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Abstract. Frequent and widespread wildfires in the north-
western United States and Canada have become the “new
normal” during the Northern Hemisphere summer months,
which significantly degrades particulate matter air quality in
the United States. Using the mid-visible Multi Angle Im-
plementation of Atmospheric Correction (MAIAC) satellite-
derived aerosol optical depth (AOD) with meteorological
information from the European Centre for Medium-Range
Weather Forecasts (ECMWF) and other ancillary data, we
quantify the impact of these fires on fine particulate matter
concentration (PM2.5) air quality in the United States. We use
a geographically weighted regression (GWR) method to esti-
mate surface PM2.5 in the United States between low (2011)
and high (2018) fire activity years. Our results indicate an
overall leave-one-out cross-validation (LOOCV) R2 value of
0.797 with root mean square error (RMSE) between 3 and
5 µg m−3. Our results indicate that smoke aerosols caused
significant pollution changes over half of the United States.
We estimate that nearly 29 states have increased PM2.5 dur-
ing the fire-active year and that 15 of these states have PM2.5
concentrations more than 2 times that of the inactive year.
Furthermore, these fires increased the daily mean surface
PM2.5 concentrations in Washington and Oregon by 38 to
259 µg m−3, posing significant health risks especially to vul-
nerable populations. Our results also show that the GWR
model can be successfully applied to PM2.5 estimations from
wildfires, thereby providing useful information for various
applications such as public health assessment.

1 Introduction

The United States (US) Clean Air Act (CAA) was passed in
1970 to reduce pollution levels and protect public health and
has led to significant improvements in air quality (Hubbell
et al., 2010; Samet, 2011). However, the northern part of the
US continues to experience an increase in surface PM2.5 due
to fires in the northwestern United States and Canada (here-
after NWUSC), especially during the summer months, and
these aerosols are a new source of “pollution” (Coogan et al.,
2019; Dreessen et al., 2016). The smoke aerosols from these
fires increase fine particulate matter (PM2.5) concentrations
and degrade air quality in the United States (Miller et al.,
2011). Moreover, several studies have shown that from 2013
to 2016, over 76 % of Canadians and 69 % of Americans
were at least minimally affected by wildfire smoke (Munoz-
Alpizar et al., 2017). Although wildfire pre-suppression and
suppression costs have increased, the number of large fires
and the burnt areas in many parts of western Canada and
the United States have also increased (Hanes et al., 2019;
Tymstra et al., 2019). Furthermore, in a changing climate,
as surface temperature increases and humidity decreases, the
flammability of land cover also increases and thus acceler-
ates the spread of wildfires (Melillo et al., 2014). The accu-
mulation of flammable materials like leaf litter can poten-
tially trigger severe wildfire events, even in those forests that
hardly experience wildfires (Calkin et al., 2015; Hessburg et
al., 2015; Stephens, 2005).

Wildfire smoke exposure can cause small particles to be
lodged in lungs, which may lead to exacerbations of asthma
chronic obstructive pulmonary disease (COPD), bronchitis,
heart disease and pneumonia (Apte et al., 2018; Cascio,
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2018). According to a recent study, a 10 µg m−3 increase in
PM2.5 is associated with a 12.4 % increase in cardiovascu-
lar mortality (Kollanus et al., 2016). In addition, exposure to
wildfire smoke is also related to massive economic costs due
to premature mortality, loss of workforce productivity, im-
pacts on the quality of life and compromised water quality
(Meixner and Wohlgemuth, 2004).

Surface PM2.5 is one of the most commonly used param-
eters to assess the health effects of ambient air pollution.
Given the sparsity of measurements in many parts of the
world, it is not possible to use interpolation techniques be-
tween monitors to provide PM2.5 estimates on a square kilo-
meter basis. Since surface monitors are limited, satellite data
have been used with numerous ancillary datasets to estimate
surface PM2.5 at various spatial scales. Several techniques
have been developed to estimate surface PM2.5 using satel-
lite observations from regional to global scales, including
simple linear regression, multiple linear regression, mixed-
effect models, chemical transport models (scaling methods),
geographically weighted regression (GWR), and machine-
learning methods (see Hoff and Christopher, 2009, for a re-
view). The commonly used global satellite data product is
the 550 nm (mid-visible) aerosol optical depth (AOD), which
is a unitless columnar measure of aerosol extinction. Simple
linear regression methods use satellite AOD as the only in-
dependent variable, which shows limited predictability com-
pared to other methods, and correlation coefficients vary
from 0.2 to 0.6 from the western to eastern United States
(Zhang et al., 2009). Multiple linear regression methods use
numerous variables along with AOD data, and the predic-
tion accuracy varies with different conditions, including the
height of the boundary layer and other meteorological condi-
tions (Goldberg et al., 2019; Gupta and Christopher, 2009b;
Liu et al., 2005). For both univariate and multi-variate mod-
els, the AOD shows stronger correlation with PM2.5 dur-
ing fire episodes compared to pre-fire and post-fire periods
(Mirzaei et al., 2018). Chemistry transport models (CTMs)
that scale the satellite AOD by the ratio of PM2.5 to AOD
simulated by models can provide PM2.5 estimations without
ground measurements, which are different from other statis-
tical methods (Van Donkelaar et al., 2006, 2019). However,
the CTM models depend on reliable emission data, show lim-
ited predictability at shorter timescales and are largely useful
for studies that require annual averages (Hystad et al., 2012).
Different machine-learning methods, including neuron net-
works, random forests, and deep belief networks, show im-
provements in prediction accuracy (with CVR2 values larger
than 0.8), which is hard to accomplish for other parametric
regression models (Gupta and Christopher, 2009a; Hu et al.,
2017; Li et al., 2017; Wei et al., 2019, 2020, 2021). How-
ever, these methods also require a large number of samples
to train the model, which means it is more suitable for daily
PM2.5 estimation rather than short-term wildfire events with
relatively low occurrence frequency.

The relationship among PM2.5, AOD and other meteoro-
logical variables is not spatially consistent (Hoff and Christo-
pher, 2009; Hu, 2009). Therefore, methods that consider spa-
tial variability can replicate surface PM2.5 with higher accu-
racy. One such method is the GWR, which is a non-stationary
technique that models spatially varying relationships by as-
suming that the coefficients in the model are functions of lo-
cations (Brunsdon et al., 1996; Fotheringham et al., 1998,
2003). In 2009, satellite-retrieved AOD was introduced in the
GWR method to predict surface PM2.5 (Hu, 2009), followed
by the use of meteorological parameters and land use infor-
mation (Hu et al., 2013). Meteorological variables are crucial
for simulating surface PM2.5 since they interact with PM2.5
through different processes (Chen et al., 2020), which will be
discussed in detail in the data section. Several studies (Guo et
al., 2021; Ma et al., 2014; You et al., 2016a) successfully ap-
plied the GWR model in estimating PM2.5 in China by using
AOD and meteorological features as predictors. Similarly to
all the statistical methods, however, the GWR relies on an
adequate number and density of surface measurements (Chu
et al., 2016; Gu, 2019; Guo et al., 2021), underscoring the
importance of adequate ground monitoring of surface PM2.5.

In this paper, we use satellite data from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) and surface
PM2.5 data combined with meteorological and other ancillary
information to develop and use the GWR method to estimate
PM2.5. The use of the GWR method is not novel, and we
merely use a proven method to estimate surface PM2.5 from
forest fires. We calculate the change in PM2.5 between high
fire activity (2018) and low fire activity (2011) periods dur-
ing summer to assess the role of NWUSC wildfires in surface
PM2.5 in the United States. The paper is organized as follows.
We describe the datasets used in this study, followed by the
GWR method. We then describe the results and discussion,
followed by a summary with conclusions.

2 Data

A 17 d period (9 to 25 August) in 2018 (high fire activity)
and 2011 (low fire activity) was selected based on analysis
of total fires (details in the methodology section) to assess
surface PM2.5 (Table 1).

2.1 Ground-level PM2.5 observations

Daily surface PM2.5 from the Environmental Protection
Agency (EPA) is used in this study. These data are from Fed-
eral Reference Methods (FRM), Federal Equivalent Methods
(FEM), or other methods that are to be used in the National
Ambient Air Quality Standards (NAAQS) decisions. A to-
tal of 1003 monitoring sites in the US are included in our
study, with 949 having valid observations in the study period
in 2018 and a total of 873 sites with 820 having valid obser-
vations in the study period in 2011. PM2.5 values less than
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Table 1. Datasets used in the study with sources.

Data/model Sensor Spatial Temporal Accuracy
resolution resolution

1 Surface PM2.5 TEOM Point data Daily ±5 %–10 %
2 Mid-visible aerosol optical depth (AOD) MAIAC_MODIS 1 km Daily 66 % compared to AERONET
3 Fire radiative power (FRP) Terra/Aqua-MODIS 1 km Daily ±7 %
4 ECMWF (meteorological variables) 0.25◦ Hourly

https://www.epa.gov/outdoor-air-quality-data, https://earthdata.nasa.gov/, https://earthdata.nasa.gov/, https://www.ecmwf.int/en/forecasts (last access: 26 July 2021).

2 µg m−3 are discarded since they are lower than the estab-
lished lower detection limit (LDL) (EPA, 2011, 2018).

2.2 Satellite data

AOD, which represents the total column aerosol mass load-
ing, is related to surface PM2.5 as a function of aerosol prop-
erties (Koelemeijer et al., 2006):

AOD= PM2.5H f (RH)
3Qext,dry

4ρ reff
= PM2.5H S, (1)

whereH is the aerosol layer height, f (RH) is the ratio of am-
bient and dry extinction coefficients,Qext,dry is the extinction
efficiency under dry conditions, reff is the particle effective
radius, ρ is the aerosol mass density and S is the specific
extinction efficiency (m2 g−1) of the aerosol under ambient
conditions. Although AOD usually has a positive correlation
with PM2.5, this relationship depends on various meteorolog-
ical parameters which will be discussed in Sect. 2.3.

The MODIS mid-visible AOD from the Multi-Angle Im-
plementation of Atmospheric Correction (MAIAC) product
(MCD19A2 version 6) is used in this study. We used the
MAIAC-retrieved Terra and Aqua MODIS AOD product at
1 km spatial resolution (Lyapustin et al., 2018), where dif-
ferent orbits are averaged to obtain mean daily values. Since
thick smoke plumes generated by wildfires can be misclassi-
fied as clouds, only AOD less than 0 will be discarded. Vali-
dation with AERONET studies shows that 66 % of the MA-
IAC AOD data agree within±0.5 to±0.1 AOD (Lyapustin et
al., 2018). Largely due to cloud cover, grid cells may have a
limited number of AOD observations within a certain period.
On average, cloud-free AOD data are available about 40 % of
the time during 9 to 25 August 2018 when fires were active
in the region bounded by 25–50◦ N, 65–125◦W. A smoke
flag from the same product is used as a predictor in estimat-
ing surface PM2.5. The smoke detection is performed using
MODIS red, blue and deep blue bands, and smoke pixels are
separated from dust and clouds based on absorption param-
eter, size parameter and thermal thresholds (see Lyapustin et
al., 2012, 2018, for further discussion). The smoke flag data
can provide the percentage of a smoke pixel in each grid,
which is related to smoke coverage.

We also use the MODIS level-3 daily FRP (MCD14ML,
fire radiative power) product which combines the Terra and

Aqua fire products to assess wildfire activity. The fire radia-
tive energy indicates the rate of combustion, and thus FRP
can be used for characterizing active fires (Freeborn et al.,
2014). For the purposes of the study we sum the FRP within
every 2.3◦× 3.5◦ box to represent the total fire activity in
different locations.

2.3 Meteorological data

Meteorological information, including boundary layer height
(BLH), 2 m temperature (T2M), 10 m wind speed (WS),
surface relative humidity (RH) and surface pressure (SP),
is obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis (ERA5) product,
with a spatial resolution of 0.25◦ and temporal resolution
of 1 h, and is matched temporally with the satellite over-
pass time. The meteorological parameters provide important
information on different processes affecting surface PM2.5
concentration, which can also be seen as supplements of the
AOD–PM2.5 relationship as previously discussed.

The BLH can provide information on aerosol layer height
(H in Eq. 1) as aerosols are often found to be well mixed
within the boundary layer (Gupta and Christopher, 2009b).
With the same amount of pollution within the boundary layer,
the higher the BLH, the more PM2.5 is distributed within
that layer and vice versa (Miao et al., 2018; Zheng et al.,
2017). Therefore, PM2.5 usually has an anticorrelation with
BLH. However, for wildfire events, the aerosol layer height is
sometimes higher than the BLH (Haarig et al., 2018), which
leads to lower correlation between AOD and PM2.5 since we
use only BLH to present the aerosol layer height. Thus BLH
can provide aerosol vertical information in most cases ex-
cept for suspended high-layer aerosol caused by fires, which
leads to higher bias of the model for high-layer aerosols
near the fire sources. Surface temperature (T2M) can affect
PM2.5 through convection, evaporation, temperature inver-
sion and secondary pollutant generation processes (Chen et
al., 2020). The first two processes are negatively related to
PM2.5 concentration: (1) higher temperature increases tur-
bulence, which accelerates the dispersion of pollution and a
decrease in PM2.5; (2) higher temperature increases evapo-
ration loss of PM2.5, including ammonium nitrate and other
volatile or semi-volatile components (Wang et al., 2017). The
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latter two processes are positively related to PM2.5 by limit-
ing vertical motion and promoting photochemical reactions
under high temperature (Xu et al., 2019; Zhang et al., 2015).
High wind speeds are often negatively related to PM2.5 since
it increases the dispersion of pollutants. However, unique ge-
ographical conditions such as mountains with certain wind
directions can cause accumulation of pollutants (Chen et al.,
2017). RH may promote hygroscopic growth of particles to
increase PM2.5 (Trueblood et al., 2018; Zheng et al., 2017).
Changes in surface pressure (SP) may influence the diffusion
or accumulation of pollutants through formation of low-level
wind convergence (You et al., 2017). Precipitation is another
factor that largely influences surface PM2.5 since it can ac-
celerate the wash-out of suspended particles, but AOD values
are not available when clouds are present.

3 Methodology

To assess the impact of NWUSC fires on PM2.5 in the United
States, we first estimate PM2.5 over the study region dur-
ing a time period with high fire activity (2018). We then use
the same method during a year with low fire activity (2011)
to compare the differences between the two years. The two
years are selected based on the total FRP in August calcu-
lated within Canada (49–60◦ N, 55–135◦W) and the north-
western (NW) United States (35–49◦ N, 105–125◦W). Ta-
ble 2 shows the total FRP in Canada and the northwestern
US in August from 2010 to 2018. The total FRP in the two
regions is lowest in 2011 and highest in 2018 during the
nine years, which provides the basis for the study. In order
to create a 0.1◦ surface PM2.5, the GWR model is used to
estimate the relationships of PM2.5 and AOD using various
parameters. Detailed processing steps for the GWR model
are shown in Fig. 1.

3.1 Data preprocessing

The first step is to resample all datasets to a uniform spa-
tial resolution by creating a 0.1◦ resolution grid covering the
continental United States. During this process, we collocate
the PM2.5 data and average the values if there is more than
one value in one grid. Then the MAIAC AOD and smoke flag
are averaged into 0.1◦ grid cells. Meteorological datasets are
also resampled to the 0.1◦ grid cells by applying the inverse
distance method.

3.2 Time selecting and averaging

Next we select data where AOD and ground PM2.5 are both
available (AOD> 0 and PM2.5> 2.0 µg m−3) and average
them for the study period (since the LDL for the FRM
method is 2 µg m−3 in 2011 and 3 µg m−3 in 2018, we de-
cided to use the LDL for 2011) (EPA, 2011, 2018). This is
to ensure that the AOD, PM2.5 and other variables match
with each other, because PM2.5 is not a continuous measure-

ment for some sites and AOD has missing values due to cloud
cover and other reasons. Therefore, it is important to use data
from days where both measurements are available to avoid
sampling biases.

3.3 GWR model development and validation

The adaptive bandwidth selected by the Akaike information
criterion (AIC) is used for the GWR model (Loader, 1999).
For locations that already have PM2.5 monitors, we calculate
the mean AOD of a 0.5× 0.5◦ box centered at the ground lo-
cation and estimate the GWR coefficients (β) for AOD and
meteorological variables to estimate PM2.5. The model struc-
ture can be expressed as

PM2.5i = β0,i +β1,iAODi +β2,iBLHi +β3,iT2Mi

+β4,iU10Mi +β5,iRHsf ci +β6,iSPi +β7,iSFi + εi,

where PM2.5i (µg m−3) is the selected ground-level PM2.5
concentration at location i; β0,i is the intercept at location
i; β1,i ∼ β8,i are the location-specific coefficients; AODi is
the resampled AOD selected from MAIAC daily AOD data
at location i; BLHi , T2Mi , U10Mi , RHsf ci , and SPi are se-
lected meteorological parameters (BLH, T2M, WS, RH, and
PS) at location i; SFi (%) is the resampled smoke flag data at
location i, and εi is the error term at location i.

We perform leave-one-out cross-validation (LOOCV) to
test the model predictive performance (Kearns and Ron,
1999). Since the GWR model relies on an adequate num-
ber of observations, the prediction accuracy will be lower
if we preserve too many data for validation. Therefore, we
choose the LOOCV method, which preserves only one da-
tum for validation at a time and repeats the process until all
the data are used. In addition, R2 and root mean square er-
ror (RMSE) are calculated for both model fitting and model
validation processes to detect overfitting, which leads to low
predictability.

3.4 Model prediction

While predicting the ground-level PM2.5 for unsampled lo-
cations, we make use of the estimated parameters for sites
within a 5◦ radius to generate new slopes for independent
variables based on the spatial weighting matrix (Brunsdon et
al., 1996). The closer to the predicted location, the closer to
1 the weighting factor will be, while the weighting factor for
sites farther than 5◦ in distance is zero. It is important to note
that AOD and other independent variables used for predic-
tion in this step are averaged values for days that have valid
AOD, which is different from the data used in the fitting pro-
cess since PM2.5 is not measured every day in all locations.

4 Results and discussion

We first discuss the surface PM2.5 for a few select locations
that are impacted by fires followed by the spatial distribu-
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Figure 1. Flow chart for the geographically weighted regression model used. All satellite, ground, and meteorological data are gridded to 0.1
by 0.1◦.

Table 2. Total FRP in Canada and the northwestern US in August of different years (unit: 104 MW).

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018

CA 148.24 4.84 19.93 70.54 107.78 10.39 4.6 307.3 542.99
NW US 16.41 42.84 320.39 192.06 67.01 339.58 112.9 195.64 296.91

tion of MODIS AOD and the FRP for August 2018. We
then assess the spatial distribution of surface PM2.5 from the
GWR method. The validation of the GWR method is then
discussed. To further demonstrate the impact of the NWUSC
fires on PM2.5 air quality in the United States, we show the
spatial distribution of the difference between August 2018
and August 2011 and quantify these results for 10 US EPA
regions.

4.1 Descriptive statistics of satellite data and ground
measurements

The 2018 summertime Canadian wildfires started around
the end of July in British Columbia and continued until
mid-September. The fires spread rapidly to the south of
Canada during August, causing high concentrations of smoke
aerosols to drift down to the US and affecting particulate mat-
ter air quality significantly. From late July to mid-September,

wildfires in the northwestern US that burnt forest and grass-
land also affected air quality in the United States. Starting
with the Cougar Creek Fire and then the Crescent Mountain
and Gilbert fires, different wildfires in NWUSC caused se-
vere air pollution in numerous US cities. Figure 2a shows
the rapid increase in PM2.5 in selected US cities from 1 July
to 31 August, due to the transport of smoke from these
wildfires. For all sites, July had low PM2.5 concentrations
(< 10 µg m−3) and rapidly increases as fire activity increases.
Calculating only from the EPA ground observations, the
mean PM2.5 of the 17 d for the entire US is 13.7 µg m−3

and the mean PM2.5 for Washington (WA) is 40.6 µg m−3,
which indicates that the PM pollution is concentrated in the
northwestern US for these days. This trend is obvious when
comparing the mean PM2.5 of all US stations (black line
with no markers) and the mean PM2.5 of all WA stations
(grey line with no markers). Ground-level PM2.5 reaches
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Figure 2. (a) Variations of EPA ground-observed PM2.5 in differ-
ent cities from July to August 2018 (Omak – Washington, Seattle –
Washington, Chicago – Illinois, Portland – Oregon, Billings – Mon-
tana). Black line without markers shows the mean variation of all
the US stations, and the grey line without markers shows the mean
variation of stations in Washington State. (b) Mean MAIAC satellite
AOD distribution from 9 to 25 August 2018. AOD values equal to
or larger than 0.5 are shown as the same color (yellow). Also shown
are circles with FRP. Black arrow shows the wind direction, and the
length of it represents the wind speed. The round spots of differ-
ent colors on the map show the locations of the five selected cities
(green – Omak, black – Seattle, yellow – Chicago, blue – Portland,
red – Billings).

peak values between 17 and 21 August, and daily PM2.5 val-
ues during this time period far exceed the 17 d mean PM2.5.
For example, mean PM2.5 in Washington on 20 August is
86.75 µg m−3, which is more than 2 times the 17 d average
of this region. On 19 August, Omak, which is located in the
foothills of the Okanogan Highlands in WA, had PM2.5 val-
ues that exceed 250 µg m−3. According to a review of US
wildfire-caused PM2.5 exposures, 24 h mean PM2.5 concen-
trations from wildfires ranged from 8.7 to 121 µg m−3, with
a 24 h maximum concentration of 1659 µg m−3 (Navarro et
al., 2018).

Table 3 shows relevant statistics for 15 states that have
at least one daily record of non-attainment of EPA stan-
dards (> 35 µg m−3). From the frequency records of non-
attainment in the 17 d period (last column), four states (Mon-
tana, Washington, California and Idaho) were consistently
affected by the wildfires, and large portions of ground sta-
tions in these states were influenced by smoke aerosols. Most
of the neighboring states also experienced significant air pol-
lution (third column). Noticeable from these records is that
the total number of ground stations in some of the highly af-
fected states (such as Idaho) is not sufficient for capturing
the smoke. Although there are a total of eight EPA stations in
Idaho, only two of them have consistent observations during
the fire event; the other two stations have no valid observa-
tions, and the remaining four stations have only two to six
observations during the 17 d period. Limited availability of
valid data along with unevenly distributed stations makes it
hard to quantify smoke pollution in the northwestern US dur-
ing the fire event period. Therefore, we utilize satellite data to
enlarge the spatial coverage and estimate pollution at a finer
spatial resolution.

The spatial distribution of AOD shown in Fig. 2b indicates
that the smoke from Canada is concentrated mostly in north-
ern US states such as Washington, Oregon, Idaho, Montana,
North Dakota and Minnesota. The black arrow shows the
mean 800 hPa-level mean wind for 17 d, and the length of
the arrow represents the wind speed in m s−1. Also shown in
Fig. 2b are wind speeds close to the fire sources which are
about 4–5 m s−1, and according to the distances and wind
directions, it can take approximately 28–36 h for the smoke
to be transported southeastward to Washington. Then the
smoke continues to move east to other northern states such
as Montana and North Dakota. In addition, the grey circle
represents the total FRP of every 2.3× 3.5◦ box. The rea-
son for not choosing a smaller grid for the FRP is to not
clutter Fig. 2b with information from small fires. The big-
ger the circle is, the stronger the fire is in that grid, and dif-
ferent sizes and its corresponding FRP values are shown in
the lower-right corner. It is clear that the strongest fires in
2018 are located in Tweedsmuir Provincial Park of British
Columbia in Canada (53.333◦ N, 126.417◦W). The four sep-
arate lightning-caused wildfires burnt nearly 301 549 ha of
the boreal forest. The total FRP of August 2018 in Canada is
about 5362 (· 1000 MW), while the total FRP of August 2011
in Canada is 48 (· 1000 MW). The 2011 fire was relatively
weak compared to the 2018 Tweedsmuir Complex fire, and
we therefore use the 2011 air quality data as a baseline
to quantify the 2018 fire influence on PM2.5 in the United
States.

4.2 Model fitting and validation

The main goal for using the GWR model is to help predict
the spatial distribution of PM2.5 for places with no ground
monitors while leveraging the increased spatial resolution of
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Table 3. Statistics of 15 states that violate EPA standards (35 µg m−3) during the 17 d wildfire period.

State Number of Number of Percentage Number of
sites violating sites in of sites violating days violate

standard the state standard (%) standard

Montana 14 15 93.34 16
Washington 18 20 90 16
Oregon 12 14 85.71 5
North Dakota 7 11 63.63 4
Idaho 5 8 62.5 8
Colorado 11 21 52.38 2
South Dakota 5 10 50 1
California 57 119 47.9 14
Utah 7 15 46.67 4
Nevada 4 13 30.77 1
Wyoming 7 24 29.2 2
Minnesota 4 26 15.4 2
Texas 3 37 8.1 1
Louisiana 1 14 7.1 1
Arizona 1 20 5 1

satellite AOD, and therefore it is important to ensure that the
model is robust. Figure 3a and b show the results for 2018 for
GWR model fitting for the entire US and the LOOCV mod-
els, respectively. The color of the scatter plots represents the
probability density function (PDF) which calculates the rel-
ative likelihood that the observed ground-level PM2.5 would
equal the predicted value. The lighter the color is, the more
points are present, with a higher correlation. The model fit-
ting process estimates the slope for each variable, and there-
fore the model can be fitted close to the observed PM2.5, and
using this estimated relationship, we are able to assess sur-
face PM2.5 using other parameters at locations where PM2.5
monitors are not available. The LOOCV process tests the
model performance for predicting PM2.5. If the results of
LOOCV have a large bias from the model fitting, then the
predictability of the model is low. Higher R2 and RMSE dif-
ferences indicate that the model is overfitting and therefore
not suitable. The R2 for the model fitting is 0.834, and the
R2 for the LOOCV is 0.797, while the RMSE for the GWR
model fitting is 3.46 µg m−3, and for LOOCV the RMSE is
3.84 µg m−3. There are minor differences between fitting R2

and validationR2 (0.037) and between fitting RMSE and val-
idation RMSE (0.376 µg m−3), suggesting that the model is
not overfitting and has stable predictability, further indicating
that the model can predict surface PM2.5 reliably. In addition,
we also performed a 20-fold cross-validation by splitting the
dataset into 20 consecutive folds, and each fold is used for
validation, while the 19 remaining folds form the training set.
The 20-fold cross-validation has an R2 of 0.745 and a RMSE
of 4.3 µg m−3. The increase/decrease in the cross-validated
R2 and RMSE indicates that sufficient data are used for fit-
ting since a small decrease in the number of fitting data can
reduce the model prediction accuracy. Overall, the predic-

tion error of the model is between 3 and 5 µg m−3, which
is a reasonable error range for 17 d average prediction of
PM2.5. For data greater than the daily mean EPA standard
(35 µg m−3), the model has a RMSE of 12.07 µg m−3, which
is a lot larger than the RMSE when using the entire model.
Therefore, the model has a tendency to underestimate PM2.5
exceedances by around 12.07 µg m−3. The larger the PM2.5
is, the more the model underestimates. To examine the model
performance for high- and low-pollution areas, the results are
divided into two parts (larger than 35 µg m−3 and less than
35 µg m−3). Areas with high pollution have an R2 of 0.64
and areas with low pollution have an R2 of 0.67; therefore,
the model performance is relatively stable for both large and
small PM2.5 values. Also, the inclusion of low aerosol con-
centration areas does not influence the model performance
for high values (seen in the Supplement in Figs. S1 and S2),
which means that the high R2 is not a reason for the large
number of low values. The GWR model fitting and valida-
tion results for the 17 d in 2011 are shown in Fig. S3.

4.3 Predictors’ influence during wildfires

Table 4 shows the GWR model mean coefficients for the
whole US region and for different selected regions. The se-
lected boxes are shown in Fig. 4c in different colors: box1
(red) located in the NW US includes major fire sources in
the US; box2 (gold) located in Montana is influenced by both
neighboring states and smoke from Canada; box3 (green) in
Minnesota is located further from the fires and has a mi-
nor increase in PM2.5 due to remote smoke; box4 (black) in
the NE (northeastern) US is furthest from the fires and has
no obvious pollution increase. The second column of the ta-
bles shows the conditions for sample selection, and the third
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Figure 3. Results of model fitting and cross-validation for the GWR
model for the entire US region averaged from 9 to 25 August 2018.
(a) GWR model fitting results; (b) GWR model LOOCV results.
The dashed line is the 1 : 1 line as a reference and the black line
shows the regression line. The color of the scatter plots represents
the probability density function which provides a relative likelihood
that the value of the random variable would equal a certain sample.

column shows the number of pixels selected for each box.
By comparing the coefficients of samples selected in these
boxes, predictors have different influences in different lo-
cations. AOD has a stronger influence on predicting PM2.5
closer to fire sources, but local emissions become more domi-
nant if the distances are large enough. The smoke flag is over-
all positively related to surface PM2.5, while it could slightly
negatively relate to PM2.5 around fire sources and the north-
eastern coasts. PBL is negatively related to PM2.5 when the
pollution is concentrated near the surface (fires or human-
made emissions), while it appears to be positively related to
PM2.5 in locations where the main pollution source comes
from remote wildfire smoke. Surface temperature has a rel-
atively stable positive correlation with surface PM2.5; how-
ever, surface pressure and wind speeds are negatively corre-
lated with PM2.5. Relative humidity, on the other hand, shows
large variations in PM2.5 influence across the nation. Around
the wildfires where the RH is relatively low, RH has a pos-
itive correlation with PM2.5 since hygroscopicity would in-
crease and leads to accumulation of PM2.5, but increasing
RH can also decrease PM2.5 concentration by overgrowing
the PM2.5 particles to deposition in a high-RH environment
(Chen et al., 2018).

From Table 4, we know that the weighting for AOD is
much larger than other predictors, but predictors other than

AOD are important for the prediction. We tested our model
with AOD as the only predictor to conduct a comparison to
the original model, and the R2 decreases from 0.83 to 0.79
and RMSE increases from 3.46 to 3.8. This is consistent with
a previous study (Jiang et al., 2017) which shows improve-
ments of R2 from 0.69 to 0.78 and RMSE from 7.25 to 6.18
by adding four meteorological parameters in summer in east-
ern China. Other predictors have higher weighting in the fire
source region (box1), where BLH cannot provide the aerosol
vertical distribution information since smoke tends to be in-
jected to higher levels. For high AOD regions where aerosol
tends to be suspended at high levels, adding predictors other
than AOD tends to have lower improvement of the model
compared to low AOD values, because adding BLH can sig-
nificantly improve the prediction for low-level aerosols. For
regions with AOD less than 35, R2 increases by 0.09 from
the AOD-only model (0.6 to 0.69), while R2 increases by
0.05 for areas with AOD larger than 35. RMSE decreases by
12 % and 7 % for AOD less and larger than 35 conditions,
respectively. Overall, the meteorological factors have larger
improvements for low-pollution areas (low-level aerosol in
this case).

4.4 Predicted PM2.5 distribution

The mean PM2.5 distributions over the United States shown
in Fig. 4a are calculated by averaging the surface PM2.5
data from ground monitors for the 17 d, which matches well
with the GWR model-predicted PM2.5 distributions shown in
Fig. 4b. The model estimation extends the ground measure-
ments and provides pollution assessments across the entire
nation. Comparing the AOD map (Fig. 2b) with the PM2.5
estimations (Fig. 4b) demonstrates the differences between
columnar and surface-level pollution. Differences between
the AOD and PM2.5 distributions are for various reasons, in-
cluding (1) areas with high PM2.5 concentrations in Fig. 4b
corresponding to low AOD values in Fig. 2b (southern Cali-
fornia, Utah, and the southern US) and (2) and high AOD re-
gions in Fig. 2b corresponding to low PM2.5 concentrations
in Fig. 4b (Minnesota). The first situation usually occurs at
the edge of polluted areas that are relatively far from the
fire source, which is consistent with previous studies that re-
ported smaller particles (< 10 µg) being able to travel longer
distances compared to large particles (> 10 µg) (Gillies et
al., 1996) and larger particles tending to settle closer to their
source (Sapkota et al., 2005; Zhu et al., 2002).

We use the same method for 9 to 25 August in 2011 that
had low fire activity, ensuring consistency in estimating co-
efficients for different variables for 2011. Figure 4c shows
the difference in spatial distribution of mean ground PM2.5
of the 17 d between 2018 and 2011. Larger differences in
PM2.5 are in the northwestern and central parts of the United
States, with the southern states having very little impact due
to the fires. Of all 48 states within the study region, there
are 29 states that have a higher PM2.5 value in 2018 than
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Figure 4. (a) EPA ground-observed PM2.5 distribution over the US averaged from 9 to 25 August 2018. (b) GWR-predicted 17 d mean
PM2.5 distribution. (c) Difference map of predicted ground PM2.5 of the 17 d mean values between 2018 and 2011. PM2.5 values equal to or
larger than 60 µg m−3 are shown as the same color (red). Note that the D-PM2.5 has a different color scale to make the negative values more
apparent (blue).

Table 4. Coefficients of different predictors.

Mean coefficients Sample selection N AOD Smoke flag PBL T2M RH U SP

box1 (red) FRP> 1000 213 91.94 −0.14 −2.25 0.33 0.08 −2 −0.06
box2 (gold) PM2.5> 30 362 60.1 0.013 −2.9 0.23 −0.08 −1.6 −0.03
box3 (green) PM2.5> 17 278 6.2 0.05 0.2 0.2 0.014 −0.3 −0.02
box4 (black) 17>PM2.5> 10 938 7.1 −0.02 −1.2 0.22 −0.035 0.06 −0.005
Whole US region ∼ 106 352 28.1 0.024 −0.9 0.06 −0.04 −0.7 −0.002

2011, and 15 states have a 2018 PM2.5 value of more than
2 times their 2011 value (shown in Fig. 5). The mean PM2.5
for WA increases from 5.87 in 2011 to 46.47 µg m−3 in 2018,
which is about 8 times more than 2011 values. The PM2.5
values in Oregon increase from 4.97 in 2011 to 33.3 µg m−3

in 2018, which is nearly a 7-fold increase. For states from
Montana to Minnesota, the mean PM2.5 decreases from east
to west, which reveals the path of smoke transport. As shown
in Fig. 4c, there is a clear transport path of smoke from North
Dakota all the way to Texas. Along the path, smoke increases
PM2.5 concentrations by 168 % in North Dakota and 27 % in
Texas. Smoke aerosols transported over long distances typi-
cally contain fine-fraction PM, which significantly affects the
health of children, adults, and vulnerable groups.

Figure 6 shows the mean PM2.5 predicted from the GWR
model of different EPA regions for the 17 d in 2011 and 2018
(Hawaii and Alaska are not included). The most influenced
region is region 10, which has a 2018 mean PM2.5 value of

34.2 µg m−3 that is 6 times larger than the values in 2011
(5.8 µg m−3). The PM2.5 of regions 8 and 9 has 2.4 and 2.6
times increases in 2018 compared to 2011. Regions 1–4 have
lower PM2.5 in 2018 than 2011, possibly due to Clean Air
Act initiatives, absence of any major fire activities and being
further away for transported aerosols. The emission reduc-
tion improves the US air quality and lowers the PM2.5 ev-
ery year, but 6 out of the 10 EPA regions show significant
increases in PM2.5 during the study period, which indicates
that the long-range transported wildfire smoke has become
the new major pollutant in the US.

4.5 Estimation of Canadian fire pollution

To evaluate the pollution caused only by Canadian fires,
we did a rough assessment according to the total FRP and
PM2.5 values. There are three states in the US that have
wildfires during the study period, California, Washington
and Oregon, and they have total FRPs of 1186, 518 and
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Figure 5. Mean PM2.5 from 9 to 25 August 2018 and 2011 of most affected states.

Figure 6. Mean PM2.5 of EPA regions from 9 to 25 August 2011
and 2018. Inset shows the map of 10 EPA regions in different colors.
Yellow column represents the 2018 mean PM2.5, and green column
represents for 2011 mean PM2.5.

439 (· 1000 MW), respectively. Assuming that California
was only influenced by the local fires, then fires of 1186
(· 1000 MW) cause a 13 µg m−3 increase in PM2.5. Accord-
ingly, wildfires in Washington State and Oregon State will
cause 6 and 5 µg m−3 increases in state mean PM2.5. There-
fore, Canadian fires caused PM2.5 increases in Washington
and Oregon of about 35 and 23 µg m−3, respectively. Since
the FRP of Canadian wildfires is approximately 5 times
larger than that of the California fires, which are the strongest
fires in the US, we assume that the pollution affecting the
states located in the downwind directions other than the three
states is mainly coming from Canadian wildfires. States with
no local fires such as Montana, North Dakota, South Dakota
and Minnesota have PM2.5 increases of 18.31, 12.8, 10.4 and
10.13 µg m−3. The decrease in these numbers reveals that the
smoke is transported in a southeasterly direction. This influ-

ence of Canadian wildfires on US air quality is only a rough
quantity estimation, and thus additional work is needed to un-
derstand long-range transport smoke pollution and its impact
on public health.

4.6 Comparison to previous studies

Compared to the Bayesian ensemble model developed by
Geng et al. (2018) using MAIAC AOD and CMAQ (Com-
munity Multiscale Air Quality) model and ground PM2.5
measurements, our GWR model has larger R2, but with the
CTM, their method can provide more vertical distribution
information, which is important for wildfire smoke. GWR
usually has better accuracy than the CTM since there are
large uncertainties related to different CTM inputs such as
emission and meteorological and land cover data, but for re-
gions with fewer or no ground measurements, the CTM pro-
vides a good approach for estimating surface PM2.5. Other
studies which used machine-learning methods to predict sur-
face PM2.5 have better performance for long-term prediction
rather than monthly estimations (Liang et al., 2020; Xiao et
al., 2018) but can better resolve complex relationships be-
tween different predictors than statistical models (Geng et al.,
2020). For wildfire events, the available data are much fewer
than the long-term aerosol analysis, so the performance of
a machine-learning method could be less accurate compared
to long-term prediction. Our study also shows slightly larger
R2 compared to other GWR studies (Hu et al., 2013; Ma et
al., 2014; You et al., 2016b) due to the inclusion of more me-
teorological and other related predictors.

4.7 Model uncertainties and limitations

There are various sources of uncertainties and limitations for
studies that use satellite data to estimate surface PM2.5 con-
centrations. Since wildfires develop quickly, it is important to
have continuous observations to capture the rapid changes.
This study uses polar-orbiting high-quality satellite aerosol
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products, but the temporal evolution can only be estimated by
geostationary datasets. Although satellite observations have
excellent spatial coverage, missing data due to cloud cover
are a limitation. As discussed in the paper, the prediction er-
ror (RMSE) of the model is between 3 and 5 µg m−3, while
the RMSE increased for locations with high aerosol concen-
tration. This is partly due to lack of accurate vertical distribu-
tion information, which is very important for wildfire smoke.
The GWR model is largely influenced by the distribution
of ground stations, and the prediction error will be differ-
ent in different locations due to unevenly distributed PM2.5
stations. For locations that have a dense ground-monitoring
distribution, the prediction error will be low, while the pre-
diction error will be relatively larger in other places with
sparse surface stations. Although there are obvious limita-
tions, complementing surface data with satellite products and
meteorological and other ancillary information in a statis-
tical model like the GWR has provided robust results for
estimating surface PM2.5 from wildfires. We also note that
we did not consider some variables used in other studies,
such as NDVI, forest cover, vegetation type, industrial den-
sity, visibility and chemical constituents of smoke particles
(Van Donkelaar et al., 2015; Hu et al., 2013; You et al.,
2015; Zou et al., 2016). Visibility mentioned in some stud-
ies may improve the model performance, but unlike AOD,
it has limited measurement across the nation, which will re-
strict the applicability of training data. Another uncertainty
comes from the 2011 wildfires, which we assumed to be zero
fire events, but there are actually few fire events in EPA re-
gions 6, 8, 9 and 10, and this will lead to underestimation of
PM2.5 increase due to the 2018 fires in these regions.

One limitation of this study is that analysis based on 17 d
mean values cannot capture daily pollution variations, which
is also very important for pollution estimation during rapidly
changing wildfire events. To extend this analysis to daily es-
timation, the cloud contaminations of satellite observations
become a major problem. Therefore, future work is needed
using chemistry transport models and other data to fill in the
gaps on missing AOD data due to cloud coverage.

5 Summary and conclusions

We estimate the surface mean PM2.5 for 17 d in August for
a high fire activity year (2018) and compare that to a low
fire activity year using the geographically weighted regres-
sion (GWR) method to assess the increase in PM2.5 in the
United States due to smoke transported from fires. The dif-
ference in PM2.5 between the two years indicates that more
than half of the United States (29 states) is influenced by
the NWUSC wildfires, and half of the affected states have
17 d mean PM2.5 increases larger than 100 % of the base-
line value. The peak PM2.5 during the wildfires can be much
larger than the 17 d average and can affect vulnerable popu-
lations susceptible to air pollution. Some of the most affected

states are Washington, California, Wisconsin, Colorado and
Oregon, all of which have populations greater than 4 million.
According to the Centers for Disease Control and Preven-
tion (CDC), 8 % of the population has asthma (CDC, 2011).
Therefore, for asthma alone, there are about 3 million people
facing significant health issues due to the long-range trans-
port of smoke in these states.

For states that show a decrease in PM2.5 due to the Clean
Air Act, the mean decrease is about 16 % of the baseline
after 7 years. This is consistent with the EPA’s report that
there is a 23 % decrease in PM2.5 on national average from
2010 to 2019 (U.S. Environmental Protection Agency, 2019).
Compared to the dramatic increase (132 %) caused by wild-
fires, pollution from the fires counteracts our effort on emis-
sion controls. Although wildfires are often episodic and short
term, high frequency of fire occurrence and increasingly
longer durations of summertime wildfires in recent years
have made them now a long-term influence on public lives.
Our results show a significant increase in pollution in a short
time period in most of the US states due to the NWUSC wild-
fires, which affects millions of people. With wildfires becom-
ing more frequent during recent years, more effort is needed
to predict and warn the public about the long-range trans-
ported smoke from wildfires.
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