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Abstract. Arctic low clouds and the water they contain in-
fluence the evolution of the Arctic system through their ef-
fects on radiative fluxes, boundary layer mixing, stability,
turbulence, humidity, and precipitation. Atmospheric models
struggle to accurately simulate the occurrence and properties
of Arctic low clouds, stemming from errors in both the simu-
lated atmospheric state and the dependence of cloud proper-
ties on the atmospheric state. Knowledge of the contributions
from these two factors to the model errors allows for the iso-
lation of the process contributions to the model–observation
differences. We analyze the differences between the Arctic
System Reanalysis version 2 (ASR) and data taken during
the September 2014 Arctic Radiation–IceBridge Sea and Ice
Experiment (ARISE) airborne campaign conducted over the
Beaufort Sea. The results show that ASR produces less total
and liquid cloud water than observed along the flight track
and is unable to simulate observed large in-cloud water con-
tent. Contributing to this bias, ASR is warmer by nearly 1.5 K
and drier by 0.06 g kg−1 (relative humidity 4.3 % lower) than
observed. Moreover, ASR produces cloud water over a much
narrower range of thermodynamic conditions than shown
in ARISE observations. Analyzing the ARISE–ASR differ-
ences by thermodynamic conditions, our results indicate that
the differences are primarily attributed to disagreements in

the cloud–thermodynamic relationships and secondarily (but
importantly) to differences in the occurrence frequency of
thermodynamic regimes. The ratio of the factors is about 2/3
to 1/3. Substantial sampling uncertainties are found within
low-likelihood atmospheric regimes; sampling noise cannot
be ruled out as a cause of observation–model differences,
despite large differences. Thus, an important lesson from
this analysis is that when comparing in situ airborne data
and model output, one should not restrict the comparison to
flight-track-only model output.

1 Introduction

The Arctic Ocean represents a critical component of the Arc-
tic climate system. Moreover, the state and variability of the
atmosphere, ocean, and sea ice in the central Arctic have
significant implications for the climate across much of the
planet (e.g., Deser et al., 2016). The complex interactions be-
tween surface properties, meteorological processes, and the
surface energy budget are critical to understanding the cli-
mate of the Arctic Ocean and making projections of its re-
sponse to anthropogenic climate change (e.g., Budyko, 1969;
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Manabe and Wetherald, 1975; Hall, 2004; Boeke and Taylor,
2018; Dai et al., 2019). Clouds represent a key feature of
the Arctic climate system and modulate important aspects of
ice–atmosphere–ocean coupling processes that strongly in-
fluence the evolution of the Arctic Ocean climate (Curry et
al., 1996).

The effects of clouds on the Arctic climate system span a
wide range of physical processes, such as heating and cooling
via cloud radiative effects (CREs), mixing of the boundary
layer by generating turbulence, influencing humidity through
precipitation, and altering boundary layer stability (Vihma
et al., 2014). Through these processes, clouds shape long-
term trends in both temperature and sea ice variability in the
central Arctic, representing a potentially significant climate
feedback. Cloud radiative feedbacks, in particular, remain a
key uncertainty in the Arctic climate system (Curry et al.,
1996; Wendisch et al., 2019).

Models differ strongly in their simulation of CREs (Karls-
son and Svensson, 2011; English et al., 2015; Boeke and Tay-
lor, 2016) and in their representation of the Arctic cloud an-
nual cycle (Taylor et al., 2019). Systematic biases in CREs
impact the representation of atmospheric circulation vari-
ability and the lifetime of atmospheric circulation regimes
(Stramler et al., 2011; Pithan et al., 2014). Moreover, CREs
influence sea ice anomalies during both melt and growth sea-
sons (Kay et al., 2008; Hegyi and Taylor, 2018) and reduce
shortwave downwelling radiation at the surface (Sledd and
L’Ecuyer 2019; Alkama et al., 2020). Sledd and L’Ecuyer
(2019) quantify the cloud masking effect on the sea ice
albedo perturbation at the top of the atmosphere (TOA) to be
∼ 50 %. Moreover, Alkama et al. (2020) argue that accurate
representation of present-day Arctic cloud properties is nec-
essary for climate models to accurately reproduce the surface
radiation budget impact of sea ice variability and change.
Thus, accurate representation of Arctic cloud properties in
atmospheric models is a necessary but insufficient condi-
tion to ensure accurate predictions of Arctic climate change.
The understanding of the key processes that give rise to the
mean and variability of cloud properties within atmospheric
regimes is lacking; this knowledge is needed in order to un-
derstand the role of clouds in the atmospheric circulation,
understand cloud feedback, and improve the simulations of
clouds within models.

A process-oriented approach that moves beyond the anal-
ysis of monthly mean properties is required to identify and
understand the processes that cause differences between ob-
servations and the model representation of clouds. Previ-
ous analyses have identified a range of errors in the model
simulations at monthly or daily mean scales (e.g., Karlsson
and Svensson, 2011; English et al., 2015; Boeke and Tay-
lor, 2016). However, these approaches fail to unequivocally
identify the processes responsible for the errors. Detailed ob-
servations of cloud properties and the meteorological envi-
ronments are needed to identify errors in the simulation of
Arctic clouds. However, these observations are difficult to

obtain from satellites – cloud water retrievals from passive
instruments are challenging (Shupe et al., 2005; Ehrlich et
al., 2017; Chen et al., 2020), and the cloud presence limits the
ability of sounding instruments to sample the thermodynamic
properties of the underlying boundary layer. To fill these data
gaps, aircraft field campaigns are necessary to collect the
unavailable data in situ. One such campaign was the Arctic
Radiation–IceBridge Sea and Ice Experiment (ARISE), con-
ducted in the Beaufort Sea region during September 2014
(Smith et al., 2017). In this study, we take a process-oriented
approach (e.g., Taylor et al., 2019) by investigating the de-
pendence of in situ cloud properties on varying meteorolog-
ical regimes, and we use these results to evaluate the Arctic
System Reanalysis version 2 (ASR; Bromwich et al., 2018).

The main purpose of this paper is to document the prop-
erties of Arctic boundary layer clouds, their meteorologi-
cal environments, and their relationships using ARISE ob-
servations and compare these results with ASR, a reanalysis
specifically designed to represent Arctic weather and climate
(Bromwich et al., 2018). Model–observation disagreements
occur for at least three general reasons. First, the model may
produce incorrect meteorological conditions, such as biases
in the mean or variability of temperature or humidity. Sec-
ond, the model may misrepresent the observed relationships
between cloud and meteorological conditions. For example,
the model may produce too much or too little cloud water at
a given humidity value even when the humidity is similar to
the observed value. Lastly, flight track sampling can limit the
precision and range of conditions over which relationships
between clouds and meteorological conditions can be deter-
mined. We assess the impact of the flight track to sampling
on the ability to assess model realism using flight campaign
data. Our analysis addresses three questions.

1. How do the cloud properties in ARISE and ASR com-
pare?

2. Can discrepancies between ARISE and ASR be ex-
plained by grid-scale disagreements in meteorologi-
cal conditions and/or errors in the simulated cloud–
thermodynamic relationships?

3. How are ARISE–ASR comparisons affected by flight
track sampling?

Section 2 discusses the observational and ASR datasets, as
well as the analysis methodology. Section 3 examines flight
track cloud properties observed from the aircraft and ASR
output. Section 4 discusses the relationships between cloud
properties and thermodynamic regimes in situ and in ASR.
Section 5 presents the quantification of the effects of sam-
pling, and Sect. 6 presents our conclusions.
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2 Data and model

2.1 The Arctic Radiation–IceBridge Sea and Ice
Experiment

ARISE was conducted during September 2014 to investigate
the radiative properties of the Arctic and the interconnections
with meteorological conditions (Smith et al., 2017). Mea-
surements of cloud properties, radiative fluxes, and other me-
teorological variables were carried out by a NASA Wallops
Flight Facility C-130 aircraft based at Eielson Air Force Base
near Fairbanks, AK. The observing region encompassed a
portion of the Beaufort Sea north of Alaska (Fig. 1) that con-
tained both sea ice and ice-free ocean. For flights used in this
study, the aircraft typically entered and exited the observing
region flying well above the boundary layer, then descended
and spent most of the time below 1000 m adjusting its alti-
tude to fly above, below, and within the cloud layer.

ARISE consisted of 16 total flights over the Beaufort Sea;
however, only a subset of those are used in this study. For
a flight to be included in the analysis, it must have col-
lected cloud and thermodynamic property measurements be-
low 1000 m of altitude for at least an hour. Eight flights met
this requirement: 13, 15–19, 21, and 24 September. As an ex-
ample, Fig. 1 shows the science flight and cloud probe data
from 15 September 2014. Only aircraft observations taken
over sea ice and ocean below 1000 m of altitude are shown to
focus on properties of low clouds over the Arctic Ocean. Ad-
ditionally, only observations that report thermodynamic and
cloud microphysical variables simultaneously are included –
cases in which one is missing are rare.

The measurements of interest include total cloud wa-
ter (cloud liquid+ cloud ice), air temperature, and humid-
ity. Cloud water measurements were collected by the WCM-
2000 probe (Smith et al., 2017; Fig. 1), which reports total
and liquid water content; ice water content is derived as the
difference. The WCM-2000 probe reports two liquid water
content values obtained from wires of different diameter: 2.0
and 0.5 mm (with the former being used in this study). We
convert these measurements to total cloud water (QC), cloud
liquid (QL), and cloud ice (QI) specific humidity for compar-
ison with ASR. Flight-level in situ static air temperature (T ),
relative humidity with respect to liquid (RH), and specific hu-
midity of vapor (QV) are also used. The measurement uncer-
tainties of the 1 Hz measurements are described in the source
data files at 5 % (of the measured value) for QC, 0.5 ◦C for
T , and 2 %–5 % (out of 100 % saturation) for RH. No value
for QV is provided.

The WCM-2000 data are used in this study and repre-
sent the most “direct” measurements of QC, QL, and QI. As
an additional check of the robustness of WCM-2000 mea-
surements, cloud droplet volume concentration data from
the aircraft-mounted Cloud Droplet Probe (CDP) are inte-
grated to compute QC. Figure 2 shows that WCM-2000 de-
tects about 30 % greater QC than the CDP, especially in

clouds with large QC values. This holds true for QL values
measured by both wire diameters. Overall, WCM-2000 QC
agrees fairly well with the integrated CDP QC, with a sub-
stantial positive correlation (0.85). The LWC derived from
the two different diameter wires also shows substantial cor-
relation (0.95). Given this consistency, we proceed using QL
determined from the 2.0 mm wire, as the larger diameter cap-
tures more liquid water.

Unfortunately, ARISE did not collect aerosol measure-
ments. Such observations would be particularly valuable for
the study of certain cloud properties such as albedo and
droplet concentration (in line with Twomey, 1977). Measure-
ments of ice-forming nuclei might also be helpful for under-
standing mixed-phase processes. But this study focuses on
QC in predominantly liquid stratiform clouds, which is not as
susceptible to aerosols (Ackerman et al., 2004; Christensen
and Stephens, 2011), so the lack of aerosol data does not as
greatly affect the results.

2.2 Arctic System Reanalysis version 2 (ASR)

The Arctic System Reanalysis is a regional reanalysis of the
greater Arctic stretching from the headwaters of the major
northward-flowing rivers to the North Pole and is targeted
at producing a refined description of the Arctic environment
during the current period of rapid change (Bromwich et al.,
2016, 2018). It is based upon the polar version of the Weather
Research and Forecasting model (known as Polar WRF;
http://polarmet.osu.edu/PWRF/, last access: 8 July 2021) that
features realistic heat transfer through snow and ice, com-
prehensive description of sea ice characteristics, and other
improvements to the Noah Land Surface Model. The model
physical parameterizations are chosen for Arctic conditions
based upon extensive testing (e.g., Bromwich et al., 2009).
In particular, the Goddard microphysics scheme (Tao and
Simpson, 1993; Tao et al., 2003) is used to predict the cloud
species studied here; this is now a dated scheme in light of the
recent advances in microphysics research that have empha-
sized prediction of cloud liquid water at low air temperatures
(e.g., Hines et al., 2019). ASR assimilates a wide variety of
conventional meteorological observations as well as satellite-
derived radiances and retrievals using three-dimensional data
assimilation. Specified sea ice conditions, snow cover, and
vegetation characteristics are updated either daily (sea ice)
or weekly. ASR is produced every 3 h on 71 vertical model
levels with 25 below 850 hPa to better resolve the highly
stratified near-surface conditions often present in the Arc-
tic. In contrast to version 1, ASR version 2 (NCAR, 2017)
has higher spatial resolution (15 km) and implemented sub-
grid (convective) cloud fraction over land to improve the sur-
face downward radiative fluxes. Recent investigations have
demonstrated ASRv2 skill in capturing a variety of Arctic
phenomena, such as snowfall over the Arctic Ocean (Edel
et al., 2020) and polar lows (Stoll et al., 2018). Currently,
ASRv2 spans 2000–2016, coinciding with the availability of
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Figure 1. Example map (left) and time series (right) of profile sampling of low-level clouds during ARISE. The black trace in the map
indicates the C-130 flight track from Eielson AFB north to the Beaufort Sea, while the red shading denotes the portion of the flight shown in
the time series. The time series data include CDP measurements of droplet number size distribution (dN / dlogDp), and integrated number
concentration (nCDP), integrated mass concentration (mCDP; calculated assuming a density of 1 gcm−3). Corresponding total water content
(TWC) and liquid water content (LWC1, LWC2) mass concentrations measured by the WCM-2000 are also shown. The black trace in the
lower right panel is the aircraft GPS altitude.

the essential input datasets from MODIS, and is being up-
dated through 2020. Importantly for the present comparison,
no ARISE data were assimilated into ASRv2, so they are a
completely independent test of the reanalysis. A new version
(ASRv3) is being developed to deal with issues such as those
explored here.

2.3 ARISE and ASR collocation methodology

ARISE is conformed to the ASR spatial grid and 3 h resolu-
tion as follows.

1. Each ARISE data point (one per second) collected at or
below 1000 m of altitude is collocated with the center of
the nearest ASR grid box.

2. Consecutive sets of ARISE data points within the same
ASR grid box are then collocated with the nearest ASR
vertical level.

3. Each consecutive set of ARISE data within the same
grid box and altitude are averaged.

4. The median time of observation for each consecutive set
is chosen to represent the entire set.

5. Each set of data points is collocated with the nearest
ASR time step – flights lasting longer than 3 h and dif-
ferent flight segments are collocated with different time
steps.

Collocating ARISE data with an ASR grid box allows
the simulated values of cloud and thermodynamic prop-
erties to be directly compared, reducing the noise from
high-frequency ARISE sampling (which would be subgrid-
scale artifacts compared with the ASR grid). Organizing the
ARISE and ASR data in this way allows an optimized com-
parison and minimizes the possible sampling effects.

3 Mean cloud and thermodynamic properties from
ARISE and ASR

3.1 Probability density functions of cloud and
thermodynamic variables

An evaluation of ASR-simulated Arctic thermodynamic and
cloud properties is performed by comparing the probability
density functions (PDFs) of QC and thermodynamic vari-
ables. These variables are divided into discrete thermody-
namic regimes separated by 5 ◦C in T , 1 gkg−1 in QV, and
10 % in RH. Figure 3 shows PDFs of the ARISE and ASR
variables along the flight track. First, Fig. 3a indicates that
ASR simulates less QC than observed, manifesting as fewer
occurrences of high QC values. When restraining the ASR
data to the ARISE flight track (clear and cloudy regions),
ASR produces 21 % of the observed average total QC (0.007
versus 0.033 gkg−1). When expanded to the full Beaufort
Sea, ASR produces 0.018 gkg−1 (56 % of ARISE). ASR sig-
nificantly underrepresents QC in low Arctic clouds. This dis-
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Figure 2. (a–c) Scatterplots of observed cloud water and cloud liquid from the WCM-2000 instrument (y axis) versus that estimated from
the cloud droplet probe (x axis). QC-CDP is cloud water derived from the Cloud Droplet Probe, QC-WCM is total cloud water from WCM-
2000, QL1-WCM is cloud liquid from the 2.0 mm wire sensor, and QL2-WCM is cloud water from the 0.5 mm wire. The coloration indicates
the two-dimensional PDFs of the individual data points (normalized so the max value equals 1). The thick black line is the line of best fit,
and the thin black line is the “perfect match” line. Note that the axis values of the different panels can differ. Also listed are the regression
statistics: slope (a1), y intercept (a0), correlation (r), standard deviation (s), and bias (b). (d) Same as (a–c), but for QL1-WCM (x axis)
versus QL2-WCM (y axis). (e–h) Same as (a–d), except for data averaged on the ASR grid box scale.

agreement is substantially larger than can be explained with
measurement uncertainty, and it urges an explanation.

The thermodynamic regime PDFs offer clues as to why
ASR has less QC. Considering all conditions (clear and
cloudy) along the ARISE flight track, ASR is on average
1.40 K warmer with a lower QV (0.06 gkg−1) than observed,
resulting in a 4.3 % lower average RH. The reduced RH in-
hibits cloud formation and thus the generation of QC in ASR.
The warm and dry biases across the full Beaufort Sea domain
are even greater. Segal-Rozenhaimer et al. (2018) found sim-
ilar warm and dry biases in MERRA-2 relative to ARISE,
suggesting that the warm bias in the lower Arctic troposphere
may be a common feature of meteorological reanalysis.

Bear in mind that T , QV, and RH are not entirely indepen-
dent. Indeed, RH is a function of both T and QV, and max-
imum QV (approximately equilibrium QV) is limited by T .
So the three variables should not be interpreted as three sep-
arate metrics of the thermodynamic state. Rather, they repre-
sent three different related, but distinct, means of character-
izing the thermodynamic state.

Considering only cloudy grid boxes (defined as total QC >

0.02 gkg−1; Fig. 3e), the ASR average QC along the ARISE

flight tracks is 55 % of the observed value (0.06 versus
0.11 gkg−1, respectively). Because the cloud-only QC value
for ASR is twice that of the clear+ cloudy value, the lack
of QC in ASR stems from both less frequent cloudy grid
boxes and smaller in-cloud QC values. In-cloud flight track
ASR T is 3.10 K warmer and QV is 0.45 gkg−1 greater than
observed, with similar values for the whole Beaufort Sea.
The higher QV boosts RH, overcoming the drying effect of
warmer T , resulting in RH for ASR being 5.8 % greater.
Despite the higher QV, the QC PDF in cloudy grid boxes
(Fig. 3e) shows that ASR still produces large QC values less
frequently than observed. This suggests that the high QV is
not converted to QC by the parameterized cloud physics as
efficiently as observed, pointing to a key deficiency.

One additional feature of note in Fig. 3h is that ASR rarely
produces clouds in grid boxes with less than 90 % RH, while
ARISE data show clouds occurring (QC < 0.02 gkg−1) at
grid-box-averaged RH values as low as 40 %. ASR is coded
to cap grid box RH at 100 % and also to not produce clouds
below 80 % RH, which (mostly) prohibits the presence of
clouds in marginally humid conditions. Thus, ASR forms
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Figure 3. (a–d) PDFs of cloud and thermodynamic properties of the Arctic environment for ARISE (gray), the collocated values of ASR
along the ARISE flight path (red), and the ASR values across the entire Beaufort Sea domain (orange). In addition, the mean values are
indicated by the asterisks, with darker color shades corresponding to the data source (e.g., ARISE is black). Pane (a) shows the cloud water
(liquid+ ice) specific humidity (QC); (b) is temperature (T ), (c) is water vapor specific humidity (QV), and (d) is relative humidity (RH).
(e–h) Same as (a–d), but for cloudy pixels only (i.e., pixels with mean QC > 0.02 gkg−1).

clouds over a narrower range of atmospheric conditions
(specifically, RH values) than observed in situ.

3.2 Vertical cloud water and thermodynamic profiles

Figure 4 shows the vertical distribution of QC in ARISE
and ASR below 1000 m. Observed QC shows two primary
maxima at ∼ 400 m and at or above 1000 m; these max-
ima also align with QL profiles over the Arctic Ocean from
CALIPSO–CloudSat data (e.g., Taylor et al., 2015). Exam-
ining cloudy grid boxes, the QC maximum near 1000 m is
larger than that at ∼ 400 m. Both maxima are dominated by
the liquid phase.

ASR shows multiple deficiencies in the simulated QC ver-
tical profile compared with ARISE. These deficiencies are
more evident when comparing along the ARISE flight tracks
but are also found when considering the Beaufort Sea domain
(Fig. 4c and f). Most notably, ASR produces too little QC
above 500 m to the point that the higher-altitude maximum is
almost nonexistent. Within cloudy grid boxes, ASR repro-
duces the amplitude of the lower-altitude maximum up to
300 m. A major component of the disagreement likely stems
from a poor representation of the processes that generate the
upper cloud layer, including interactions with large-scale ad-
vection and the free troposphere (e.g., Shupe et al., 2013).
Additionally, ASR simulates very little QI during the cam-

paign, indicating that mixed-phase cloud microphysics are
not a factor driving the lack of QC in ASR. Moreover, Segal-
Rozenhaimer et al. (2018) also identified a lack of cloud
cover in MERRA-2 relative to ARISE data, which also corre-
sponds to warm–dry biases. However, they reported missing
clouds below 500 m, whereas we find missing clouds (in the
form of less QC) above 500 m.

The partitioning between QC and precipitation represents
a possible reason for the ASR–ARISE difference; ARISE ob-
servations do not partition between QC and precipitation,
whereas the ASR bulk cloud microphysics do. Thus, the
missing QC in ASR could result from an overactive precipi-
tation conversion. To investigate this, Fig. 4b, c, e, and f plot
the sum of QC and precipitation (dashed line) in addition to
QC. Precipitation water more than doubles the total conden-
sate above 500 m, and yet this does not bring the QC close to
the observed value. Thus, there is no evidence that an over-
active conversion parameter explains the lack of QC above
500 m.

Because of the close interplay of clouds and thermody-
namics, the errors in the ASR vertical cloud profile are likely
related to errors in the boundary layer thermodynamic struc-
ture. Figure 5 shows the T , QV, and RH vertical profiles for
ARISE and ASR. ASR has a greater T and lower RH than
ARISE, while QV is similar. This corresponds to the PDFs
shown in Fig. 3 and demonstrates that the warm bias in ASR
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Figure 4. (a) The vertical profile of cloud water (QC, black), cloud liquid (QL, blue), and cloud ice (QI, gray) for all ARISE data collected
from below 1000 m. (b) Same as (a), but for ASR along the ARISE flight tracks. In addition, the dashed black line has precipitation included
with the cloud water. (c) Same as (b), but for the full ASR dataset from the Beaufort Seas domain. (d–f) Same as (a–c), but for cloud-only
pixels.

Figure 5. Vertical profiles of (a) temperature (T ), (b) specific humidity (QV), and (c) relative humidity (RH) for ARISE (black) and ASR
(red) along the ARISE flight tracks. The whiskers represent the 95 % confidence interval using a two-tailed t test. In addition, the vertical
profiles from ASR for the full Beaufort Sea domain are shown with the dashed red lines.
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is the main contributor to the low RH. The warm and dry
ASR biases are also found across the Beaufort Sea domain
(not shown), demonstrating that the thermodynamic errors
are not statistical artifacts from the flight path sampling.

The warm and dry biases extend throughout the boundary
layer, with no obvious altitude dependence. This is different
than the disagreement reported by Segal-Rozenhaimer et al.
(2018), wherein the warm and dry biases in MERRA-2 are
mostly confined to below 500 m. There is likely a connec-
tion between the lack of cloud cover and the warm–dry bi-
ases in MERRA-2 below 500 m, whereas there is no obvious
direct connection between the lack of QC above 500 m and
the warm–dry bias extending evenly throughout the bound-
ary layer. Therefore, we speculate that the MERRA-2 and
ASR cloud vertical distributions differences with observa-
tions have different causes.

4 Comparison of cloud water versus thermodynamic
variables

4.1 Bivariate analysis

The T and RH biases in ASR represent one type of contribu-
tion to the low mean QC bias in ASR. However, the relation-
ships between QC and thermodynamic variables are another
important contributor. Figure 6 shows the observed and simu-
lated bivariate relationships between QC and T , QV, and RH.
ARISE data show increased QC at higher RH, as expected,
but also at low T and QV. The latter relationship is curious,
as higher QV provides more vapor for conversion into QC;
however, the small correlation (0.23) indicates a weak rela-
tionship. This is not a result of an unusual sensitivity of RH
to T and QV in the observations and ASR, as the sensitivi-
ties in ARISE and ASR are almost identical. Compared with
ARISE, ASR also shows QC increasing with RH (Fig. 6).
As the PDFs in Fig. 3 suggest, ASR produces very little QC
when RH is below 90 %. These results also hold when con-
sidering cloudy grid boxes (Fig. 7). ASR has difficulty pro-
ducing QC outside an unrealistically narrow range of meteo-
rological conditions, contributing to the low mean QC bias.
These simulated dependencies of QC on T and QV disagree
with observations influencing the low QC bias in ASR.

Unlike the ARISE results, ASR information is not limited
to the ARISE flight path. It is possible to look at the sim-
ulated QC–thermodynamic variable relationships consider-
ing all ASR grid boxes within the Beaufort Sea domain dur-
ing ARISE. This is useful for characterizing the simulated
cloud–thermodynamics relationships more completely such
that they are not affected by the limited flight track sampling.
To determine the extent to which the ASR results are affected
by the flight track sampling, Fig. 6g–i show the relationships
in ASR when considering the Beaufort Sea domain. Com-
pared to Fig. 6d–f, the full dataset shows a larger sensitivity
of QC to T and also a few cases in which cloudy grid boxes

occur with RH below 90 %. However, the unrealistic rela-
tionship between QC and QV persists.

4.2 Contributions of error types to ASR cloud water

Taken together, Figs. 3 and 6 qualitatively show that the
deficiency in ASR QC is related to errors in the sim-
ulated thermodynamic conditions and errors in the QC–
thermodynamics relationships. We quantify the contributions
of these error sources to the low QC bias by constructing a
synthetic QC dataset from the observed thermodynamic con-
ditions and ASR-derived relationships between QC and ther-
modynamics. We then calculate the change in QC that oc-
curs when the ASR thermodynamics and relationships are
assumed to be “reality”. Ideally ASR would produce 100 %
of the observed value; the closer a QC percentage is to
100 %, the greater the improvement to ASR the change pro-
duces. The synthetic QC dataset is constructed by substitut-
ing the ASR-derived relationship (from Fig. 6) for the ob-
served ARISE QC values (e.g., for every instance that ARISE
reported a T of approximately −10 ◦C, replace the observed
ARISE QC value with 0.01 gkg−1 from Fig. 6d). A mathe-
matically equivalent way of doing this calculation is to mul-
tiply the ARISE PDF of T (Fig. 3b, black bars) by the ASR
bivariate relationship of QC versus T (Fig. 6d, black curve).
Averaging this product gives a QC value of 0.008 gkg−1,
24 % of the observed ARISE mean QC value of 0.033 gkg−1.
This shows that much of the QC deficit in ASR is related to
ASR not producing enough QC when T is low. Similar re-
sults are found when considering different thermodynamic
regime sizes (e.g., T regime sizes are reduced from 5 to
2 ◦C).

To find the effect of the simulated ASR T values on the QC
deficit, the converse calculation is performed – multiplying
the ASR PDF of T (Fig. 3b, red bars) by the ARISE bivariate
relationship between QC and T (Fig. 6a, black curve). Aver-
aging this product yields a QC value of 0.014 gkg−1 (45 %).
The larger resulting percentage shows that the warm bias in
ASR produces as significant, while slightly smaller, a reduc-
tion in QC as the unrealistic QC–T relationship.

Performing the same calculations with QV tells a very dif-
ferent story. Substituting the ASR bivariate QC–QV relation-
ship results in a mean QC of 0.008 gkg−1 (24 %), a reduction
roughly equivalent to the total ASR QC deficiency. However,
using the ASR QV PDF and the observed QC–QV relation-
ship gives a mean QC of 0.033, a 3 % increase over the ob-
served QC value. For QV, the erroneous bivariate relation-
ship is the sole factor in the ASR QC deficiency. In other
words, plenty of QV is available in the ASR atmosphere to
produce the observed QC values; however, ASR fails to con-
vert enough vapor into QC.

Performing the same calculations for RH produces mean
QC values of 0.007 (23 % of the ARISE mean QC) and
0.025 gkg−1 (79 %) when subbing the ASR QC–RH rela-
tionship and the RH PDF, respectively. In this case, ASR
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Figure 6. (a–c) Scatterplots of cloud water (QC) versus (a) temperature (T ), (b) specific humidity (QV), and (c) relative humidity (RH) for
ARISE low-altitude observations. The coloration indicates the two-dimensional PDFs of the individual data points (normalized so the max
value equals 1). The heavy black line is the linear regression line of best fit. (d–f) Same as (a–c), but for ASR-simulated variables along the
ARISE flight path. (g–i) Same as (a–c), but for ASR-simulated variables over the full Beaufort Sea domain.

does not produce large RH values frequently enough and
does not produce enough QC when RH is sufficiently large;
however, the latter is primarily responsible for the small QC
in ASR. Note that this analysis treats the three thermody-
namic variables independently, whereas in reality they are
interdependent – particularly RH on both T and QV. This is
why the errors in simulated T and RH PDFs both have such
notable effects on the mean QC and why the mean QC biases
caused by the PDF biases and QC–thermodynamic relation-
ships do not cleanly sum up to 100 %.

Switching the ASR output from the flight-track-only to the
Beaufort Sea domain shows the effects of the sampling and
more complete understanding of which factors are respon-
sible for the larger mean QC value (0.018 gkg−1) for the

Beaufort Sea domain. The mean QC calculated when sub-
bing the ASR QC–T relationship and the T PDF are 0.022
(69 %) and 0.013 gkg−1 (41 %), respectively. The more real-
istic QC–T relationship seen in Fig. 6 g corresponds to the
much larger ASR QC in the full dataset, but the warm bias
still results in a severely low ASR QC. The mean QC when
subbing ASR QV and QC–QV relationship PDFs is 0.020
(62 %) and 0.025 gkg−1 (77 %). Thus, considering the QC–
QV relationship derived using the ASR output for the Beau-
fort Sea domain is not as strong of a factor for reducing QC
in the full ASR dataset compared with the flight track output.
The larger QC value for 2 gkg−1 QV in Fig. 6h versus 6e
seems to be the most important factor in the larger mean QC
in the full dataset.
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Figure 7. Same as Fig. 6, but for cloudy grid boxes.

Subbing RH has a very peculiar result: 0.013 (39 %) and
0.037 gkg−1 (116 %), which is strange considering that the
domain-averaged ASR is drier than the flight-track-averaged
data. How does a drier atmosphere lead to increased QC?
The answer lies in the RH PDF (Fig. 3h). Unlike ARISE and
flight track ASR, the full Beaufort Sea ASR PDF is bimodal.
The dry mode is responsible for the small mean ASR. The
wet mode peaks at 100 % RH, unlike the other two PDFs,
and at the value for which observed QC (Fig. 6c) maximizes.
The boost to QC given by the wet mode peak overcomes the
drying effect of the dry mode. Thus, the change in the PDF
shape of Beaufort Sea ASR RH from flight track PDFs leads
to increased QC.

4.3 Trivariate analysis using two-variable
thermodynamic regimes

The previous results warrant further trivariate analysis of the
QC–thermodynamic relationships using two thermodynamic
variables versus QC. Figure 8 shows that the observed QC is
largest in conditions with high RH and low T (Fig. 8a), high
RH and low QV (Fig. 8d), and low T and low QV (Fig. 8g).
Together, QC during ARISE is largest in low T , low QV, and
high RH conditions. This result clarifies the curious relation-
ship between smaller QV values and larger QC from Fig. 6b,
as QV is constrained by the Clausius–Clapeyron relationship
and must be small at low T , which is apparent in Fig. 8g.
Moreover, ARISE data indicate a strong sensitivity of QC to
T , a relationship that is much weaker in ASR.

The dependence of QC on the thermodynamic regimes in
ASR along the flight track hardly resembles the observations
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Figure 8. (a–c) Mean cloud water specific humidity (QC) for meteorological regimes characterized by temperature (T ) and relative humidity
(RH). Panel (a) shows ARISE-observed QC averaged by ARISE-observed RH and T ; (b) is collocated ASR QC averaged by collocated ASR
RH and T , and (c) shows the ASR results for all pixels in the ARISE operational area at all times during the 8 d of the ARISE flights (i.e.,
the population results). Note that gray boxes denote regimes which were not sampled by ARISE (a) or simulated by ASR (b, c). (d–f) Same
as (a–d), but for regimes characterized by water vapor specific and relative humidities. (g–i) Same as (a–d), but for regimes characterized by
temperature and specific humidity.

(Fig. 8b, e, and h). The lack of total QC in ASR is indi-
cated as no values above 64 mgkg−1 appear in Fig. 8b. The
largest disagreement between ARISE and ASR involves the
observed relationship of large QC values at low T and low
QV. Some of the disagreement stems from ASR not capturing
all of the observed meteorological regimes. Particularly, the
lowest T values did not occur in ASR along the flight path,
illustrated by the gray boxes in Fig. 8h around −15 ◦C. The
dependence of QC in ASR shows that slightly larger QC val-
ues occur at lower T and large QV (Fig. 8h), a much weaker
dependence than observed (Fig. 8g vs. h). Moreover, Fig. 8e
indicates no preference for ASR to simulate large QC values
at lower QV.

The narrower range of conditions sampled along the flight
track within ASR again motivated an examination of the ther-
modynamic regimes within the larger Beaufort Sea domain.
The comparison between the flight-track-only and Beaufort
Sea domain results raises questions about the representative-
ness of the relationships found when using the flight-track-
only output. Figure 8c, f, and i show the QC–thermodynamic
regimes determined for the Beaufort Sea domain. Compar-
ing these results with panels Fig. 8b, e, and h reveals the
larger range of thermodynamic conditions sampled (i.e., the
non-gray regions are larger), enabling an assessment of ASR-
simulated QC over a wider range of thermodynamic regimes.
Figure 8i indicates that high QC values in regimes of low T –
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low QV manifest within the Beaufort Sea domain. Thus, at
least some of the “missing” QC results from the flight track
not intersecting the low T –low QV regime produced nearby.

The simulated dependence of QC on thermodynamic
regimes also contributes to the differences in the mean QC
with ARISE. Specifically, ASR concentrates the largest QC
values at the lowest ranges of T and QV, showing a faster de-
crease in QC than ARISE as T and QV increase (about 40 %
faster at T of −10 ◦C and QV of 1 gkg−1). ASR only pro-
duces large QC under the extreme thermodynamic ranges.
Thus, the inability of ASR to simulate larger QC under typ-
ical thermodynamic conditions contributes to the disagree-
ments with ARISE.

Another noteworthy result is that the ASR Beaufort Sea
domain analysis suggests a secondary regime of high T –high
QV with large QC values. This high QC regime is not found
in ARISE data. This result raises important questions about
the realistic nature of this thermodynamic regime. Further ex-
ploration of this is beyond the scope of the present analysis.

4.4 Effect of joint reanalysis error types on simulated
cloud water

The analysis discussed in Sect. 4.2 is applied to quantify and
compare the dependence of the ASR QC bias based upon the
thermodynamic regime joint PDFs. Subbing the flight track
ASR QC–thermodynamic regime relationships (Figs. 8b, e,
and h) yields mean QC values of 0.007 gkg−1 (23 % of the
ARISE mean QC) for RH and T , 0.006 gkg−1 (19 %) for RH
and QV, and 0.008 gkg−1 (25 %) for T and QV. Subbing the
ASR thermodynamic regime frequency of occurrence (not
shown) results in mean QC values of 0.013 (39 %), 0.016
(50 %), and 0.015 g kg−1 (45 %). Thus, both the ASR QC–
thermodynamic regime relationships and the differences in
thermodynamic regime frequency contribute substantially to
the low QC bias in ASR, though the former has the greater
influence.

Subbing the full ASR dataset instead produces mod-
est increases in mean QC. When substituting the QC–
thermodynamic regime relationships, only the T –QV regime
shows a significant increase in mean QC of 0.017 gkg−1

(52 %). This is connected to the improved representation of
the observed large QC values with low T and QV. However,
this is not sufficient to overcome the ASR’s aversion to pro-
ducing clouds in lower RH conditions. When subbing the
ASR regime frequency of occurrence, RH and QV show the
largest increase in mean QC of 0.017 gkg−1 (52 %). The bi-
ases in thermodynamics lead to major underestimates of QC
even when the full ASR dataset is used – adding more data
does not resolve the deeply rooted errors in T and RH. Of
the three variable pairings, given the imperfect separation be-
tween these semi-dependent variables, improvement in mean
QC comes primarily from the more realistic representation of
the QC, with the T and QV relationship and the QC boosting
effect of the RH PDF shape (Sect. 4.2).

5 Effect of sampling frequency on results

The previous section shows that a direct comparison of
ARISE and ASR data along the ARISE flight path finds
that the relationships between cloud variables and ther-
modynamic regimes are substantially different. However,
when considering QC–thermodynamic regime relationships
in ASR for the entire Beaufort Sea domain and time period,
the relationships are established over a wider range of condi-
tions and better resemble the ARISE data. This implies that
a possible source of uncertainty originates from the limited
sampling of meteorological conditions along the flight path.
At first glance this may be a nonintuitive result – should
the along-track ASR results not agree more closely with
ARISE than the domain-averaged results? But consider that
the ASR–ARISE discrepancies in mean QC are partially un-
derstood by differences in the QC–thermodynamic relation-
ships and the differences between the sampled vs. simulated
thermodynamic regimes; however, there is still the question
as to the magnitude of the sampling uncertainty in the mean
QC. While it is not possible from ARISE data to quantify the
sampling uncertainty, it can be estimated using ASR output.
In addition to quantifying sampling uncertainty, the knowl-
edge gained has utility for the design of future aircraft cam-
paigns for which observation–model comparison is a major
goal.

5.1 Experiment setup

This experiment tests the effect of sampling on the ASR QC–
thermodynamic regime relationship results by simulating al-
ternate ARISE aircraft flight paths and times within the op-
eration domain. ARISE flight paths were constrained by the
overpass times of CERES-bearing satellites and not driven
by meteorological conditions. This experiment uses a ran-
dom sampling approach to simulate alternate ARISE aircraft
flight paths, assuming no targeting of any particular meteo-
rological conditions to quantify how the ASR–ARISE com-
parisons are affected by different flight configurations. The
experiment proceeds as follows.

1. The eight flight paths during the low-level portions of
the flights are randomly assigned days from the 8 d that
ARISE flew and random start times during the day.

2. Each randomized flight has a random starting point
within the ARISE domain and a random rotation from
the original flight path orientation. Flight paths must
stay within the domain at all times, and those that leave
are re-randomized.

3. ASR-simulated cloud and thermodynamic data are
collected and processed into the QC–thermodynamic
regime format, as seen in Fig. 8, and stored.

Steps 1–3 are repeated, with each iteration of eight flights
considered a “trial” campaign. After 50 000 trials are com-
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pleted, the results are used to tabulate indices that represent
sampling uncertainty for each meteorological regime.

5.2 Results

Figure 9 displays three indices summarizing the sampling ex-
periment results. Figure 9a, e, and i show the likelihood for
a single experiment of eight flights that each meteorological
regime is encountered at least once. The highest likelihood
lies near the center of the data range, as expected, though RH
(QV) chances are slightly shifted towards higher (lower) val-
ues. For meteorological regimes with large QC values, those
with average T and lower QV are most likely to be sam-
pled. Sampling of the low T –low QV and high T –high QV
regimes shows a likelihood of 10 % or less. As these regimes
have the highest QC values in the full dataset, this indicates
that the ASR domain-averaged QC value is lower because
the simulated aircraft has the lowest probably of intercepting
the extreme ranges of the thermodynamic regimes wherein
the largest QC values occur (assuming the high T –high QV
regime is realistic).

Figure 9b, f, and j show the number of samples collected
in each meteorological regime on average across the exper-
iments. The number of samples is important for calculating
reliable statistics for the QC values in each thermodynamic
regime. The results follow a similar pattern as the sampled
likelihood results, and the regimes with the largest QC have
few if any samples. Low T –low QV conditions are rare in
ASR and occur for less than 0.1 % of all samples. This par-
tially explains why the large QC values for low T –low QV
are not apparent along the flight track (Fig. 8h) even in the
regimes that have data for both ASR and ARISE.

Figure 9c, g, and k display the mean absolute error (MAE)
of the QC for each thermodynamic regime. The MAE is cal-
culated as the average absolute value of the difference be-
tween each trial QC and the population QC (Fig. 9d, h, and
l). This metric quantifies how close to the population value
a single trial’s value can be expected to be for each thermo-
dynamic regime that is sampled in the trial – while the mean
error would approach zero because of positive and negative
differences, the MAE does not and is similar to standard de-
viation. The magnitude of MAE scales closely with the popu-
lation mean QC value. In thermodynamic regimes with high
QC values, MAE is typically about half of the population
mean, meaning that errors of ∼ 50 % can be expected for
a trial experiment. However, this is not universal, particu-
larly for the T and QV results for which, for example, the
MAE at −10 ◦C and 1 gkg−1 (Fig. 9k) is 184 % of the popu-
lation mean (8.9 versus 4.8 mgkg−1). Recall that this regime
shows major disagreement between ARISE and ASR along
the flight path (Fig. 8g and h) under low T –low QV con-
ditions. The large experimental MAE result suggests that a
single trial is likely to miss the large QC value in this regime
even if it is sampled. In other words, these conditions can be
associated with both cloudy and clear-sky conditions in the

ASR realizations. A similar issue is encountered in the high
T –high QV regime.

The standard deviations of the total QC across the exper-
iments are shown in Fig. 9d, h, and l. The results resemble
MAE, with the notable exception of high T –high QV condi-
tions. Because standard deviation tends to be more sensitive
to outliers than MAE, this result indicates that most random
samplings of these conditions have an error smaller than the
population mean value, with a small chance that a big outlier
might be sampled instead. In other words, it is possible but
unlikely to sample clear-sky conditions in the high T –high
QV regime on the flight track and, if this is the only sample,
conclude that no clouds occur under these conditions.

5.3 Implication of the sampling results

The random sampling approach is a powerful tool helping
to assess how representative a single field campaign may
be in characterizing the cloud conditions within in each
regime. The large MAE and standard deviations in some ther-
modynamic regimes suggest that the relationships derived
from flight-track-only information contain significant sam-
pling uncertainty.

Based upon the ASR Beaufort Sea domain analysis, it
seems serendipitous that the ARISE flights flew though re-
gions of low T –low QV and captured the large QC values
under these conditions. On the other hand, this serendipitous
occurrence could have resulted from the cloud-seeking pri-
ority of the ARISE aircraft. Conversely, it could have been
bad luck that ARISE missed high T –high QV cloudy con-
ditions. Are the ARISE results a possible realization of the
full ASR dataset? Figure 10 provides a method of assessing
the representativeness of ARISE from the full ASR dataset.
The majority of thermodynamic regimes with large QC val-
ues in both ARISE and ASR show that the ARISE values
are within the sampling uncertainty estimated from the ran-
dom sampling test. For the most part the ARISE data are a
possible realization of the ASR dataset. Only ARISE–ASR
QC differences at RH < 80 % differ by more than 2 standard
deviations.

These results also reveal a more general aspect of design-
ing methodologies for comparisons between aircraft data and
models (or reanalyses). When given a choice between pre-
cisely collocating the aircraft data with the model or includ-
ing more simulated data points in the comparison, it appears
that including more data points leads to a fairer and more
robust comparison. The reason why the larger sample size is
favorable is that (1) it provides a larger dynamic range of data
points, particularly extreme conditions which may be missed
by precisely collocating to the aircraft flight track, and (2) it
reduces the noise in the quantification of the model behavior
and cloud versus thermodynamics relationships.

More comprehensive evaluations using random sampling
applied to satellite data may aid in future design of air-
craft campaigns to minimize chances of missing meteoro-
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Figure 9. (a–d) Results of the random sampling experiment, which are divided by each thermodynamic regime specified by relative humidity
and temperature. Panel (a) shows the chance of a regime being sampled during a single trial set of eight flights; (b) is the typical number
of samples collected from each regime during a single trial, (c) is the mean absolute error of all trial QC values relative to the population
QC values, and (d) shows the standard deviation of the QC values for all trials. (e–h) Same as (a–d), but for regimes characterized by water
vapor specific and relative humidities. (i–l) Same as (a–d), but for regimes characterized by temperature and specific humidity.

logically interesting conditions. Ideally, this could be accom-
plished by having the aircraft target conditions that should
produce clouds according to the models rather than just seek-
ing where there are clouds. However, as this may be chal-
lenging to forecast, other strategies such as increasing the
number and/or duration of flights is a useful substitute.

6 Summary and conclusions

We have examined the ability of ASR to replicate the ob-
served cloud water, thermodynamic conditions, and the re-
lationships between them with respect to the ARISE aircraft
field campaign observations during September 2014. This in-

cludes quantifying the sensitivity of cloud water to the ther-
modynamic regimes using methods frequently employed in
studies of satellite data. Further, a Monte Carlo-style random
sampling of the ASR output was employed to understand the
influence of limited aircraft sampling on the results.

The results address the following questions.

– How does cloud water in ARISE and ASR compare?
Compared with ARISE observations, ASR produces
too little cloud water, about 25 %–50 % of the ob-
served value. This is a much larger disagreement than
can be explained with measurement uncertainty alone.
Notably, ASR produces almost no cloud water above
500 m, whereas ARISE depicts cloud occurrence ex-
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Figure 10. The closeness of the observed ARISE QC per thermodynamic regime to the simulated QC from the full ASR dataset. The metric
is units of standard deviation; the standard deviations are taken from the random sampling results (Fig. 8d, h, and l). Yellow indicates regimes
with a QC within 1 standard deviation; orange is 2, and blue is greater than 2. Gray indicates regimes lacking data from ARISE and/or ASR.
Panel (a) shows regimes of temperature and relative humidity, (b) of relative humidity and specific humidity, and (c) of temperature and
specific humidity.

tending above 1000 m. However, when clouds below
500 m are simulated in ASR, it produces realistic val-
ues of cloud water. Both observed and simulated clouds
are dominated by the liquid phase. The lack of observed
cloud ice indicates that the ARISE–ASR differences in
cloud water do not result from the parameterization of
mixed-phase cloud microphysics. Also, ASR produces
little precipitation water, ruling out an overactive cloud
water-to-precipitation conversion scheme.

– Can discrepancies between ARISE and ASR be ex-
plained by grid-scale disagreements in meteorologi-
cal conditions and/or errors in the simulated cloud–
thermodynamic relationships? A number of factors con-
tribute to the low cloud water bias in ASR. With re-
gard to the average meteorological conditions, ASR
is 1.4 ◦C warmer and 0.06 gkg−1 drier than ARISE,
leading to a ∼ 4 % lower relative humidity. The warm
temperature bias occurs throughout the boundary layer
and is the larger contributor to the lower relative hu-
midity in ASR. In addition, ASR produces clouds
across a narrower range of relative humidity values
near 100 %, while ARISE detected clouds in regions
where the spatially averaged relative humidity was be-
low 50 %. This further constricts the opportunity that
ASR has to form clouds. Our results also show that
the ARISE–ASR differences are attributed primarily to
differences in the cloud–thermodynamic regime rela-
tionships and secondarily (but still importantly) to the
warmer and drier simulated thermodynamic regimes.
The relative importance of the primary and secondary
factors are roughly 2/3 to 1/3. Thus, considering a cir-
cumstance under which ARISE and ASR have the same
thermodynamic conditions, ASR mean total cloud wa-
ter is ∼ 40 % lower than the ARISE-observed value.

Considering thermodynamic regimes of temperature,
specific humidity, and relative humidity depicts that
ARISE observations show large cloud water values in
meteorological regimes of low temperature, low spe-
cific humidity, and high relative humidity. ASR, in op-
position, shows little relationship between cloud water
and temperature, with specific humidity being the only
(weak) control. This result is found in both the flight
track and Beaufort Sea domain results.

– How are ARISE–ASR comparisons affected by the cov-
erage of ARISE flights? Disagreement in the thermo-
dynamic regime–cloud water relationships occurs be-
tween the flight track and Beaufort Sea domain anal-
yses, indicating an influence of sampling on the model–
observation comparisons. On one hand, the Beaufort
Sea domain analysis shows that ASR simulates the high
cloud water amounts within the low temperature–low
specific humidity regime. This is not evident in the ASR
flight track results because the flight path did not in-
tercept this regime, contributing to the low ASR cloud
water. Including this low temperature–low specific hu-
midity regime in the full dataset roughly doubles the
mean simulated cloud water to about half of the ob-
served value. On the other hand, the effect of the warm
and dry (relative humidity) biases on simulated cloud
water is just as severe in the full ASR dataset as in the
flight-track-only data. Thus, an important lesson from
this analysis is that when comparing in situ airborne
data with model output one should not restrict the com-
parison to flight-track-only model output, as expanding
the domain isolates omnipresent thermodynamic biases
in the reanalysis.

In addition, the full ASR dataset shows a second cloud wa-
ter maximum within an unobserved high temperature–high
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specific humidity thermodynamic regime. It is not clear from
the ARISE data if the aircraft simply missed sampling this
regime or if the regime exists.

The effect of limited sampling of ASR along the ARISE
flight path is estimated with a Monte Carlo random sampling
analysis of the full ASR dataset within the Beaufort Sea do-
main. The results demonstrate that thermodynamic regimes
with large cloud water are rare and unlikely to be sampled by
chance alone for the number and length of ARISE flights. In
several of the regimes, sampling uncertainty obscures the re-
lationships between cloud water and thermodynamic regimes
such that it could not be determined that the ARISE–ASR
differences (even large ones) were not caused by sampling
uncertainty. From this it appears that including a greater
number of data points from ASR provides a more useful and
robust comparison with the ARISE data than precisely collo-
cating ASR data with the ARISE flight track.

While the ARISE campaign was designed primarily to in-
vestigate radiative fluxes in conjunction with satellite over-
passes, the random sampling results can also inform the
design of future aircraft campaigns intended to test cloud
and thermodynamic properties in reanalysis and other atmo-
spheric models. A possible solution to the sampling issues
discussed here is to direct aircraft not just to regions where
clouds are observed, but also to regions of thermodynamic
conditions in which models predict that clouds should be
and methodically sample them to build up a sufficient sample
size to reduce statistical noise. Moreover, an increased num-
ber of flights with a systematic sampling strategy would help
reduce sampling uncertainty by raising the chances of suffi-
ciently sampling the thermodynamic regimes of interest and
better capture the variability of cloud conditions occurring in
these regimes. This approach will better support one of the
key benefits of aircraft campaigns, to sample meteorological
properties that satellites cannot, in a more statistically sound
manner.
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