021 Atmos. Chem. Phys., 21, 12273–12290, 2021
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The combination of observations in two spectral ranges
provides significantly more and complementary information
than the individual channels. While infrared observations
provide information on cloud-top height, their signal quickly
saturates in the presence of clouds. This means that infrared
observations can only distinguish a small range of cloud wa-
ter contents, and information on water clouds may be ob-
scured by cirrus clouds above. In contrast, visible channels
are less sensitive to ice clouds and can distinguish a much
more extensive range in the cloud water path (liquid and
solid). The combined use of visible and infrared observa-
tions also allowed us to identify specific model deficien-
cies (e.g. too many high cirrus clouds, overly weak shal-
low convection, deficiencies in the model representation of
subgrid clouds, overly strong deep convection or excessive
production of cloud ice). Several model sensitivity experi-
ments targeted these deficiencies and point towards potential
approaches for model improvement. However, solving these
challenging issues will require additional studies given the
number of interacting processes that contribute to the forma-
tion, modification and dissipation of clouds. Nevertheless,
it is of utmost importance to advance the representation of
clouds and radiation for the use of cloud-affected satellite
observations in data assimilation, the prediction of PV power
production and, last but not least, accurate climate simula-
tions.
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