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Abstract. This study investigates the impact of global warm-
ing on heat and humidity extremes by analyzing 6 h output
from 28 members of the Max Planck Institute Grand Ensem-
ble driven by forcing from a 1 % yr−1 CO2 increase. We find
that unforced variability drives large changes in regional ex-
posure to extremes in different ensemble members, and these
variations are mostly associated with El Niño–Southern Os-
cillation (ENSO) variability. However, while the unforced
variability in the climate can alter the occurrence of extremes
regionally, variability within the ensemble decreases signifi-
cantly as one looks at larger regions or at a global population
perspective. This means that, for metrics of extreme heat and
humidity analyzed here, forced variability in the climate is
more important than the unforced variability at global scales.
Lastly, we found that most heat wave metrics will increase
significantly between 1.5 and 2.0 ◦C, and that low gross do-
mestic product (GDP) regions show significantly higher risks
of facing extreme heat events compared to high GDP regions.
Considering the limited economic adaptability of the popu-
lation to heat extremes, this reinforces the idea that the most
severe impacts of climate change may fall mostly on those
least capable of adapting.

Highlights. – The unforced variability in the climate system,
primarily ENSO, plays a key role in the occurrence of extreme
events in a warming world.

– The uncertainty of unforced variability becomes smaller as one
looks at larger regions or at a global perspective.

– The increases in heat wave indices are significant between
1.5 and 2.0 ◦C of warming, and the risk of facing extreme heat
events is higher in low GDP regions.

1 Introduction

The long-term goal of the 2015 Paris Agreement is to keep
the increase in global temperature well below 2 ◦C above
preindustrial levels, while pursuing efforts and limiting the
warming to 1.5 ◦C. Given that no one lives in the global
average, however, understanding how these global average
thresholds translate into regional occurrences of extreme heat
and humidity is of great value (Harrington et al., 2018). Pre-
vious studies have reported that regional extreme heat events
will not only be more frequent but also more extreme in a
warmer world. This was discussed in various assessments
and reports, such as National Climate Assessment (USA)
and those by the IPCC (Intergovernmental Panel on Climate
Change; Melillo et al., 2014; Wuebbles et al., 2017; Hoegh-
Guldberg et al., 2018; Masson-Delmotte et al., 2018), and
it is expected to have significant impacts on human society
and health. More importantly, previous studies have analyzed
the risk (Quinn et al., 2014; Sun et al., 2014; Lundgren et
al., 2013), exposure (Dahl et al., 2019; Ruddell et al., 2009;
Liu et al., 2017; Luber and McGeehin, 2008), vulnerability
(Chow et al., 2012; Wilhelmi and Hayden, 2010), and sus-
ceptibility (Arbuthnott et al., 2016) of the population in the
current and warmer climates.

Many criteria and indices have been used to assess extreme
heat, such as the absolute increase in maximum temperature
from the reference period (Wobus et al., 2018), the risk ratio
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of population’s exposure to heat (Kharin et al., 2018), and the
heat wave magnitude index (Russo et al., 2017). In this study,
we utilize four locally defined heat wave indices from Fischer
and Schär (2010) and Perkins et al. (2012) in terms of the
duration, frequency, amplitude, and mean. We also focus on
consecutive-day extremes, which are known to cause more
harm than single-day events (Baldwin et al., 2019; Simolo
et al., 2011; Tan et al., 2010). In addition, because the com-
bined effect of temperature and humidity is known to affect
human health by reducing the body’s ability to cool itself
through perspiration, wet bulb temperature is frequently ana-
lyzed (Kang and Eltahir, 2018). Wet bulb temperature is also
closely associated with moist thermodynamics that drive the
heat wave (Schwingshackl et al., 2021; Zhang et al., 2021),
so we will analyze wet bulb temperature too.

Climate extremes are always a combination of long-term
forced climate change acting in concert with unforced vari-
ability (Deser et al., 2012). Thus, characterizing and quanti-
fying both long-term change due to external forcing and the
unforced variability in the climate system is crucial for as-
sessing the future risk of extreme events. There have been
numerous studies that link dominant modes of unforced
variability to extreme events. For example, previous studies
have investigated temperature connections with the El Niño–
Southern Oscillation (ENSO; Thirumalai et al., 2017; Meehl
et al., 2007), the Pacific Decadal Oscillation (PDO; Birk et
al., 2010), and the Atlantic Multidecadal Oscillation (AMO;
Zhang et al., 2020; Mann et al., 2021). The effect of climate
extremes on different populations depends on numerous fac-
tors, including the level of economic development, with im-
pacts of heat extremes being more severe in less econom-
ically developed countries (Diffenbaugh and Burke, 2019;
Harrington et al., 2016; King and Harrington, 2018; de Lima
et al., 2021). For example, as temperatures go up, an in-
creased energy demand to cool buildings will be required
(Parkes et al., 2019; Sivak, 2009) in metropolitan areas. But
this requires resources to both install air conditioning and op-
erate it. The greater impacts of extreme heat in economically
less developed regions in a warmer climate have been dis-
cussed in multiple studies (Marcotullio et al., 2021; Russo et
al., 2019).

In this paper, a single-model initial-condition ensemble of
28 simulations of a global climate model (GCM) are used to
quantify heat and humidity extremes in a warmer world. We
use population data to look at the population risk for mor-
tality events in the daytime (Mora et al., 2017) and night-
time (Chen and Lu, 2014). We also utilize per capita gross
domestic product (GDP per capita) data to investigate how
climate change impacts extreme heat events on different lev-
els of economic status. To quantify the impact on energy de-
mand, we also quantify the changes in cooling degree days
and warming degree days.

2 Data

2.1 MPI–GE ensembles

Simulation data in this study come from an ensemble of runs
of the Max Plank Institute Earth System Model, collectively
known as the MPI Grand Ensemble (MPI–GE) project (Ma-
her et al., 2019). Each of the 28 ensemble members branches
from different points of a 2000-year preindustrial control
run and is integrated for 150 years, forced by a CO2 con-
centration increasing at 1 % yr−1 (hereafter, 1 % runs). Be-
cause the radiative forcing scales the log of the CO2 concen-
tration, the 1 % runs feature radiative forcing that increases
approximately linearly in time. We analyze 6 h output, with
1.875◦× 1.875◦ spatial resolution, which is the original res-
olution of the model output for land areas between 60◦ N and
60◦ S. Our analysis will focus on 2 m temperature (hereafter,
t2m) and 2 m dew point temperature (d2m), from which 2 m
relative humidity (RH) and wet bulb temperature (w2m) are
calculated, using the methods of Davies-Jones (2008) with a
predesigned module named HumanIndexMod (Buzan et al.,
2015).

Unforced variability in the climate system generates un-
certainties in the projection of the climate by impacting the
dynamic component of the climate, especially for extreme
events (Kay et al., 2015; Thompson et al., 2015). One way to
analyze the impact of unforced variability in a climate sys-
tem is to use an initial-condition ensemble. Each member of
the initial-condition ensemble is generated by perturbating
the initial conditions of single climate model. This pertur-
bation will then propagate to generate different sequence of
climate, such as ENSO, PDO, etc. (Deser et al., 2012; Kay
et al., 2015). In this paper, we use the ensemble to allow us
to estimate the impact of unforced variability in temperature
extremes.

Since the model used only considers CO2 forcing without
aerosols, and it represents a continuously warming climate,
one might question if the model simulation accurately rep-
resents the real climate. To judge the fidelity of the simu-
lations, we compare 15 years (2003–2017) of ERA-Interim
reanalysis data (Dee et al., 2011) from the European Centre
for Medium-Range forecast (ECMWF) with 15 years of the
MPI–GE 1 % ensemble which have the same ensemble and
global average temperatures (years 39–53); in the rest of the
paper, we will refer to these as the reference periods. In both
data sets, we then calculate 90th percentile and mean t2m and
w2m for each grid point. This calculation was done for each
member of the model ensemble. For each of the four values
(90th percentile – t2m and w2m; mean – t2m and w2m), we
determine if the values from the reanalysis fall into the spread
of the 28 ensemble members of the 1 % runs. For each grid
point, if the reanalysis value falls within the ensemble spread,
we mask out the grid point; if not, we plot how far the reanal-
ysis value is from the closest member of the 1 % ensemble
(Fig. 1).
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Figure 1. Difference of 1 % CO2 runs compared with ERA-Interim in the same level of global warming (0.87 ◦C). The grid points where
ERA-Interim falls within the ensemble spread of 1 % runs are masked with gray, while other grid points show the difference between the
nearest ensemble member and ERA-Interim for the (a) 90th percentile of the 15-year daily average t2m, (b) the mean of 15-year daily
average t2m, the (c) 90th percentile of 15-year daily average w2m, and (d) the mean of 15-year daily average w2m.

Generally, the 1 % runs overpredict t2m and w2m in
Northern Hemisphere (NH) and underpredict in Southern
Hemisphere (SH), except for India. This difference is consis-
tent with the fact that the 1 % models do not contain aerosol
forcing, which should lead to biases of the sign seen in Fig. 1.
The w2m shows a larger area of differences than t2m, which
suggests that there are larger biases in the dew point, which
is needed in the calculation (Davies-Jones, 2008). The area-
weighted averages of these differences are −0.08, −0.03,
−0.04, and −0.11 ◦C globally for 90th percentile t2m, mean
t2m, 90th percentile w2m, and mean w2m, respectively,
which means that the model is, on average, underpredicting
land temperature. Breaking down to the Northern and South-
ern hemispheres, the bias is 0.20, 0.21, 0.15, and 0.14 ◦C
in the NH and−0.64,−0.54,−0.36, and−0.44 ◦C in the SH,
confirming that the model is overpredicting land temperature
in the NH and underpredicting land temperature in the SH.

To quantify the impact of the biases in Fig. 1 on the occur-
rence of heat extremes, we will perform sensitivity tests on
the calculations by adding to each grid point of each member
of the ensemble the average differences between the ensem-
ble average t2m and w2m and the reanalysis. By evaluating
how much our results change, we come up with an estimate
of the impact of model biases on our results. As we will show
later, these biases have little impact on the results of the pa-
per.

2.2 Global population and GDP per capita data

Global population data from the NASA Socioeconomic Data
and Applications Center (SEDAC, 2018) are used to weight
the heat wave indices by population. The data represent the
population in the year 2015 at 30×30 latitude–longitude spa-
tial resolution, and we regridded this to the 1.875◦× 1.875◦

grid of the MPI model by summing the values in grid

boxes surrounding the MPI grid centers. In our population-
weighted calculations, we assume that the relative distribu-
tion of population remains fixed into the future.

Gridded GDP per capita data (Kummu et al., 2019) be-
tween 1990 and 2015 are used to estimate the risk of heat
extreme events for different levels of wealth. These data are
regridded from the original 5× 5 latitude–longitude spatial
resolution to the MPI model’s resolution of 1.875◦× 1.875◦

by averaging the GDP inside the grid box. When doing this
average, per capita GDP was weighted by population and
also averaged over the 1990–2015 period. We assume that
the relative percentile of GDP per capita for each grid point
is fixed into the future, so changes in climate risk are due
to exposure to warmer climate extremes and not changes in
relative per capita wealth.

3 Method of analysis

3.1 Global warming

Global warming is defined as the global and annual average
temperature increase compared to the average of first 5 years
of the 1 % run. We find that ensemble and global average t2m
reaches 1.5, 2, 3 and 4 ◦C in years 59, 76, 108, and 133, re-
spectively, and reaches 4.6 ◦C at the end of the 150-year run.
The increase in the global average temperature is nearly lin-
ear for both t2m and w2m, consistent with a linear ramping
of the forcing (Buzan and Huber, 2020).

The focus of the paper will be on heat extremes at 1.5,
2 and 3 ◦C. The 1.5 and 2 ◦C thresholds are the limits de-
scribed in the Paris Agreement, while 3 ◦C is the warming
we are presently on track for (Hausfather and Peters, 2020).
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Table 1. Explanation of heat wave indices used in this study.

Acronym Index Definition Units

HWDt2m/w2m Heat wave duration Length of longest period of consecutive heat wave days in a year No. of days
HWFt2m/w2m Heat wave frequency Total number of heat wave days in a year No. of days
HWAt2m/w2m Heat wave amplitude Maximum temperature over all heat wave days in a year ◦C
HWMt2m/w2m Heat wave mean Average temperature over all heat wave days in a year ◦C
Deadly days Deadly days Daily maximum wet-bulb temperature over 26 ◦C No. of days
Tropical nights Tropical nights Daily minimum temperature over 25 ◦C No. of days
CDDs Cooling degree days Sum of positive values after removing 18 ◦C from daily average temperature Degree days
HDDs Heating degree days Absolute value of sum of negative values after removing 18 ◦C from daily average temperature Degree days

3.2 Heat wave indices

Identification of heat waves is done in several steps. First,
for each grid point, we smooth a daily maximum tempera-
ture (determined form 6 h temperatures) using a 15 d moving
window for the first 5 years of 1 % runs, which is the period
before significant warming has occurred. Then, the 90th per-
centile of the smoothed daily maximum temperature for the
first 5 years was calculated at each grid point (Fischer and
Schär, 2010). This value is used as a threshold for the heat
waves at that grid point. Then we calculate the heat wave
days, defined as days that exceed the threshold for 3 or more
consecutive days (Baldwin et al., 2019).

We then define four indices to represent the characteristics
of these heat waves. To determine the occurrence of events,
the heat wave duration (HWD; longest heat wave of the year)
and heat wave frequency (HWF; total number of heat wave
days in a year) are calculated. From an intensity perspec-
tive, the heat wave amplitude (HWA; maximum temperature
during heat wave days during a year) and heat wave mean
(HWM; mean temperature during heat wave days in a year)
are selected. These indices are also calculated in an analo-
gous fashion for the wet-bulb temperature (w2m), since the
wet bulb temperature is arguably more relevant for human
health (Heo et al., 2019; Morris et al., 2019; Buzan and Hu-
ber, 2020). These indices are summarized in Table 1.

3.3 Deadly days and tropical nights

Heat wave thresholds are different for each grid point be-
cause they are based on preindustrial temperatures at that
grid point. Combined with regional differences in the ability
to adapt, this means that heat waves in different regions may
have different implications for human society. We, therefore,
also count the number of days in each year with daily maxi-
mum w2m above 26 ◦C, which we refer to as “deadly days”.
We note that other values could be chosen (Liang et al.,
2011), with higher values occurring less frequently but with
more significant impacts. This value is based on the analysis
of Mora et al. (2017), who demonstrated that a w2m of about
24 ◦C is the threshold at which fatalities from heat-related
illness occur. However, since we find that there are some re-
gions that already experience over 9 months of 24 ◦C w2m

events per year, we increase this threshold to 26 ◦C in our
analysis. We could have chosen higher w2m values, but any
choice in this range is associated with negative impacts, so
we have chosen a value near the bottom of the range where
mortality occurs in order to maximize the signal in the model
runs.

A warm nighttime minimum temperature can be as impor-
tant as a high maximum temperature for human health and
mortality (Argaud et al., 2007; Patz et al., 2005), so we de-
fine “tropical nights” as a daily minimum t2m over 25 ◦C
(Lelieveld et al., 2012).

3.4 Cooling degree days and heating degree days

To assess the economic and energy impact of heat ex-
tremes, cooling degree days (CDDs) and heating degree
days (HDDs) are calculated. CDDs and HDDs are metrics
of the energy demand to cool and heat buildings. For each
grid point, the annual CDD is calculated by subtracting 18 ◦C
from the daily average temperature and summing only the
positive values over the year. The HDD is the absolute value
of the sum of the negative values. Previous studies reported
that CDDs and HDDs are closely related to energy consump-
tion (Sailor and Muñoz, 1997).

4 Results

4.1 Impact of unforced variability in climate on
regional heat extremes

To investigate the impact of unforced variability in more re-
gional heat extremes, we take the 15 largest cities by popula-
tion (Fig. 2a) and determine the number of deadly days and
tropical nights over time by averaging the 3× 3 grid points
surrounding the city and only including the land grid points.
Figure 2b–d depict the ensemble-averaged number of deadly
days and tropical nights, as well as the spread between the
ensemble members. The error bars in Fig. 2b–d show the
highest and lowest values of the extremes.

This difference within the ensemble is the result of un-
forced variability. For all 15 cities, the average spread in the
number of deadly days at 1.5, 2.0, 3.0, and 4.0 ◦C of global
warming between the ensemble members with maximum and
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Figure 2. (a) Location of 15 largest cities in the world and the number of annual heat extremes at (b) 1.5, (c) 2.0, (d) 3.0, and (e) 4.0 ◦C of
global warming. Orange (purple) bars represent the ensemble average annual number of deadly days (tropical nights), averaged 5 years after
each level of warming is exceeded. The number of heat extreme days are calculated by averaging a 3×3 land-only grid covering the selected
city. Error bars represent the values of maximum and minimum ensemble members.

minimum numbers is 14.3, 15.1, 20.6, and 21.9 d yr−1. For
tropical nights, the spread is 29.3, 27.7, 29.1, and 26.7 d yr−1.
So, on average, unforced variability can change the number
of extreme days and nights by a few weeks per year. There
is no significant variance of ensemble spread between the
cities, except for cities with very low ensemble-averaged val-
ues (e.g., Mexico City at 1.5 ◦C warming) or very high values
(e.g., tropical nights in Manila at 4.0 ◦C warming). However,
for the cities that do not see a large increase in extreme tem-
peratures (e.g., New York City), this represents a very large
fraction of the predicted change of extremes, while for cities
that experience a much larger increase (e.g., Manila), it rep-
resents a smaller percentage.

As discussed in Sect. 2.1, we examine the sensitivity of
our results to potential biases of the model by recalculating
the deadly days and tropical nights using model data after
adding in the bias estimated by a comparison to the reanaly-
sis. The average difference of deadly days in the sensitivity
test (absolute difference) at 1.5, 2.0, 3.0, and 4.0 ◦C warming
is 2.1, 2.5, 5,5, and 7.6 d yr−1 when averaged over 15 cities.
The standard deviation of the difference calculated between
the cities is 2.5, 3.4, 6.7, and 9.7 d at each level of warm-
ing. For tropical nights, sensitivity test produced differences
of 3.6, 3.6, 5.3, and 3.5 d yr−1 at each level of warming, with
standard deviations within the ensemble of 3.6, 4.9, 6.9, and
1.8 d. Thus, model biases are unlikely to have a large impact
on our results.

Previous work has attempted to distinguish the origin and
mechanisms of unforced variability in temperature and tem-
perature extremes (Meehl et al., 2007; Zhang et al., 2020;
Birk et al., 2010). To probe the statistical modes of variabil-
ity affecting this ensemble spread and to identify the under-

lying physical mechanisms, an empirical orthogonal func-
tion (EOF) analysis (North, 1984) was performed on the de-
trended and normalized time series of deadly days and trop-
ical nights for the 15 cities. For each city, the 28 ensemble
members are concatenated together (total of 28× 150 years)
in order for all ensembles to share the same EOF. In this way,
we aim to find the dominant drivers of unforced variability
that impacts heat extremes in the largest cities around the
world.

The first three EOF patterns for each city are plotted in
Fig. 3 as bars. The first EOF mode of deadly days shows
large values for Delhi, Shanghai, Dhaka, and Karachi, while
cities in other regions show lower values. The second and
third EOFs for deadly days show more variability between
the cities. The first EOF for tropical nights (Fig. 3d) shows
large positive values for cities in the India–Pakistan region,
with other cities showing smaller magnitude changes. The
second EOF shows large negative values in Cairo, Istanbul,
and Manila, while the third EOF for tropical nights shows
more variability between the cities.

The PC (principal component) time series are projected
onto detrended annual sea surface temperature (SST) anoma-
lies. This allows us to investigate how heat extreme events in
15 major cities are associated with global modes of unforced
variability. Maps of correlation coefficients are also plotted in
Fig. 3. Characteristic patterns for ENSO (Trenberth and Na-
tional Center for Atmospheric Research Staff, 2020), PDO
(Deser et al., 2016), and AMO (Trenberth et al., 2020) are
calculated for each ensemble using all 150-years of SSTs,
and the pattern is averaged over the ensembles to come up
with a single ENSO, PDO, and AMO SST pattern for the en-
semble. Then, those patterns are compared with the PC pro-
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Figure 3. The first three EOFs of annual values of deadly days (a–c) and tropical nights (d–f) in the world’s 15 largest cities. For each panel,
the bar graph shows the EOF pattern of the number of heat extreme days per year. Contour plots shows the SST pattern associated with the
EOF mode, obtained by projecting each mode of PC onto SST anomalies. Ensemble members are averaged to yield the SST pattern. Pattern
correlations with major modes of climate variability (ENSO, PDO, and AMO) are also shown, as discussed in the text.

jection on SST to see how PC-projected SSTs resemble the
patterns of unforced variability. Correlation coefficients be-
tween the standard climate indices and PC-projected SST is
shown in the lower panel of Fig. 3 as numbers. All of the
projections of deadly day PCs and projections of the first two
modes of tropical nights show patterns similar to ENSO and
PDO.

Power spectra of the PCs are calculated individually for
each ensemble member, and then the ensemble average is
plotted Fig. 4. Overall, the spectra of the deadly day PCs
look very much like the spectrum for ENSO, and it notably
does not have the∼ 20-year peak of the PDO spectrum. This
tells us that, in this model at least, the variability in the occur-

rence of deadly days in these large cities is strongly regulated
by ENSO. This may be a consequence of the fact that these
large cities are mostly located near the ocean and at lower lat-
itudes. The third deadly day PC has lower correlations with
the ENSO or PDO indexes, so it is harder to draw firm con-
clusions about the mechanism behind it. Also, higher modes
of EOFs are unlikely to refer to a single mode of climate
due to the orthogonality constraints between each mode. The
tropical night PCs also show peaks at ENSO periods (Fig. 4b)
suggesting that, like deadly days, tropical night variability is
controlled by ENSO.
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Figure 4. Frequency power spectrum of ENSO, PDO, and PC of the first three EOF modes for (a) deadly days and (b) tropical nights. ENSO
is calculated with the Niño 3.4 index, and PDO is calculated as a leading EOF of SST anomaly in the North Pacific basin. Monthly SST data
are used for both ENSO and PDO, and then each index is averaged over the year to have consistency with deadly days and tropical nights.

Figure 5. (a) Clustered regions viaK-means clustering. Characteristics of each cluster are listed in Table 2. (b) Zonal average of temperature
increases at the time of 0.87 (our reference period), 1.5, 2, and 4 ◦C of global warming compared to the preindustrial baseline in the 1 %
runs. Temperatures are averaged over a 5-year period after each warming threshold is exceed in the model.

4.2 Cluster analysis and population risk of heat wave
indices

We calculate HWD, HWF, HWA, and HWM for both t2m
and w2m each year at each grid point, which generates eight
different 150-year time series for each of the 28 ensemble
members. Each time series at each grid point is regressed
vs. time, yielding a slope and the intercept for each time se-
ries in all 28 ensemble members. The 16 variables (8 heat
wave indices× 2 slope and intercept) are then utilized as a
predictor variable forK-means clustering (Likas et al., 2003)
to categorize the spatial variation in heat waves using the Eu-
clidean distance of its predictor variables (16 variables). With
slope and intercept, we can characterize the heat indices of
each grid point with response to CO2 forcing (slope) and cli-
matology (intercept). The number of clusters in this study
is set to 6, using the elbow method (Syakur et al., 2018).
When using five clusters, we find that two clusters (the light
and dark blue regions in Fig. 5a) merge, and when using
seven clusters, we find that one cluster (the dark blue region
in Fig. 5a) divides into two separate clusters.

Figure 5a shows the cluster value that most ensembles as-
signed to each grid point, and it shows distinct geographi-
cal characteristics, as summarized in Table 2 (the result of
clustering shows little difference between individual ensem-
ble members). As might be expected from how we calculated
the 16 variables for clustering, each cluster shows a different
evolution of heat extremes in a warmer world (Fig. 6). Al-
though the warming signal is the largest in the polar regions
(Fig. 5b), the largest increases in HWD and HWF are found
at lower latitudes (in cluster 1 and 2 in Fig. 6a–d). This is
mostly due to low variability in these regions compared to
polar regions, making it easier for a trend to exceed the heat
wave threshold.

These results are insensitive to potential model biases.
Sensitivity tests show that adding the bias to the model
changes HWD, HWF, deadly days, and tropical nights by less
than 5 % for all metrics and clusters. For HWA and HWM,
the difference caused by adding the bias was less than 1 ◦C
for all metrics and clusters, suggesting that the impact of
model biases is small in this analysis.
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Figure 6. Evolution of each index averaged over each cluster. Colors are consistent with Fig. 5 and Table 2. The values of each metric are
calculated by averaging the grid points that belong to each cluster. This was done for each ensemble member, and then the ensemble average
is plotted. Vertical lines with dots show the maximum and minimum of 28 ensemble members at each threshold of warming to represent the
spread between the ensemble members.
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Table 2. Percentage area and major regions belonging to each cluster. Clusters are identified only for the global land areas.

Cluster Color Area Major regions Cluster name
percentage

(%)

1 Maroon 2.95 Indonesia, Malaysia, Cameroon, and Gabon Tropical West Pacific
2 Orange 12.34 Northern South America and central Africa Tropical Africa and North America
3 Pink 22.70 India, Southeast Asia, eastern South America, and southeastern USA Subtropical Asia and America
4 Green 21.55 Northern Africa, the Middle East, and Australia Deserts
5 Sky blue 7.69 Himalayas and Andes Mountain ranges
6 Blue 32.75 Canada, northwestern US, and Russia Subpolar regions

For HWA and HWM, the rate of increase is similar for
all clusters, with increases in HWAt2m and HWAw2m of
1.45 ◦C per degree of global average warming, respectively,
and HWMt2m 0.85 ◦C per degree of global average warming,
respectively, and HWMt2m and HWMw2m of 0.66 ◦C per de-
gree of global average warming and 0.47 ◦C per degree of
global average warming, respectively (Fig. 6e–h). The excep-
tion is HWAt2m in cluster 6. The large increase in HWAt2m in
this region is connected to the strong global warming signal
in high latitudes that has been predicted for decades and is
now observed (Stouffer and Manabe, 2017).

Turning to deadly days (Fig. 6i), we find that a substan-
tial increase occurs in cluster 1 after 2.0 ◦C of warming; this
is important because it gives additional support for the Paris
Agreement’s aspirational goal of limiting global warming to
2.0 ◦C. Almost all increases in deadly days are in low lati-
tudes (clusters 1, 2, and 3). For tropical nights, low latitudes
and deserts (cluster 4) contribute most of the increase. Fig-
ure 6 also shows the spread within the ensemble for each
metric and cluster. We find that the spread for a cluster is
generally small compared to the change over time and the
difference between the clusters.

We also generated indices weighted by global popula-
tion. Heat wave indices for the 95th percentile of population
(meaning 5 % of the population is exposed to higher values),
the 90th percentile of population, and the median of the pop-
ulation are depicted in Fig. 7. Figure 7a shows that, with 3 ◦C
of warming, 5 % of the Earth’s population will experience
heat waves lasting 122 d (standard deviation between ensem-
ble members of 1σ = 17 d), 10 % of the population will ex-
perience heat waves lasting 94 d (1σ = 7 d), and half of the
population will experience heat waves lasting around 50 d
(1σ = 4 d). These are large increases over present-day values
of 50, 42, and 21 d. The average of the standard deviation be-
tween the ensemble members (calculated every year and then
averaged) is 10.6, 6.2, and 3.7 d for the 95th, 90th percentile,
and median, respectively. This is significantly smaller than
the values from the analyses of the cities in Fig. 2, where
the unforced variability makes larger differences in the oc-
currence of heat waves.

The rate of increase in HWFw2m in Fig. 7d shows a rapid
increase until the global average warming reaches about

2.5 ◦C. Given that the planet has already warmed about 1 ◦C
above preindustrial levels, this suggests that the world should
presently be experiencing a rapid increase in wet bulb ex-
treme frequency, particularly in the tropics. This is related to
the increased slope in Fig. 6, in which values of HWDw2m
and HWFw2m for clusters 1 and 2 increase rapidly until
3.0 and 2.0 ◦C of global warming. At warmer temperatures,
HWDw2m and HWFw2m reach a plateau, since values over
300 d yr−1 mean there is little room for additional increases.
For HWAt2m/w2m and HWMt2m/w2m, the increase is mostly
linear. Also note that, at 3 ◦C of global warming, the 90th per-
centile of population-weighted HWAw2m reaches over 29 ◦C,
which, while not immediately fatal to humans, may, never-
theless, indicate great difficulty for even a developed society
to adapt to.

Currently, 10 % of the total population faces more than
45 deadly days and 181 tropical nights per year. This grows
to 65 and 195 d, respectively, at 1.5 ◦C warming. With 2 ◦C
of global warming, 10 % of the population will face about
3 months of deadly days and 7 months of tropical nights ev-
ery year, and this increases to 4 and 8 months with 3 ◦C of
warming. Also, with 3 ◦C of global warming, 5 % of the pop-
ulation will be in an environment where 8 and 10 months a
year are deadly days and tropical nights. Our sensitivity tests
suggest that model bias generates less than 5 % differences
for HWD, HWF, deadly days, and tropical nights for all met-
rics and the percentile of population at every level of global
warming, except when the metrics are near zero. Potential
model biases also generate small differences in HWA and
HWM, with less than 1 ◦C difference in all metrics for every
period. Furthermore, with 3 ◦C of global warming, the min-
imum ensemble member of deadly days is above the maxi-
mum ensemble of the present-day reference (0.87 ◦C) for all
population percentiles (5 %, 10 %, and 50 %). This occurs at
2 ◦C for tropical nights. Details of the ensemble spread are
also shown in Table 3.

It is notable that, although there is a large spread between
the ensemble members in each city (Fig. 2), the spread in the
clusters (Fig. 6) and population-weighted metrics (Fig. 7) is
not as large. This emphasizes that the effect of unforced vari-
ability might be large at small scales, but as the region ex-
pands, the impact of unforced variability decreases. This is
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Figure 7. Changes in population-weighted heat wave indices as a function of global average warming. Each line denotes one ensemble
member for different percentiles of the population.
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Table 3. Number of deadly days each percentile (p.) of the global population faces, with reference period (0.87 ◦C) and 1.5, 2, 3, and 4 ◦C
of global warming from the preindustrial condition. Standard deviations between the ensembles (1σ ) are also shown.

Global warming

Population 0.87 ◦C 1.5 ◦C 2.0 ◦C 3.0 ◦C 4.0 ◦C

Deadly 95th p. 85 (±7) 105 (±10) 125 (±7) 161 (±12) 229 (±15)
days 90th p. 45 (±5) 65 (±10) 86 (±8) 132 (±12) 198 (±12)

50th p. 0.3 (±0.1) 1.5 (±1.3) 5 (±2) 23 (±4) 63 (±5)

Tropical 95th p. 211 (±11) 232 (±14) 253 (±13) 306 (±17) 358 (±3)
nights 90th p. 280 (±7) 195 (±9) 205 (±9) 232 (±12) 277 (±14)

50th p. 15 (±4) 27 (±7) 41 (±6) 71 (±6) 102 (±4)

also found in Table 3, where, in each case, the standard de-
viation between ensembles is less than 20 % of the average,
except in a few cases. This indicates that unforced variability
will generally play a minor role in determining global ex-
posure to temperature above thresholds, although different
people may be affected in different realizations of unforced
variability.

In addition, with 1.5 ◦C of global warming, the lowest en-
semble of the 90th percentile of HWDt2m, HWDw2m, and
HWFt2m exceeds the highest ensemble of the same metric in
the current climate (red lines in Fig. 7). With 2 ◦C of warm-
ing, the minimum ensemble of HWDt2m/w2m, HWFt2m/w2m,
HWMw2m, and tropical nights exceed the maximum ensem-
ble of the current climate, and with 2.5 ◦C of warming, the
minimum ensemble of all metrics exceeds the maximum en-
semble of the same metric in the current climate. Thus, this
model predicts that the occurrence of extremes will soon be
able to exceed values likely possible in our present climate
for these metrics.

4.3 Analysis on GDP per capita

It is well known that not everyone is equally vulnerable to
extreme weather, with rich, relatively more developed com-
munities having more resources to deal with extreme events
than poorer communities. In that context, the global gridded
GDP per capita is used to calculate average risk at each level
of wealth. The ensemble-averaged result is depicted in Fig. 8,
which shows the absolute number of deadly days and tropical
nights, as well as the increase in the number of deadly days
and tropical nights that each economic level experiences rel-
ative to the reference period warming of 0.87 ◦C. This plot
assumes that the relative distribution of population and GDP
remains fixed through time. Our sensitivity tests show that
the model bias yields small differences in the results, with
less than 5 % difference in both the absolute number of ex-
treme events and the changes in extremes.

For each level of warming, we find that the lower GDP
regions will experience not only higher absolute numbers of
extreme temperature days but also the largest increases. For
deadly days, the increase is largest between 10th to 40th per-

Figure 8. Increase in (a) deadly days and (b) tropical nights com-
pared to the reference period (0.87 ◦C of warming), binned by the
percentile of GDP per capita at selected levels of warming com-
pared to reference climate (calculated by subtracting reference val-
ues, shown as a heat map), averaged over the population within
the GDP percentile (for example, averaged over population in 0–
10 percentile of GDP) and over all ensemble members for 5-year
window after each level of warming first occurs. Green text inside
the heat map represents the absolute number of deadly days and
tropical nights in each level of warming.

centile of GDP, and for tropical nights, the increase is largest
below the 30th percentile of GDP. The regions that con-
tribute the most for the low GDP percentiles are in Southeast
Asia, including Myanmar, Laos, and Cambodia, and tropi-
cal Africa, including the Democratic Republic of the Congo,
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Figure 9. Change (in percentage) of ensemble-averaged cooling degree days (CDD; red) and heating degree days (HDD; blue) compared
to the reference climate (0.87 ◦C) in the 1 % CO2 experiments at the time they reach the global mean temperature thresholds of (a) 1.5 ◦C,
(b) 2.0 ◦C, (c) 3.0 ◦C, and (d) 4.0 ◦C, respectively. Error bars represent the standard deviation in CDD and HDD values between the ensemble
members.

Kenya, Uganda, Ethiopia, and the Republic of Sudan, which
are in clusters 1 and 2 in our cluster analysis (Fig. 5). The
maximum difference in heat wave days between the ensem-
bles is less than 25 % for all GDP and global warming levels.

4.4 Energy demand on large cities

Annual CDDs and HDDs have been calculated for the
15 cities in Sect. 4.1. Both CDDs and HDDs are calculated
by averaging the CDD and HDD values of 3× 3 grid points
surrounding each city, including only land grid points. CDD
and HDD values are then averaged for 5 years after global
warming reaches each levels of threshold. Figure 9 shows
the percent change in CDDs and HDDs at 1.5, 2.0, 3.0, and
4.0 ◦C relative to the reference period CDD and HDD val-
ues. This was done for each city and for each ensemble
member. At 1.5, 2.0, 3.0, and 4.0 ◦C warming, CDDs in the
15 cities increase by an average of 9 %, 22 %, 54 %, and
70 %. Our sensitivity tests show that the application of the
average model bias yields changes of less than 1 % in these
numbers. This suggests an enormous increase in energy re-
quired for cooling.

In contrast, average energy demand on cold days (HDDs)
decreases by 21 %, 36 %, 59 %, and 65 % in cities consid-
ered, compared to present day, partially offsetting the in-
crease in energy required for cooling. Manila shows 0 %
change in HDDs for all periods, since Manila does not ex-
perience HDD days in present or future periods. Sensitivity
tests also show less than a 1 % difference in HDD change due
to model biases.

5 Conclusion

In this study, we found that extreme heat events will be-
come more frequent and severe in a warming world. We find
that both forced and unforced variability play a key role in
extreme heat events, highlighting the necessity of consid-
ering both contributions to extreme heat. We also look at
population-weighted and GDP-sorted statistics of extreme
heat in warmer world.

Our results show that ENSO is the dominant mode of un-
forced variability impacting the occurrence of extreme heat
and humidity events and that events tend to be synchronous
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in the world’s largest 15 cities. But while the impact of un-
forced variability might be significant regionally and tem-
porarily, it becomes less important when one looks at larger
aggregate regions.

Looking at global population-weighted statistics, we
found that, with 1.5 ◦C of global average warming, over
10 % of the population will face heat waves of 45 ◦C tem-
perature and 28 ◦C wet-bulb temperatures. Furthermore, 5 %
of the population will face more than 105 d of deadly days
and 232 d of tropical nights per year. With 3 ◦C of warming,
which we are currently on track for, 10 % of the population
will experience over 132 d of deadly days and over 232 d of
tropical nights per year. Moreover, 10 % of the population
will face a 47 ◦C temperature and 30 ◦C wet-bulb tempera-
ture. Given that these two metrics have important implica-
tions for human mortality, such increases may have signifi-
cant impacts on human health globally.

Sorting heat and humidity events by wealth, we confirm
that the increasing frequency and severity of extreme events
will fall mostly on poorer people. To further investigate some
economic impacts of increasing heat extremes, cooling de-
gree days (CDDs) and heating degree days (HDDs) are cal-
culated for the world’s 15 largest cities. Energy demand for
cooling (CDDs) increases by an average of 9 % for 1.5 ◦C
and 54 % for 3.0 ◦C of warming, while energy demand for
heating (HDDs) decreases by 21 % and 59 %. Since CDDs
are known to have a piecewise linear relationship with the
energy consumption, with the slope increasing with higher
CDDs (De Rosa et al., 2014; Shin and Do, 2016), increas-
ing CDDs in a warmer world could be one of the factors
driving increased economic inequity from global-warming-
related heat extremes, due to relatively high costs and the
need for energy in the poorest countries.

Uncertainties in this analysis include our use of gridded
6 h climate model output. More detailed analysis could be
done with climate simulations with higher temporal and spa-
tial resolution. The model has biases relative to measure-
ments, potentially due to the fact that there are no aerosols
in the forcing, which is another source of uncertainty. This
was tested by adding the difference between the ensemble
average and the reanalysis data to the model fields and re-
computing the heat wave indices. In general, the impact of
this bias was not important. In future analyses, this could be
better resolved with use of multimodel ensembles or detailed
bias correction of the model.

Another uncertainty is that our runs are continuously
warming, and it is possible that an equilibrium world at any
given temperature may experience a different occurrence of
extremes than in the runs in this paper. Additionally, since an
increasing proportion of the population is expected to live in
dense metropolitan areas, there is also the possibility that ac-
tual heat and humidity extremes that populations experience
could be more severe than the gridded data due to local phe-
nomena such as the urban heat island effect (Murata et al.,
2012). Statistical or dynamical downscaling could be used

for a more detailed analysis (Dibike and Coulibaly, 2006;
Wood et al., 2004). Also, land models with the capacity to de-
compose the urban and rural environment could be applied in
the same context (Bonan et al., 2002; Dickinson et al., 2006).
Also, this study could gain further insights by considering
changing population and socioeconomic distribution in the
future. Overall, however, none of these things are expected to
change the broad conclusion of this study that global warm-
ing will lead to increased exposure to extremes in heat and
humidity.

Data availability. The 6 h 1 % runs from MPI–GE can be dis-
tributed upon request. ERA-Interim data are available from
the ECMWF archive (https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era-interim, last access: October 2018) (Berris-
ford et al., 2018). Global population data are available from
the NASA SEDAC archive (https://doi.org/10.7927/H49C6VHW)
(CIESIN, 2020). Global GDP per capita can be obtained from
Kummu et al. (2019) (https://doi.org/10.5061/dryad.dk1j0).

Author contributions. JL, JM, and AD conceptualized the project.
The data curation was done by JL and AD, while JL and JM con-
ducted the formal analysis. AD acquired the funding, while JL and
JM led the investigation. JL took responsibility for the methodol-
ogy, software, and visualization. AD administered and supervised
the project and acquired the resources. JL and AD wrote the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Financial support. This research has been supported by the Di-
vision of Atmospheric and Geospace Sciences (grant nos. AGS-
1661861 and AGS-1841308) to Texas A & M University.

Review statement. This paper was edited by Mathias Palm and re-
viewed by Sabine Undorf and one anonymous referee.

https://doi.org/10.5194/acp-21-11889-2021 Atmos. Chem. Phys., 21, 11889–11904, 2021

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://doi.org/10.7927/H49C6VHW
https://doi.org/10.5061/dryad.dk1j0


11902 J. Lee et al.: The effect of forced change and unforced variability on heat waves in a CO2-warmed world

References

Arbuthnott, K., Hajat, S., Heaviside, C., and Vardoulakis, S.:
Changes in population susceptibility to heat and cold over time:
assessing adaptation to climate change, Environ. Health, 15, 73–
93, 2016.

Argaud, L., Ferry, T., Le, Q. H., Marfisi, A., Ciorba, D.,
Achache, P., Ducluzeau, R., and Robert, D.: Short- and
long-term outcomes of heatstroke following the 2003 heat
wave in Lyon, France, Arch. Intern. Med., 167, 2177–2183,
https://doi.org/10.1001/archinte.167.20.ioi70147, 2007.

Baldwin, J. W., Dessy, J. B., Vecchi, G. A., and Oppenheimer,
M.: Temporally Compound Heat Wave Events and Global
Warming: An Emerging Hazard, Earths Future, 7, 411–427,
https://doi.org/10.1029/2018ef000989, 2019.

Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes,
M., and Simmons, A.: The ERA-Interim archive Version 2.0,
Shinfield Park, Reading, available at: https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era-interim, last access:
October 2018.

Birk, K., Lupo, A. R., Guinan, P., and Barbieri, C.: The interan-
nual variability of midwestern temperatures and precipitation as
related to the ENSO and PDO, Atmosfera, 23, 95–128, 2010.

Bonan, G. B., Oleson, K. W., Vertenstein, M., Levis, S., Zeng, X.,
Dai, Y., Dickinson, R. E., and Yang, Z.-L.: The land surface cli-
matology of the Community Land Model coupled to the NCAR
Community Climate Model, J. Climate, 15, 3123–3149, 2002.

Buzan, J. R. and Huber, M.: Moist heat stress on a hot-
ter Earth, Annu. Rev. Earth Planet. Sci., 48, 623–655,
https://doi.org/10.1146/annurev-earth-053018-060100, 2020.

Buzan, J. R., Oleson, K., and Huber, M.: Implementation and com-
parison of a suite of heat stress metrics within the Commu-
nity Land Model version 4.5, Geosci. Model Dev., 8, 151–170,
https://doi.org/10.5194/gmd-8-151-2015, 2015.

Chen, R. D. and Lu, R. Y.: Dry Tropical Nights and Wet Extreme
Heat in Beijing: Atypical Configurations between High Tem-
perature and Humidity, Mon. Weather Rev., 142, 1792–1802,
https://doi.org/10.1175/Mwr-D-13-00289.1, 2014.

Chow, W. T., Chuang, W.-C., and Gober, P.: Vulnerability to ex-
treme heat in metropolitan Phoenix: spatial, temporal, and de-
mographic dimensions, Profess. Geogr., 64, 286–302, 2012.

CIESIN – Center for International Earth Science Information Net-
work: Columbia University Gridded Population of the World,
Version 4 (GPWv4): Population Density, Revision 11, NASA So-
cioeconomic Data and Applications Center (SEDAC), [data set],
https://doi.org/10.7927/H49C6VHW, 2020.

Dahl, K., Licker, R., Abatzoglou, J. T., and Declet-Barreto, J.: In-
creased frequency of and population exposure to extreme heat
index days in the United States during the 21st century, En-
viron. Res. Commun., 1, 075002, https://doi.org/10.1088/2515-
7620/ab27cf, 2019.

Davies-Jones, R.: An efficient and accurate method for computing
the wet-bulb temperature along pseudoadiabats, Mon. Weather
Rev., 136, 2764–2785, 2008.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V.,
Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally,

A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey,
C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–
597, https://doi.org/10.1002/qj.828, 2011.

de Lima, C. Z., Buzan, J. R., Moore, F. C., Baldos, U. L. C., Huber,
M., and Hertel, T. W.: Heat stress on agricultural workers exac-
erbates crop impacts of climate change, Environ. Res. Lett., 16,
044020, https://doi.org/10.1088/1748-9326/abeb9f, 2021.

De Rosa, M., Bianco, V., Scarpa, F., and Tagliafico, L. A.: Heat-
ing and cooling building energy demand evaluation; a simplified
model and a modified degree days approach, Appl. Energy, 128,
217–229, 2014.

Deser, C., Phillips, A., Bourdette, V., and Teng, H. Y.: Uncer-
tainty in climate change projections: the role of internal variabil-
ity, Clim. Dynam., 38, 527–546, https://doi.org/10.1007/s00382-
010-0977-x, 2012.

Deser, C., Trenberth, K., and National Center for Atmo-
spheric Research Staff (Eds.): The Climate Data Guide:
Pacific Decadal Oscillation (PDO): Definition and Indices,
available at: https://climatedataguide.ucar.edu/climate-data/
pacific-decadal-oscillation-pdo-definition-and-indices (last
access: March 2020), 2016.

Dibike, Y. B. and Coulibaly, P.: Temporal neural networks for down-
scaling climate variability and extremes, Neural Networks, 19,
135–144, https://doi.org/10.1016/j.neunet.2006.01.003, 2006.

Dickinson, R. E., Oleson, K. W., Bonan, G., Hoffman, F., Thornton,
P., Vertenstein, M., Yang, Z.-L., and Zeng, X.: The Community
Land Model and its climate statistics as a component of the Com-
munity Climate System Model, J. Climate, 19, 2302–2324, 2006.

Diffenbaugh, N. S. and Burke, M.: Global warming has increased
global economic inequality, P. Natl. Acad. Sci. USA, 116, 9808–
9813, 2019.

Fischer, E. M. and Schär, C.: Consistent geographical patterns of
changes in high-impact European heatwaves, Nat. Geosci., 3,
398–403, 2010.

Harrington, L. J., Frame, D. J., Fischer, E. M., Hawkins, E.,
Joshi, M., and Jones, C. D.: Poorest countries experience ear-
lier anthropogenic emergence of daily temperature extremes,
Environ. Res. Lett., 11, 055007, https://doi.org/10.1088/1748-
9326/11/5/055007, 2016.

Harrington, L. J., Frame, D., King, A. D., and Otto, F. E.: How un-
even are changes to impact-relevant climate hazards in a 1.5 ◦C
world and beyond?, Geophys. Res. Lett., 45, 6672–6680, 2018.

Hausfather, Z., and Peters, G. P.: Emissions–the ‘business as
usual’story is misleading. Nature Publishing Group, 2020.

Heo, S., Bell, M. L., and Lee, J. T.: Comparison of health risks
by heat wave definition: Applicability of wet-bulb globe tem-
perature for heat wave criteria, Environ. Res., 168, 158–170,
https://doi.org/10.1016/j.envres.2018.09.032, 2019.

Hoegh-Guldberg, O., Jacob, D., Bindi, M., Brown, S., Camilloni, I.,
Diedhiou, A., Djalante, R., Ebi, K., Engelbrecht, F., and Guiot,
J.: Impacts of 1.5 ◦C global warming on natural and human sys-
tems, Global warming of 1.5 ◦C, An IPCC Special Report, IPCC,
Switzerland, 2018.

Kang, S. and Eltahir, E. A. B.: North China Plain threatened by
deadly heatwaves due to climate change and irrigation, Nat.
Commun., 9, 2894, https://doi.org/10.1038/s41467-018-05252-
y, 2018.

Atmos. Chem. Phys., 21, 11889–11904, 2021 https://doi.org/10.5194/acp-21-11889-2021

https://doi.org/10.1001/archinte.167.20.ioi70147
https://doi.org/10.1029/2018ef000989
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://doi.org/10.1146/annurev-earth-053018-060100
https://doi.org/10.5194/gmd-8-151-2015
https://doi.org/10.1175/Mwr-D-13-00289.1
https://doi.org/10.7927/H49C6VHW
https://doi.org/10.1088/2515-7620/ab27cf
https://doi.org/10.1088/2515-7620/ab27cf
https://doi.org/10.1002/qj.828
https://doi.org/10.1088/1748-9326/abeb9f
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1007/s00382-010-0977-x
https://climatedataguide.ucar.edu/climate-data/pacific-decadal-oscillation-pdo-definition-and-indices
https://climatedataguide.ucar.edu/climate-data/pacific-decadal-oscillation-pdo-definition-and-indices
https://doi.org/10.1016/j.neunet.2006.01.003
https://doi.org/10.1088/1748-9326/11/5/055007
https://doi.org/10.1088/1748-9326/11/5/055007
https://doi.org/10.1016/j.envres.2018.09.032
https://doi.org/10.1038/s41467-018-05252-y
https://doi.org/10.1038/s41467-018-05252-y


J. Lee et al.: The effect of forced change and unforced variability on heat waves in a CO2-warmed world 11903

Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand,
G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards,
J., Holland, M., Kushner, P., Lamarque, J. F., Lawrence, D.,
Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K.,
Polvani, L., and Vertenstein, M.: The Community Earth Sys-
tem Model (CESM) Large Ensemble Project A Community Re-
source for Studying Climate Change in the Presence of Inter-
nal Climate Variability, B. Am. Meteorol. Soc., 96, 1333–1349,
https://doi.org/10.1175/Bams-D-13-00255.1, 2015.

Kharin, V. V., Flato, G. M., Zhang, X., Gillett, N. P.,
Zwiers, F., and Anderson, K. J.: Risks from Climate Ex-
tremes Change Differently from 1.5 degrees C to 2.0 de-
grees C Depending on Rarity, Earths Future, 6, 704–715,
https://doi.org/10.1002/2018ef000813, 2018.

King, A. D. and Harrington, L. J.: The inequality of climate change
from 1.5 to 2 ◦C of global warming, Geophys. Res. Lett., 45,
5030–5033, 2018.

Kummu, M., Taka, M., and Guillaume, J. H. A.: Data from:
Gridded global datasets for Gross Domestic Product and Hu-
man Development Index over 1990–2015 Dryad, [dataset],
https://doi.org/10.5061/dryad.dk1j0, 2019.

Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J.,
El Maayar, M., Giannakopoulos, C., Hannides, C., Lange, M.
A., Tanarhte, M., Tyrlis, E., and Xoplaki, E.: Climate change
and impacts in the Eastern Mediterranean and the Middle East,
Climatic Change, 114, 667–687, https://doi.org/10.1007/s10584-
012-0418-4, 2012.

Liang, C., Zheng, G., Zhu, N., Tian, Z., Lu, S., and Chen, Y.: A new
environmental heat stress index for indoor hot and humid envi-
ronments based on Cox regression, Build. Environ., 46, 2472–
2479, 2011.

Likas, A., Vlassis, N., and Verbeek, J. J.: The global k-means clus-
tering algorithm, Pattern Recognit., 36, 451–461, 2003.

Liu, Z., Anderson, B., Yan, K., Dong, W., Liao, H., and Shi, P.:
Global and regional changes in exposure to extreme heat and the
relative contributions of climate and population change, Scient.
Rep., 7, 1–9, 2017.

Luber, G., and McGeehin, M.: Climate change and extreme heat
events, Am. J. Prevent. Med., 35, 429–435, 2008.

Lundgren, K., Kuklane, K., Gao, C., and Holmer, I.: Effects of heat
stress on working populations when facing climate change, In-
dust. Health, 51, 3–15, 2013.

Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin,
M., Kornblueh, L., Kroger, J., Takano, Y., Ghosh, R., Hede-
mann, C., Li, C., Li, H. M., Manzini, E., Notz, D., Putrasa-
han, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D.,
Raddatz, T., Stevens, B., and Marotzke, J.: The Max Planck In-
stitute Grand Ensemble: Enabling the Exploration of Climate
System Variability, J. Adv. Model. Earth Syst., 11, 2050–2069,
https://doi.org/10.1029/2019ms001639, 2019.

Mann, M. E., Steinman, B. A., Brouillette, D. J., and Miller, S.
K.: Multidecadal climate oscillations during the past millennium
driven by volcanic forcing, Science, 371, 1014–1019, 2021.

Marcotullio, P. J., Keßler, C., and Fekete, B. M.: The
future urban heat-wave challenge in Africa: Ex-
ploratory analysis, Global Environ. Change, 66, 102190,
https://doi.org/10.1016/j.gloenvcha.2020.102190, 2021.

Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J.,
Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., and Pid-

cock, R.: Global warming of 1.5 ◦C, in: An IPCC Special Report
on the impacts of global warming of 1.5 ◦C above pre-industrial
levels and related global greenhouse gas emission pathways, in
the context of strengthening the global response to the threat of
climate change, sustainable development, and efforts to eradicate
poverty, World Meteorological Organization, Geneva, 2018.

Meehl, G. A., Tebaldi, C., Teng, H., and Peterson, T. C.: Current and
future US weather extremes and El Niño, Geophys. Res. Lett.,
34, L20704, https://doi.org/10.1029/2007GL031027, 2007.

Melillo, J. M., Richmond, T., and Yohe, G. W.: Climate Change Im-
pacts in the United States: The Third National Climate Assess-
ment, US Global Change Research Program, Washington, DC,
https://doi.org/10.7930/J0Z31WJ2, 2014.

Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R.
C., Bielecki, C. R., Counsell, C. W., Dietrich, B. S., Johnston,
E. T., Louis, L. V., Lucas, M. P., McKenzie, M. M., Shea, A.
G., Tseng, H., Giambelluca, T., Leon, L. R., Hawkins, E., and
Trauernicht, C.: Global risk of deadly heat, Nat. Clim. Change,
7, 501–506, https://doi.org/10.1038/Nclimate3322, 2017.

Morris, C. E., Gonzales, R. G., Hodgson, M. J., and Tustin,
A. W.: Actual and simulated weather data to evaluate wet
bulb globe temperature and heat index as alerts for occupa-
tional heat-related illness, J. Occupat. Environ. Hyg., 16, 54–65,
https://doi.org/10.1080/15459624.2018.1532574, 2019.

Murata, A., Nakano, M., Kanada, S., Kurihara, K., and Sasaki,
H.: Summertime temperature extremes over Japan in the late
21st century projected by a high-resolution regional climate
model, J. Meteorol. Soc. Jpn. Ser. II, 90, 101–122, 2012.

North, G. R.: Empirical orthogonal functions and normal modes, J.
Atmos. Sci., 41, 879–887, 1984.

Parkes, B., Cronin, J., Dessens, O., and Sultan, B.: Climate change
in Africa: costs of mitigating heat stress, Climatic Change, 154,
461–476, 2019.

Patz, J. A., Campbell-Lendrum, D., Holloway, T., and Foley, J. A.:
Impact of regional climate change on human health, Nature, 438,
310–317, https://doi.org/10.1038/nature04188, 2005.

Perkins, S., Alexander, L., and Nairn, J.: Increasing fre-
quency, intensity and duration of observed global heat-
waves and warm spells, Geophys. Res. Lett., 39, L20714,
https://doi.org/10.1029/2012GL053361, 2012.

Quinn, A., Tamerius, J. D., Perzanowski, M., Jacobson, J. S., Gold-
stein, I., Acosta, L., and Shaman, J.: Predicting indoor heat ex-
posure risk during extreme heat events, Sci. Total Environ., 490,
686–693, 2014.

Ruddell, D. M., Harlan, S. L., Grossman-Clarke, S., and Buyan-
tuyev, A.: Risk and exposure to extreme heat in microclimates
of Phoenix, AZ, in: Geospatial techniques in urban hazard and
disaster analysis, Springer, Dordrecht, 179–202, 2009.

Russo, S., Sillmann, J., and Sterl, A.: Humid heat waves
at different warming levels, Scient. Rep., 7, 7477,
https://doi.org/10.1038/s41598-017-07536-7, 2017.

Russo, S., Sillmann, J., Sippel, S., Barcikowska, M. J., Ghisetti, C.,
Smid, M., and O’Neill, B.: Half a degree and rapid socioeco-
nomic development matter for heatwave risk, Nat. Commun., 10,
1–9, 2019.

Sailor, D. J. and Muñoz, J. R.: Sensitivity of electricity and natu-
ral gas consumption to climate in the USA – Methodology and
results for eight states, Energy, 22, 987–998, 1997.

https://doi.org/10.5194/acp-21-11889-2021 Atmos. Chem. Phys., 21, 11889–11904, 2021

https://doi.org/10.1175/Bams-D-13-00255.1
https://doi.org/10.1002/2018ef000813
https://doi.org/10.5061/dryad.dk1j0
https://doi.org/10.1007/s10584-012-0418-4
https://doi.org/10.1007/s10584-012-0418-4
https://doi.org/10.1029/2019ms001639
https://doi.org/10.1016/j.gloenvcha.2020.102190
https://doi.org/10.1029/2007GL031027
https://doi.org/10.7930/J0Z31WJ2
https://doi.org/10.1038/Nclimate3322
https://doi.org/10.1080/15459624.2018.1532574
https://doi.org/10.1038/nature04188
https://doi.org/10.1029/2012GL053361
https://doi.org/10.1038/s41598-017-07536-7


11904 J. Lee et al.: The effect of forced change and unforced variability on heat waves in a CO2-warmed world

Schwingshackl, C., Sillmann, J., Vicedo-Cabrera, A. M., Sand-
stad, M., and Aunan, K.: Heat Stress Indicators in CMIP6:
Estimating Future Trends and Exceedances of Impact-
Relevant Thresholds, Earth’s Future, 9, e2020EF001885,
https://doi.org/10.1029/2020EF001885, 2021.

SEDAC: Gridded Population of the World, Version 4 (GPWv4):
Population Density, Revision 11, NASA, Palisades, NY, 2018.

Shin, M. and Do, S. L.: Prediction of cooling energy use in buildings
using an enthalpy-based cooling degree days method in a hot and
humid climate, Energy Build., 110, 57–70, 2016.

Simolo, C., Brunetti, M., Maugeri, M., and Nanni, T.: Evolution of
extreme temperatures in a warming climate, Geophys. Res. Lett.,
38, L16701, https://doi.org/10.1029/2011gl048437, 2011.

Sivak, M.: Potential energy demand for cooling in the 50 largest
metropolitan areas of the world: Implications for developing
countries, Energy Policy, 37, 1382–1384, 2009.

Stouffer, R. J. and Manabe, S.: Assessing temperature pattern pro-
jections made in 1989, Nat. Clim. Change, 7, 163–165, 2017.

Sun, Y., Zhang, X., Zwiers, F. W., Song, L., Wan, H., Hu, T., Yin,
H., and Ren, G.: Rapid increase in the risk of extreme summer
heat in Eastern China, Nat. Clim. Change, 4, 1082–1085, 2014.

Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., and
Satoto, B. D.: Integration K-Means Clustering Method and El-
bow Method For Identification of The Best Customer Pro-
file Cluster, in: 2nd International Conference on Vocational
Education and Electrical Engineering (Icvee), 336, 012017
https://doi.org/10.1088/1757-899x/336/1/012017, 2018.

Tan, J. G., Zheng, Y. F., Tang, X., Guo, C. Y., Li, L. P., Song,
G. X., Zhen, X. R., Yuan, D., Kalkstein, A. J., Li, F. R., and
Chen, H.: The urban heat island and its impact on heat waves
and human health in Shanghai, Int. J. Biometeorol., 54, 75–84,
https://doi.org/10.1007/s00484-009-0256-x, 2010.

Thirumalai, K., DiNezio, P. N., Okumura, Y., and Deser, C.:
Extreme temperatures in Southeast Asia caused by El Nino
and worsened by global warming, Nat. Commun., 8, 15531,
https://doi.org/10.1038/ncomms15531, 2017.

Thompson, D. W. J., Barnes, E. A., Deser, C., Foust, W. E., and
Phillips, A. S.: Quantifying the Role of Internal Climate Vari-
ability in Future Climate Trends, J. Climate, 28, 6443–6456,
https://doi.org/10.1175/Jcli-D-14-00830.1, 2015.

Trenberth, K. and National Center for Atmospheric Re-
search Staff (Eds.): The Climate Data Guide: Nino SST
Indices (Nino 1+ 2, 3, 3.4, 4; ONI and TNI), avail-
able at: https://climatedataguide.ucar.edu/climate-data/
nino-sst-indices-nino-12-3-34-4-oni-and-tni (last access:
March 2020), 2020.

Trenberth, K. E., Zhang, R., and National Center for At-
mospheric Research Staff (Eds.): in: The Climate Data
Guide: Atlantic Multi-decadal Oscillation (AMO), avail-
able at: https://climatedataguide.ucar.edu/climate-data/
atlantic-multi-decadal-oscillation-amo (last access:
March 2020), 2020.

Wilhelmi, O. V. and Hayden, M. H.: Connecting people and place: a
new framework for reducing urban vulnerability to extreme heat,
Environ. Res. Lett., 5, 014021, https://doi.org/10.1088/1748-
9326/5/1/014021, 2010.

Wobus, C., Zarakas, C., Malek, P., Sanderson, B., Crimmins, A.,
Kolian, M., Sarofim, M., and Weaver, C. P.: Reframing Future
Risks of Extreme Heat in the United States, Earths Future, 6,
1323–1335, https://doi.org/10.1029/2018ef000943, 2018.

Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hy-
drologic implications of dynamical and statistical approaches to
downscaling climate model outputs, Climatic Change, 62, 189–
216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e,
2004.

Wuebbles, D. J., Fahey, D. W., and Hibbard, K. A.: Climate science
special report: fourth national climate assessment, in: volume I,
US Global Change Research Program, Washington, DC, 2017.

Zhang, G., Zeng, G., Li, C., and Yang, X.: Impact of PDO and AMO
on interdecadal variability in extreme high temperatures in North
China over the most recent 40-year period, Clim. Dynam., 54,
3003–3020, 2020.

Zhang, Y., Held, I., and Fueglistaler, S.: Projections of tropical heat
stress constrained by atmospheric dynamics, Nat. Geosci., 14,
133–137, 2021.

Atmos. Chem. Phys., 21, 11889–11904, 2021 https://doi.org/10.5194/acp-21-11889-2021

https://doi.org/10.1029/2020EF001885
https://doi.org/10.1029/2011gl048437
https://doi.org/10.1088/1757-899x/336/1/012017
https://doi.org/10.1007/s00484-009-0256-x
https://doi.org/10.1038/ncomms15531
https://doi.org/10.1175/Jcli-D-14-00830.1
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo
https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo
https://doi.org/10.1088/1748-9326/5/1/014021
https://doi.org/10.1088/1748-9326/5/1/014021
https://doi.org/10.1029/2018ef000943
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e

	Abstract
	Highlights
	Introduction
	Data
	MPI–GE ensembles
	Global population and GDP per capita data

	Method of analysis
	Global warming
	Heat wave indices
	Deadly days and tropical nights
	Cooling degree days and heating degree days

	Results
	Impact of unforced variability in climate on regional heat extremes
	Cluster analysis and population risk of heat wave indices
	Analysis on GDP per capita
	Energy demand on large cities

	Conclusion
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

