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Table S1: SOA data compiled from published chamber studies for photooxidation and ozonolysis of a-pinene and limonene.

T [Os]lo  NOx [HClo AHC  SOAmass SOA
Condition (K) (ppb)  (ppb) (ppb) (Mgm3)  (ugm?)  yield Reference
a-Pinene photooxidation 312-306 230 150 804.6 44.0 0.06 Kim and Paulson (2013)
a-Pinene photooxidation ~ 310-312-306 110 152 788.8 103.0 0.14 Kim and Paulson (2013)
a-Pinene photooxidation 306-309 50 142 743.9 107.0 0.16  Kim and Paulson (2013)
a-Pinene photooxidation ~ 312-319-315 47 153 683.0 118.0 0.17 Kim and Paulson (2013)
a-Pinene photooxidation 300 51 260.0 46.0 0.18 Mcvay et al. (2016)
a-Pinene photooxidation 300 56 280.0 65.0 0.23 Mcvay et al. (2016)
a-Pinene photooxidation 300 53 240.0 52.0 0.22 Mcvay et al. (2016)
a-Pinene photooxidation 298 51 268.0 72.0 0.27 Mcvay et al. (2016)
a-Pinene photooxidation 297 53 205.0 35.0 0.17 Mcvay et al. (2016)
a-Pinene photooxidation 297 49 195.0 47.0 0.24 Mcvay et al. (2016)
a-Pinene photooxidation 293 616.6 199.0 0.32 Leeetal. (2006b)
a-Pinene photooxidation 298 0 76.8 29.3 0.38 Ngetal. (2007)
a-Pinene photooxidation 298 1 264.2 121.3 0.46 Ngetal. (2007)
a-Pinene photooxidation 296 198 73.4 15.6 0.21 Ngetal. (2007)
a-Pinene photooxidation 299 938 69.8 4.5 0.06 Ngetal. (2007)
a-Pinene photooxidation 298 968 259.2 40.8 0.16 Ngetal. (2007)
a-Pinene photooxidation 0 259.9 63.9 0.25 Chhabraetal. (2011)
a-Pinene photooxidation 400 265.6 53.7 0.20 Chhabraetal. (2011)
Limonene photooxidation 310-305 300 208 1110.4 96-287 0.35 Kimand Paulson (2013)
Limonene photooxidation 309-313 98 140 735.5 34-195 0.35 Kimand Paulson (2013)
Limonene photooxidation 297-299 120 157 801.0 32-214 0.37 Kim and Paulson (2013)
Limonene photooxidation 311-315 41 130 680.0 11-219 0.43 Kim and Paulson (2013)
Limonene photooxidation  308-312-307 39 130 690.6 14-275 0.47 Kim and Paulson (2013)
Limonene photooxidation 313.4 105 109.0 9.5 0.09 Griffinetal. (1999)
Limonene photooxidation 313.4 80.2 186.2 49.6 0.27 Griffinetal. (1999)
Limonene photooxidation 309.4 139 265.2 79.1 0.30 Griffinetal. (1999)
Limonene photooxidation 309.4 140 348.8 120.2 0.34 Griffinetal. (1999)
Limonene photooxidation 294 676.5 394.0 0.58 Lee etal. (2006b)
a-Pinene ozonolysis 299-300 500 143 592.2 28-230 0.46 Kim and Paulson (2013)
a-Pinene ozonolysis 296-299 500 150 724.3 39-271 0.44 Kim and Paulson (2013)
a-Pinene ozonolysis 296-301 500 170 866.2 37-271 0.40 Kim and Paulson (2013)
a-Pinene ozonolysis 296-295 500 160 897.5 71-349 0.45 Kim and Paulson (2013)
a-Pinene ozonolysis 291-293 500 126 669.8 34-215 0.39 Kimand Paulson (2013)
a-Pinene ozonolysis 200 49.5 282.0 42.3 0.15 Kourtchev et al. (2014)
a-Pinene ozonolysis 200 50.5 312.5 50.0 0.16  Kourtchev et al. (2014)



a-Pinene ozonolysis 200 55.2 349.4 55.9 0.16 Kourtchev et al. (2014)
a-Pinene ozonolysis 298 100 290.2+232 2781 62.0+£1.2 0.23 Nahetal. (2016)
a-Pinene ozonolysis 298 100 280.5+224  267.0 63.0+0.8 0.23 Nahetal. (2016)
a-Pinene ozonolysis 298 100 238.7+£19.1 2225 50.6+1.6 0.23 Nahetal. (2016)
a-Pinene ozonolysis 298 500 274 £21.9 278.1 87.3+0.3 0.32 Nahetal. (2016)
a-Pinene ozonolysis 298 500 264 £21.2 261.4 75.7+£0.6 0.29 Nahetal. (2016)
a-Pinene ozonolysis 298 500 236.1+189  239.2 66.3+£1.9 0.28 Nahetal. (2016)
a-Pinene ozonolysis 309.9 89.3 7.4 0.08 Griffin et al. (1999)
a-Pinene ozonolysis 309.9 97.3 8.5 0.09 Griffin et al. (1999)
a-Pinene ozonolysis 303.3 169.4 30.3 0.18 Griffin et al. (1999)
a-Pinene ozonolysis 303.3 248.7 46.0 0.18 Griffin et al. (1999)
a-Pinene ozonolysis 308 306.7 52.3 0.17  Griffin et al. (1999)
a-Pinene ozonolysis 308 349.8 65.1 0.19 Griffin et al. (1999)
a-Pinene ozonolysis 308 237 59.2 306.7 54.2 0.18 Yuetal. (1999)
a-Pinene ozonolysis 308 269 67.2 350.3 65.1 0.19 Yuetal. (1999)
a-Pinene ozonolysis 306 74 107.1 244.3 38.8 0.16 Yuetal. (1999)
a-Pinene ozonolysis 293 1052.2 417.0 0.41 Leeetal. (2006a)
a-Pinene ozonolysis 298.15+12 300 126.8 35.6 0.28 Chenetal. (2011)
a-Pinene ozonolysis 298.15+13 300 11.7 1.2 0.10 Chenetal. (2011)
a-Pinene ozonolysis 298.15+14 300 15.6 1.9 0.12 Chenetal. (2011)
a-Pinene ozonolysis 298.15+15 300 78.9 15.4 0.20 Chenetal. (2011)
a-Pinene ozonolysis 298.15+16 300 506.5 95.2 0.19 Chenetal. (2011)
a-Pinene ozonolysis 298.15+17 300 506.5 138.0 0.27 Chenetal. (2011)
a-Pinene ozonolysis 298.15+18 300 36.7 7.0 0.19 Chenetal. (2011)
a-Pinene ozonolysis 298.15+19 300 5.0 0.5 0.10 Chenetal. (2011)
a-Pinene ozonolysis 0 278.1 62.0 0.22 Chhabraetal. (2011)
Limonene ozonolysis 298-300 500 167 925.8 579.0 0.78 Kim and Paulson (2013)
Limonene ozonolysis 293-295 500 198 1116.3 614.0 0.72 Kim and Paulson (2013)
Limonene ozonolysis 294-296 500 150 842.8 454.0 0.72 Kim and Paulson (2013)
Limonene ozonolysis 295-296 69.7 33.7 154 257.0 135.7 0.49 Chenetal. (2017)
Limonene ozonolysis 295-296 71 35.2 150 269.0 137.2 0.51 Chenetal. (2017)
Limonene ozonolysis 295-297 72.1 58.9 158 220.0 156.5 0.73 Chenetal. (2017)
Limonene ozonolysis 296-297 70.3 624 153 228.0 157.3 0.72 Chenetal. (2017)
Limonene ozonolysis 296-297 1.1 67.1 155 144.0 30.3 0.27 Chenetal. (2017)
Limonene ozonolysis 295-296 0.9 68.2 159 138.0 31.8 0.30 Chenetal. (2017)




Table S2: Normalized emission factor (EF) for model surrogates representing top five monoterpenes (by EF) from black
spruce, Douglas fir, and lodgepole pine (Hatch et al., 2015, 2017). In Assignment 1, a-pinene is used to represent all
monoterpenes except limonene. In Assignment 2, camphene is represented as 50 % a-pinene and 50 % limonene. EFs of
assignments 1 and 2 for lodgepole pine are the same, because camphene is not one of the top five monoterpenes by EF.

Black Spruce Douglas Fir Lodgepole Pine
EFwin  EFim  EFwin  EFim  EFupin EFiim
Assignmentl  0.81  0.19 0.8 0.2 0.86 0.14
Assignment2  0.62  0.38 0.6 0.4 0.86 0.14

Table S3: Two-product SOA yield parameters for a-pinene and limonene based on Griffin et al. (1999).

2-product
o1 a2 C* C*,
a-pinene 0.038 0.326 5.8 250.0
limonene 0.239 0.363 18.2 188.7

Table S4: Volatility basis set (VBS) parameters (low NOx, dry) based on Pathak et al. (2007b) (for a-pinene) and Zhang et
al. (2006) (for limonene).

VBS (low NOy)

C* 0 1 10 100 1000
a-pinene - 0.07 0.038 0.179 0.3
limonene 0.03 0.29 0.31 0.3 0.6
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Figure S1: Initial oxidation pathways of a-pinene with Oz as represented in GECKO-A (inorganic products are not shown).
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Figure S2: Initial oxidation pathways of limonene with Os as represented in GECKO-A (inorganic products are not shown).
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Figure S4: Initial oxidation pathways of a-pinene with NOs as represented in GECKO-A (inorganic products are not
shown).
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Figure S7: Percentage of precursor consumed by OH (black), Os (red), and NOs (blue) as a function of fraction of precursor

reacted for a-pinene and limonene under photooxidation and ozonolysis (for lower initial precursor mixing ratio of 50 ppb).

Figure S7 shows the percentage of the simulated precursor consumed by the three main oxidants: hydroxyl radical (OH), ozone
(0s), and nitrate radical (NOs). Under photooxidation, both a-pinene and limonene initially react predominantly with OH. As the
reaction progresses (after ~ 30 % of the precursor is reacted), removal of the precursor by Os; and NOs begins to grow until the
precursor is completely reacted. The results in Fig. S7a indicate that ~67 % of a-pinene is removed by OH, 25 % by Os, and ~8 %
by NOs; similarly, as shown in Fig. S7c 85% of limonene is removed by OH, 12% by Oz and 3 % by NO; during photooxidation.
For a-pinene ozonolysis, the consumption is largely by Os (~75 %) and OH (~20 %), to a lesser extent by NO3 (~5 %); for limonene,
consumption is dominated by O3 (~85 %), followed by OH (~10 %), and NOs (~5 %). Unlike in many chamber experiments, there
is no OH scrubber in the simulations. Also, as NOs is formed by reaction of Os; with NO, during the dark ozonolysis simulation, a

small percentage of the precursor reacts with NOs since no light is available to photolyze the NOs.
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Figure S9: Number of functional groups associated with gas- and particle-phase species as a function of carbon number.
Results are shown for camphene, a-pinene, and limonene after 12 hours of oxidation under photooxidation (P) and dark
ozonolysis (DO) with lower hydrocarbon (LHC) mixing ratio of 50 ppb. The markers are sized by the ratio of their mixing
ratio (in ppbC) to the initial mixing ratio of the precursor (in ppbC). The colors of the markers are scaled by volatility

(represented by saturation concentration, C*).
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Figure S10: Top 10 gas-phase products from limonene photooxidation at the end of the low hydrocarbon (P_LHC)

simulation.
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Figure S11: Top 10 particle-phase products from limonene photooxidation at the end of the low hydrocarbon (P_LHC)

simulation.
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Figure S12: Top 10 gas-phase products from limonene dark ozonolysis at the end of the low hydrocarbon (DO_LHC)

simulation.
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Figure S13: Top 10 particle-phase products from limonene dark ozonolysis at the end of the low hydrocarbon (DO_LHC)

simulation.
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Figure S16: Concentration of top 10 gas- and particle-phase products as a function of time for a-pinene and limonene

during photooxidation with low hydrocarbon mixing ratio (50 ppb).
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Figure S17: Concentration of top 10 gas- and particle-phase products as a function of time for a-pinene and limonene

during dark ozonolysis with low hydrocarbon mixing ratio (50 ppb).
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Figure S18: Simulated SOA yield as a function of time (a and b) and carbon budget (¢ to f) for a-pinene and limonene
during photooxidation (a, ¢, ) and dark ozonolysis (b, d, f). The SOA yield curve for a-pinene is represented by a blue line;
limonene is represented by a red line. For the carbon budget plots, the mixing ratios of the precursor (black line), particle-
phase organics (magenta line), gas-phase organics (green line), and CO+CO: (blue line) are expressed as carbon atom ratios
(in ppbC)/initial precursor (in ppbC). The results shown are for the high hydrocarbon mixing ratio (150 ppb) simulations.
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Figure S19: Percentage of precursor consumed by OH (black), Oz (red), and NOs (blue) as a function of fraction of
precursor reacted for a-pinene and limonene under photooxidation and ozonolysis (for higher initial precursor

concentration of 150 ppb).
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Figure S20: Mixing ratios of HO2, OH, Os, NO, NOz, and NOs as function of time for limonene (red line), camphene (black
line), and a-pinene (blue line) during the photooxidation and ozonolysis (with higher initial hydrocarbon mixing ratio of
150 ppb).
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Figure S21: Number of functional groups associated with gas- and particle-phase species as a function of carbon number.
Results are shown for camphene, a-pinene, and limonene after 12 hours of oxidation under photooxidation (P) and dark
ozonolysis (DO) with higher hydrocarbon (LHC) mixing ratio of 150 ppb. The markers are sized by the ratio of their mixing
ratio (in ppbC) to the initial mixing ratio of the precursor (in ppbC). The colors of the markers are scaled by volatility

(represented by saturation concentration, C*).
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Figure S22: Top 10 gas-phase products from a-pinene photooxidation at the end of the high hydrocarbon (P_HHC)
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0~ -
0—OH 0 0
ne JO—oH HiC Nt +
3 0— 0 CH, /Nfo N=0
CH, CHj 0 0—a 0—0
¥
o H3C O—N\ 0 0
0] 0] HO CH,
Wa N Y
H4C 0 N—0 0 OH
—n* o CH
O—N 3
H,C
o CH, HO
4-hydroperoxy-3-(hydroxymethyl)-4-

6-hydroxy-6-methyl-5-[2-(nitroperoxy)-

2-oxoethyl]-2-oxoheptan-3-yl nitrate methyl-1-(nitroperoxy)pentan-1-one

2-methyl-6-ox0-3-(2-oxoethyl)

6-hydroperoxy-6-methyl-3-oxo-5-
(2-oxoethyl)heptan-2-yl nitrate heptane-2,5-diyl dinitrate
Molecular Formula: C | H NO, Molecular Formula: C, H NO. Molecular Formula: C, H N0,

5-(2-hydroperoxypropan-2-yl)-2-
Molecular Formula: C 1‘]-[BNOS,‘

methyl-3-ox ocyclohexyl nitrate
Molecular Formula: C | H N.O

o]
- - ~ =
0] 0] o o N+ 0
N R / o
N=0 N=0 N=0 CH 0o f'
s 3 oH
0-0 0-0 0. CHy 0—0 0= CHy
0= Yo 0 CH,
CH,
0 HO
OH
CHq OH H.C
H,C H.C oo ?
3 5 N
o CH, o=N,
HO 0
3-(2-hydroxypropan-2-yl)-5.6- 4-hydroperoxy-4-methyl-3-[2-(nitro 1-[2.2-dimethyl-3-(nitrooxy)eyclo
butyl]-3-oxobutan-2-yl nitrate

3-(2-hydroperoxypropan-2-yl)-1,5-  5-hydroxy-3-(2-hydroxypropan-2-yl)-
peroxy)-2-oxoethyl [pentanal

bis(nitroperoxy)pentane-1.5-dione 1-(nitroperoxy)heptane-1.6-dione
N0, Molecular Formula: C 1oH N0

dioxoheptanocic acid
Molecular Formula: C| H, O,

Molecular Formula: C H NO, Molecular Formula: C HNO,

Molecular Formula: C H,

Figure S23: Top 10 particle-phase products from a-pinene photooxidation at the end of the high hydrocarbon (P_HHC)
simulations.
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simulations.
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Figure S25: Top 10 particle-phase products from a-pinene dark ozonolysis at the end of the high hydrocarbon (DO_HHC)

simulations.
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Figure S26: Top 10 gas-phase products from limonene photooxidation at the end of the high hydrocarbon (P_HHC).
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Figure S27: Top 10 particle-phase products from limonene photooxidation at the end of the high hydrocarbon (P_HHC).
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Figure S28: Top 10 gas-phase products from limonene dark ozonolysis at the end of the high hydrocarbon (DO_HHC).
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Figure S29: Top 10 particle-phase products from limonene dark ozonolysis at the end of the high hydrocarbon (DO_HHC).
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Figure S30: Percentage of precursor reacted by OH (black), Os (red), and NOz (blue) as a function of fraction of precursor

reacted for a-pinene, camphene, and limonene during controlled reactivity (CR) simulations.
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Figure S31: Top 10 gas-phase products from camphene at the end of the controlled reactivity simulation.
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Figure S32: Top 10 particle-phase products from camphene at the end of the controlled reactivity simulation.
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Figure S33: (a) Simulated SOA yield as a function of atmospheric aging time for: camphene (black line), 50 % a-pinene +

50 % limonene (magenta line), a-pinene with camphene rate constants (blue line), limonene with camphene rate constants

(red line), and 50 % a-pinene + 50 % limonene where the rate constants of a-pinene and limonene were replaced with the

rate constants of camphene (green line); and (b) mass percentage of particle-phase compounds binned in four volatility

categories at the end of the controlled reactivity simulations for: camphene, 50 % a-pinene + 50 % limonene, a-pinene with

camphene rate constants, limonene with camphene rate constants, and 50 % a-pinene + 50 % limonene where the rate

constants of a-pinene and limonene were replaced with the rate constants of camphene.
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