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Abstract. We use a global inverse model, satellite data and
flask measurements to estimate methane (CH4) emissions
from South America, Brazil and the basin of the Ama-
zon River for the period 2010–2018. We find that emis-
sions from Brazil have risen during this period, most quickly
in the eastern Amazon basin, and that this is concurrent
with increasing surface temperatures in this region. Brazil-
ian CH4 emissions rose from 49.8± 5.4 Tg yr−1 in 2010–
2013 to 55.6± 5.2 Tg yr−1 in 2014–2017, with the wet sea-
son of December–March having the largest positive trend in
emissions. Amazon basin emissions grew from 41.7± 5.3 to
49.3± 5.1 Tg yr−1 during the same period. We derive no sig-
nificant trend in regional emissions from fossil fuels during
this period. We find that our posterior distribution of emis-
sions within South America is significantly and consistently
changed from our prior estimates, with the strongest emis-
sion sources being in the far north of the continent and to
the south and south-east of the Amazon basin, at the mouth
of the Amazon River and nearby marsh, swamp and man-
grove regions. We derive particularly large emissions dur-
ing the wet season of 2013/14, when flooding was prevalent

over larger regions than normal within the Amazon basin.
We compare our posterior CH4 mole fractions, derived from
posterior fluxes, to independent observations of CH4 mole
fraction taken at five lower- to mid-tropospheric vertical pro-
filing sites over the Amazon and find that our posterior fluxes
outperform prior fluxes at all locations. In particular the large
emissions from the eastern Amazon basin are shown to be
in good agreement with independent observations made at
Santarém, a location which has long displayed higher mole
fractions of atmospheric CH4 in contrast with other basin lo-
cations. We show that a bottom-up wetland flux model can
match neither the variation in annual fluxes nor the posi-
tive trend in emissions produced by the inversion. Our results
show that the Amazon alone was responsible for 24± 18 %
of the total global increase in CH4 flux during the study pe-
riod, and it may contribute further in future due to its sensi-
tivity to temperature changes.
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1 Introduction

Methane (CH4), a strong greenhouse gas emitted from a va-
riety of anthropogenic and natural sources, is second only
to carbon dioxide (CO2) in its importance regarding the an-
thropogenic radiative forcing contributing to Earth’s climate
change (Myhre et al., 2013). Approximately 90 % of the CH4
that is emitted into the atmosphere is eventually destroyed
through reaction with the hydroxyl (OH) radical, and most
of the remainder is lost to other, smaller sinks, but a net pos-
itive imbalance means that the atmospheric burden of CH4
has been increasing steadily since preindustrial times (e.g.
Rubino et al., 2019). With an atmospheric lifetime of ap-
proximately 9 years (Prather et al., 2012), CH4 is a poten-
tially important species for short-term gains in mitigation of
anthropogenic climate change (Shindell et al., 2012). How-
ever, the magnitude of the total global sources and sinks of
CH4 is still not well quantified (Saunois et al., 2020). The
geographical distribution and sectoral attribution of methane
emissions, and the inter-annual variation of these sources, are
also uncertain (Saunois et al., 2016; Schaefer, 2019). This
leads to difficulties in assessing potential emission mitigation
strategies, hampering our ability to meet and assess the cri-
teria for limiting the global temperature increase put forward
as part of the Paris climate agreement (Nisbet et al., 2019).

The atmospheric methane burden is now approximately
2.5 times larger than it was in 1750 (Rubino et al., 2019).
The global mean burden stabilised between 2000 and 2006,
after which it began increasing again (Nisbet et al., 2016).
Concerningly, the rate of increase of the atmospheric burden
has accelerated since 2014 (Nisbet et al., 2019). This sug-
gests that CH4 emissions have been increasing at an accel-
erated rate during the past decade, but our understanding of
how emissions are changing is complicated by the following.

1. Attributing a potential emission increase to a particu-
lar region and/or sector is complex, leading to conflict-
ing hypotheses regarding the changing fluxes (e.g. Nis-
bet et al., 2016; Worden et al., 2017; Monks et al.,
2018; Schaefer, 2019; Lan et al., 2019; Jackson et al.,
2020). Indeed, whilst rising atmospheric mole fractions
of greenhouse gases usually signifies increasing anthro-
pogenic influence, the changing isotopic signature of at-
mospheric CH4 as the burden rises initially appears to
indicate that fossil fuel emissions might not be the main
driver for the increase (Schaefer et al., 2016; Nisbet et
al., 2019; Fujita et al., 2020). Other sectors, including
anthropogenic agricultural emissions, could be respon-
sible. On the other hand, it has been argued that increas-
ing fossil fuel emissions could still be reconciled with
the observed isotopic signature, along with increasing
biogenic fluxes, if emissions from fires have decreased
during the same period (Worden et al., 2017; Thompson
et al., 2018; Howarth, 2019; Chandra et al., 2021).

2. The uncertainty surrounding the distribution and varia-
tion of tropospheric OH means that variations, or neg-
ative trends, in this major atmospheric sink of methane
might also have played some role in the stabilisation and
renewed rise (McNorton et al., 2016; Rigby et al., 2017;
Turner et al., 2017; McNorton et al., 2018). However,
others have found no significant trend in OH during this
period (e.g. Naus et al., 2020; Patra et al., 2021) or even
a trend in the opposing direction (Zhao et al., 2020).

In general, anthropogenic emissions of CH4 from fossil fu-
els, agriculture and waste are better constrained than natural
emissions, particularly in bottom-up inventories (Saunois et
al., 2020). The majority of natural emissions come from wet-
lands, with smaller contributions from inland freshwaters,
oceans, termites, wild animals and geological seeps. There
are also small but significant emissions from biomass burn-
ing, which are sometimes counted separately from other an-
thropogenic emissions despite often being due to agricultural
land clearing (van der Werf et al., 2017).

Wetlands are the largest single-sector contributors to the
global methane flux (Saunois et al., 2020), and the basin
of the Amazon River in South America, covering an area
of approximately 6 000 000 km2 (Poulter et al., 2010), is a
significant contributor to the global wetland CH4 emission
budget (Wilson et al., 2016; Bloom et al., 2017). Approx-
imately 60 % of the basin is within the borders of Brazil.
Wetland regions within Amazonia generally include sea-
sonal floodplains in the east and swamps, bogs, and marsh
regions in the west, along with areas of mangroves along
parts of the coast. Throughout the rest of this study, we
group all of these distinct ecosystems together as “wetlands”
for brevity. As well as a number of large wetland sources
within South America, there are often significant contribu-
tions from fires during warmer, drier years (van der Werf
et al., 2017). Recent studies have suggested that there is
also a direct contribution of fluxes entering the atmosphere
via trees in the Amazon, although there are likely some
cases of this flux having been already included as part of
the wetland flux in some inventories (Pangala et al., 2017).
In fact, the contribution of each of these sources of CH4,
along with their regional distribution and variability over
time, is still relatively uncertain. In studies published in the
2000s and early 2010s, estimates of CH4 emissions from the
Amazon basin ranged from 4 to 92 Tg(CH4) yr−1 (hence-
forth Tg yr−1, Melack et al., 2004; do Carmo et al., 2006;
Miller et al., 2007; Kirschke et al., 2013), but recently es-
timates have converged somewhat, e.g. 31.6–41.1 Tg yr−1

(Wilson et al., 2016), 42.7± 5.6 Tg yr−1 (including tree flux,
Pangala et al., 2017) and 44.4± 4.8 Tg yr−1 (Ringeval et
al., 2014). The global wetland total was recently estimated
to be 148± 25 Tg yr−1 from bottom-up estimates and 159–
200 Tg yr−1 from top-down models (Saunois et al., 2020),
which implies that if the majority of the emissions from the
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Amazon are from wetlands, then the region contributes up to
∼ 30 % of the global CH4 wetland flux.

Many studies have attempted to estimate national CH4
emissions rather than from ecosystems such as the Amazon,
partly as it will likely be easier for countries to put in place
emission reduction protocols on a national basis. Some re-
cent studies have therefore reported emission totals for the
country of Brazil. The synthesis of Saunois et al. (2020)
used a suite of top-down models to find a wide range of
47.3–78.2 Tg yr−1 total emissions from all sources within
Brazil during the period 2008–2017. Natural sources made
up 26.9–53.8 Tg yr−1 of this total. Janardanan et al. (2020)
used a global inversion to constrain total Brazilian emis-
sions to 56.2± 10 Tg yr−1 in the period 2011–2017. How-
ever, Tunnicliffe et al. (2020) used a high-resolution regional
inversion to find much smaller emissions from the country,
calculating total Brazilian emissions of 33.6± 3.6 Tg yr−1,
with wetlands making up 13.0± 1.9 Tg yr−1 of this total. The
relatively large range of estimates produced by these studies,
some of which make use of the same observational datasets,
is indicative of the difficulties inherent in using top-down
methods to assess surface emissions of CH4 from within the
poorly monitored continent of South America. However, in
order to best understand the global methane budget and its
sources, it is still vital that the significant contribution of
South American emissions is evaluated and attributed.

In order to best unite these estimates, regular observation
of atmospheric methane over South America is necessary.
The Thermal And Near infrared Sensor for carbon Observa-
tion Fourier Transform Spectrometer (TANSO-FTS) instru-
ment on the Greenhouse Gases Observing Satellite (GOSAT;
Kuze et al., 2009) is particularly advantageous, as it is sen-
sitive far down into the troposphere and has been provid-
ing regular global coverage of atmospheric CH4 continu-
ously since April 2009 (Parker et al., 2020a). This decade
of uninterrupted global coverage allows for understanding of
methane variations over a much longer period than many of
the other available datasets, particularly in the tropics.

In this paper we use CH4 observations from GOSAT along
with flask measurements both from within and outside the
Amazon basin to provide an almost complete 10-year record
of methane emissions from South America, beginning in
2009. We use the TOMCAT chemical transport model and
its inverse model, INVICAT, to quantify emissions and their
uncertainties during this decade. Ours aims are to (1) as-
sess the geographical distribution of South American CH4
emissions, with focus on the country of Brazil and the Ama-
zon basin ecosystem; (2) examine how these emissions have
changed during the previous decade; and (3) investigate why
any changes to natural emissions might have occurred. We
describe the observations used and the modelling methodol-
ogy in Sect. 2. We show our results and discuss our findings
in Sects. 3 and 4, respectively.

Figure 1. Locations of NOAA surface sites from which flask-based
measurements of CH4 are assimilated (blue squares), along with
locations and values of GOSAT XCH4 retrievals for August 2017
(circles). Inset shows locations of flight-based observations of CH4
within the Amazon basin (green triangles).

2 Methods

2.1 Observations

We assimilate both in situ flask observations and GOSAT re-
trievals of CH4 into the inverse model. We also use, but do
not assimilate, a set of observations made as part of regular
flask-based aircraft monitoring campaign within the Amazon
basin since 2010 for validation of our results.

2.1.1 Surface flask observations

We assimilate global long-term surface data of CH4 provided
by the National Oceanic and Atmospheric Administration’s
Global Monitoring Laboratory (NOAA GML, Table A1 in
the Appendix). We use data from 56 background monitoring
sites, the locations of which are shown in Fig. 1. Whole air
samples in flasks are collected weekly to biweekly (every 2
weeks) at each site, and CH4 is measured using gas chro-
matography with a flame ionisation detection method (Dlu-
gokencky et al., 2018). Data from these sites are assimilated
in order to constrain the background variations in CH4 mole
fractions at the Earth’s surface. The observations made at
these locations have high accuracy but are generally located
in regions that are not near significant sources of CH4. There
is a relative lack of regular observation in tropical regions,
where CH4 emissions are significant and uncertain. These
observations can therefore provide accurate values for back-
ground CH4 mixing ratios but are not usually able to pro-
vide accurate regional CH4 distributions in those areas that
require the most constraint.
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2.1.2 GOSAT observations

We also assimilate column-averaged dry-air mole fractions
of CH4 (XCH4) from the University of Leicester Proxy re-
trieval scheme v7.2 for GOSAT (Parker et al., 2011, 2020a).
This dataset has been used in the past in forward modelling
studies to assess wetland CH4 emissions using the TOM-
CAT model (Parker et al., 2018, 2020b). The GOSAT Proxy
scheme uses the ratio of the retrieved XCO2 and XCH4, to-
gether with model-based estimates of XCO2, in order to re-
duce the effects of atmospheric scattering and improve cov-
erage of XCH4 retrievals. This is particularly true in tropi-
cal land regions where the prevalence of cloudy pixels of-
ten restricts the successful direct retrieval of XCH4. GOSAT
XCH4 retrievals have been used previously in a number of
forward and inverse modelling studies (Fraser et al., 2013;
McNorton et al., 2016; Feng et al., 2017; Miller et al., 2019).
The observations are regularly validated against independent
data, including CH4 observations made as part of the To-
tal Carbon Column Observing Network (TCCON, Wunch et
al., 2011), although none of the measurement sites included
as part of this network are located within the Amazon re-
gion. Webb et al. (2016) compared GOSAT XCH4 to verti-
cal profiles of flask-based measurements of CH4 taken at a
number of sites within the Amazon basin (described here in
Sect. 2.1.3) and found that biases between the satellite re-
trievals and the flask observations were not significantly dif-
ferent from zero.

Before assimilation, GOSAT-retrieved and a priori XCH4
were averaged onto the model grid. Both sun-glint obser-
vations over the oceans and nadir observations over land
were included in the inversion. All XCH4 values measured
by the satellite during one model time step in the same grid
cell were averaged using a weighted mean according to their
uncertainties. The largest number of observations combined
into a single value was 32, and the mean number was 4.7
over land and 6.0 over oceans. Within the Amazon basin,
the mean number of observations combined was 3.8. Fig-
ure 1 shows an example monthly distribution of observations
used in the inversion. For accurate comparison between the
retrieved XCH4 and those simulated by the model, GOSAT
averaging kernels falling in the same model grid cell and time
step were averaged, similarly to the XCH4, and applied to the
model vertical profile. Using a single model profile in each
grid cell and model time step allows the use of averaging ker-
nels that have been averaged in this way without introducing
a bias, due to the distributive property of matrix multiplica-
tion. Retrievals where the model and satellite surface pres-
sure differed by more than 50 hPa were rejected.

Due to a range of potential error sources in both the at-
mospheric transport model and the GOSAT retrievals, there
is a persistent bias between them, which varies with lati-
tude. We quantified this bias by comparing the results of a
previous inversion, in which only the surface flask observa-
tions had been assimilated for the full 2009–2018 period,

to the GOSAT XCH4. We applied the averaging kernels to
the three-dimensional (3-D) CH4 output from the flask data
inversion and calculated the model–observation zonal mean
bias B(ϕ), in parts per billion (ppb), as a function of latitude
(ϕ), over this period:

B (ϕ)= 0.0016ϕ2
− 0.1ϕ+ 4.4, (1)

where ϕ is equal to the latitude of the observation in de-
grees north (see Fig. A1). Positive values of B(ϕ) indicate
positive observation bias relative to the model. Including a
function that is constant along the longitudinal and tempo-
ral axes means that all information content from the satellite
data along these axes is preserved, but this method reduces
conflict between assimilation of the satellite and flask obser-
vations. Similar methods have been used before, for exam-
ple in Bergamaschi et al. (2009). Across the tropics (30◦ S–
30◦ N), the derived bias varies between 2.8 and 8.8 ppb. Fur-
ther south, the bias reaches values up to 13.4 ppb. In our anal-
ysis we add the estimated bias value to the simulated XCH4
values in the inversion after the averaging kernels are applied.

2.1.3 Amazonian aircraft profiles

We used independent in situ observations of CH4 mole frac-
tion made within the basin to validate our inversion results.
Since 2010, aircraft-borne flask air observations of a num-
ber of species, including CH4, CO2 and carbon monoxide
(CO), have been made at five locations within the Amazon
basin (shown in Fig. 1, inset) by researchers at the Insti-
tuto de Pesquisas Energéticas e Nucleares (IPEN) in Sao
Paulo, Brazil, until 2014 and at the National Institute for
Space Research (INPE) São José dos Campos, Brazil (2015–
present). The sites are located at Santarém (SAN, 2.9◦ S,
55.0◦W), Tabatinga (TAB, 6.0◦ S, 69.7◦W), Alta Floresta
(ALF, 8.9◦ S, 56.7◦W), Rio Branco (RBA, 9.3◦ S, 67.9◦W)
and Tefé (TEF, 3.6◦ S, 66.5◦W). Measurements were only
ever made concurrently at four locations, as the measure-
ments at Tefé were started in 2013, to replace those made
at Tabatinga up to 2012. We therefore combine observa-
tions made at these locations and refer to them as TAB/TEF
throughout this paper. Both sites are located in the north-
west of the Amazon basin and sample similar incoming air
masses. Flights are undertaken at approximately biweekly
(every 2 weeks) intervals above each site up to an altitude
of ∼ 4.4 km, and 0.7 L flasks were filled every 300–500 m to
produce vertical profiles. All measurements were taken be-
tween 12:00 and 13:00 local time, when the boundary layer is
fully developed. The flasks were analysed for CH4 mole frac-
tions at the high-precision gas analytics laboratory at IPEN
and INPE, following the NOAA GML approach, including
rigorous calibration to the World Meteorological Organiza-
tion (WMO) CH4 mole fraction scale. The measurement lo-
cations were chosen in order to sample the dominant tropo-
spheric airstream across the basin. These observations were
not assimilated in the inversion. For more information about
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these measurements, see Gatti et al. (2014) and Basso et
al. (2016).

2.2 Model set-up

2.2.1 Inverse model set-up

The TOMCAT model is a global 3-D Eulerian offline chem-
ical transport model (CTM) (Chipperfield, 2006; Monks et
al., 2017). It has been used in a number of previous stud-
ies of atmospheric composition and transport (e.g. Wilson et
al., 2016; McNorton et al., 2016; Parker et al., 2018). We
use the INVICAT inversion framework (Wilson et al., 2014),
which is based on the TOMCAT model and its adjoint. IN-
VICAT uses a variational scheme based on 4D-Var methods
used in Numerical Weather Prediction (NWP) and has been
used in the past to constrain emissions of species including
CO2, ethane (C2H6) and nitrous oxide (N2O) (Gloor et al.,
2018; Monks et al., 2018; Thompson et al., 2019; Tian et
al., 2020). The inverse method employed by INVICAT is de-
scribed in depth in these previous references. In brief, the
method aims to minimise, in a least-squares sense, the value
of a cost function. The cost function is an error-weighted sum
of the model–observation mismatch, plus error-weighted de-
partures from the a priori flux estimate.

The inversion input is in the form of an a priori mean flux
value for each grid cell along with an error covariance ma-
trix for these values, and the output is an a posteriori mean
grid cell flux value and error covariance matrix. Mean a pri-
ori and a posteriori atmospheric mole fractions of CH4 are
also produced. For brevity, throughout the remainder of this
text, we will refer to the mean a priori and a posteriori fluxes
as “prior fluxes” and “posterior fluxes”, respectively. Simi-
larly, the mean a priori and a posteriori mole fractions will
be referred to as prior and posterior mole fractions.

The forward and adjoint model simulations were carried
out at 5.6◦× 5.6◦ horizontal resolution, with 60 vertical lev-
els up to 0.1 hPa. The model time step was 30 min. The me-
teorology was taken from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-Interim reanaly-
ses (ERA-I, Dee et al., 2011). The inversions were carried
out for each year separately and each completed 40 min-
imisation iterations. For each year’s inversion, 40 iterations
were enough for the cost function and its gradient norm to be
judged to have converged (less than 1 % variation through 5
consecutive iterations). The inversion for each year was ac-
tually run for 14 months up to the end of February for the
following year, with the final 2 months being discarded from
the results. This was in order to better constrain fluxes dur-
ing the final months of each year. Each inversion therefore
overlapped with the following one for 2 months but was ini-
tialised using 3-D fields provided from the correct date in the
previous year, so that total CH4 burden was conserved across
years.

For the assimilated surface observations, the model out-
put was linearly interpolated to the correct longitude, latitude
and altitude at the nearest model time step. For the averaged
GOSAT observations, the model mole fractions were inter-
polated to the correct longitude and latitude at the nearest
time step, before the GOSAT averaging kernels were applied
to the model output to give an XCH4 value comparable with
GOSAT. GOSAT observations are given an uncorrelated un-
certainty equal to 2.5 times the supplied retrieval error, which
ranged from 3.5 to 25.8 ppb, in order to account for repre-
sentation error and observation correlations removed by the
averaging of the retrievals, as in Chevallier (2007). This in-
flation value was based on the mean number of observations
combined in each grid cell. In short sensitivity tests, the mag-
nitude of posterior emissions was not sensitive to this infla-
tion factor once it was larger than 2, although the posterior
error estimate was affected. This choice gave a mean GOSAT
XCH4 uncertainty value of 24.4 ppb. NOAA observations are
given uncorrelated errors of 3 ppb plus representation error.
For these observations, representation error was estimated as
the mean difference across the eight grid cells surrounding
the cell containing the observation location.

Prior emissions are given grid cell uncertainties of 250 %
of the prior flux value but also included spatial and tempo-
ral correlations. Although inversions such as this do not di-
rectly allow for sectorial analysis of emissions, we use the
off-diagonal values of the prior covariance matrix to pro-
vide some information of this nature. Similar to Meirink et
al. (2008), we split our prior and posterior solutions into the
anthropogenic fossil fuel emissions assumed to be strongly
correlated in time (FF), as well as emissions with strong
seasonal cycles from natural, agricultural and biomass burn-
ing sources (NAT+AGR+BB) by imposing prior tempo-
ral correlations on the FF contributions. FF emissions in
each grid cell in each month were correlated with emis-
sions from the same grid cell in other months with an ex-
ponential correlation function with a timescale of 9.5 months
(equivalent to a consecutive-month correlation of 0.9). Both
NAT+AGR+BB and FF sectors had spatial correlations
imposed between grid cells, based on Gaussian covariance
functions with correlation length scales of 500 km. This gives
global uncertainty of approximately 70 Tg yr−1. The sectors
which make up the NAT+AGR+BB and FF emissions are
explained in Sect. 2.2.2.

We produced estimates for each year’s posterior emis-
sion covariance error matrix using cost function gradient val-
ues from the limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm (L-BFGS) that we employ to minimise
the cost function (Nocedal, 1980), based on the method sug-
gested by Bousserez et al. (2015). This iterative method esti-
mates the inverse of the Hessian (the second derivative) of the
cost function and does not include the off-diagonal elements
of the posterior covariance matrix, so the posterior errors de-
scribed in this paper are likely to be lower limits (Bousserez
et al., 2015).
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2.2.2 Prior emissions and chemical sinks of CH4

Prior emissions were taken from a range of widely available
bottom-up models and inventories. Anthropogenic emissions
were originally taken from the EDGAR v4.2 FT 2010 inven-
tory (Olivier et al., 2012) and scaled as in McNorton et al.
(2018) to apply an increasing global linear trend for the pe-
riod after 2012. Biomass burning emissions were taken from
GFEDv4.2 (van der Werf et al., 2017). The JULES model
(Clark et al., 2011) was used to provide wetland fluxes, in a
configuration described in McNorton et al. (2016), using four
separate carbon pools to drive methanogenesis. Rice emis-
sions were taken from Yan et al. (2009) and are scaled by
a factor of 0.75 as in Patra et al. (2011). Remaining small
natural sources (termites, geological and oceanic emissions)
were included as in Wilson et al. (2016). Sectoral emis-
sion maps are shown in Fig. A2, whilst prior totals for each
source type within South American regions are shown in
Table 1. The prior global flux of CH4 to the atmosphere
rises from 549.5 Tg yr−1 in 2009 to 564.0 Tg yr−1 in 2017.
The surface soil sink due to methanotrophs was from the
Soil Methanotrophy Model (MeMo, Murguia-Flores et al.,
2018), repeating the 2009 flux every year, with a value of
33.9 Tg yr−1. Landfill and fossil fuel emissions had tempo-
ral correlations imposed in the prior uncertainty matrix and
made up the FF category, whilst the remaining emissions
(NAT + AGR + BB) had no prior temporal correlations
imposed. Atmospheric OH fields, based on those provided
within the TransCom CH4 study (Patra et al., 2011), were
taken from Spivakovsky et al. (2000) and scaled downwards
by 8 % in accordance with Huijnen et al. (2010). The OH
fields used here have previously been shown to capture ob-
served atmospheric lifetimes for CH4 and methyl chloroform
(CH3CCl3) in TOMCAT to within the observed uncertainty,
although simulations of sulfur hexafluoride (SF6) and other
species show that the interhemispheric gradient in TOM-
CAT is slightly large compared to observations but within
the bounds of other transport models (Patra et al., 2011; Wil-
son et al., 2014). The OH fields vary from month to month
but do not vary between years. Montzka et al. (2011), Naus et
al. (2020) and Patra et al. (2021) suggested that variability in
annual OH mole fractions is small, but other recent research
has suggested the possibility of a declining trend in OH since
2004 (Rigby et al., 2017; Turner et al., 2017), although this
trend had a high level of uncertainty. Other studies have
found that the El Niño–Southern Oscillation (ENSO) has had
a significant impact on OH variability in the troposphere in
recent decades (e.g. Rowlinson et al., 2019; Anderson et al.,
2020; Zhao et al., 2020), and potentially an increasing trend
in tropospheric OH during 1980–2010 (Zhao et al., 2020).
A trend in OH, or any year-to-year variability, was not in-
cluded in our analysis, which will inform our conclusions,
but for now we do not have enough evidence to include any
potential variations. Stratospheric loss fields due to reactions
with atomic chlorine (Cl) and excited oxygen atoms (O(1D))

varied on a monthly and annual basis and were taken from
a previous full chemistry simulation from TOMCAT (Monks
et al., 2017). The total simulated atmospheric CH4 sink due
to reaction with the OH radical in 2009 was 494.5 Tg, whilst
the annual stratospheric CH4 sink due to O(1D) and Cl was
19.5 Tg. CH4 loss in the troposphere through reaction with
Cl was not included in these simulations.

2.2.3 Bottom-up model

We also use a simple bottom-up (B-U) model to estimate
wetland CH4 emissions from meteorological and ecological
input data, so that we can investigate the causes of variations
in CH4 emissions derived in the inversion. The B-U model,
which is based on observed or modelled estimates of wet-
land fraction, heterotrophic respiration of carbon and surface
temperature, is described fully in Appendix B. The model
uses measurements of gravity anomalies made on the twin
Gravity Recovery and Climate Experiment (GRACE) satel-
lite mission as a proxy for variations in wetland fraction. The
equation that our B-U model is based on is commonly used in
other studies that estimate wetland fluxes of CH4 (e.g. Clark
et al., 2011; Melton et al., 2013; Bloom et al., 2017), but our
application of the driving climate variables is fairly simple
relative to these previous works. This method is sufficient
for this work as the purpose of the B-U model is to investi-
gate the possibility of reproducing the inversion results, and
if they can be reproduced, to learn how and why the CH4
wetland emissions change according to the input variables. If
the inversion results are not reproduced using the B-U wet-
land model, it could indicate that other sectors played a role
in any observed variation.

3 Results

3.1 Average distribution of emissions

Average GOSAT XCH4 values over South America since
2009 show that XCH4 column mole fractions were largest
over the west of the continent, particularly in the north-
west (Fig. 2). Using the prior flux distribution in TOMCAT
leads the model to underestimate XCH4 in the north-east and
far north of the continent and in the outflow into the At-
lantic Ocean. Simulated XCH4 is overestimated to the south
and west of the continent. After assimilation, the largest
model biases are removed, although there is a small posi-
tive bias in the interior of the continent, usually smaller than
5 ppb. The posterior (prior) mean model–satellite mismatch,
weighted by the observation uncertainty, is 0.2 (−24.1) ppb
globally, −5.4 (−40.0) ppb within South America and −4.1
(−66.5) ppb within the Amazon basin. The posterior resid-
uals show no significant trend or seasonality within South
America or within the basin (Fig. A3).

Figure 3 shows the 2009–2018 mean prior and posterior
emission distributions of CH4 emissions in South America.
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Figure 2. (a) Mean GOSAT XCH4 over South America and surrounding area for 2009–2018. Observations have been averaged onto the
TOMCAT model grid as described in the text. Also shown is the mean difference between the model and satellite XCH4 using (b) the prior
emissions and (c) the posterior emissions for the same period.

Figure 3. Prior, posterior and (prior–posterior) mean gridded to-
tal South American CH4 emissions (mg m−2 d−1) for the period
2009–2018 (a–c), and similar but for fossil fuel sources (d–f) and
natural/agricultural/biomass burning sources (g–i) only.

We display the mean over this entire period in order to show
the consistent, long-term emission distribution. Whilst pos-
terior uncertainty in particular grid cells can still be fairly
large (Fig. A4), regional changes are much less uncertain.
Posterior South American emissions are significantly redis-
tributed compared to the prior distribution due to changes
in the NAT+AGR+BB emission sectors. Whilst the prior
emissions are fairly homogeneous across much of the Brazil-
ian Amazon, the posterior emissions are largest to the north-
east of the continent and are reduced in the south and the
north-west. Emission rates in the far north of the continent,
potentially related to seasonal flooding in the basin of the
Orinoco river in Venezuela, are also high in the posterior re-
sults.

The most significant feature of the posterior distribution
is a region of high emission rates near the coastal basins
around the mouth of the Amazon River itself (Fig. 3). There
are large emissions from the region around the north-eastern
states of Para, Maranhão and Tocantins. These areas contain
the basins of many of the larger Amazon tributaries and a
high density of wetland sources such as marshes, swamps
and mangroves, according to the Sustainable Wetlands Adap-
tation and Mitigation Program (SWAMP) data from the Cen-
ter for International Forestry Research (CIFOR) (Gumbricht
et al., 2017). The prior flux distribution also highlights agri-
cultural sources near this region in the EDGAR inventory
(Fig. A2).

However, in our posterior results, the western Amazon and
the Pantanal region in the south of Brazil do not display high
emissions. Although the coarse resolution of the model grid
boxes masks the signal from the relatively small Pantanal re-
gion in the prior emissions to some extent, it is still surprising
that the posterior emissions have small methane fluxes from
the southern regions of Brazil. As shown in Fig. 2, the model
generally overestimates the XCH4 in southern Brazil com-
pared to GOSAT when using the prior emissions, so it is not
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Figure 4. (a) Total annual Brazilian prior and posterior emissions
(Tg(CH4)/yr). Shaded areas show posterior uncertainties as derived
in the inversion. (b) Monthly mean prior and posterior Brazilian
CH4 emissions (Tg(CH4)/yr, 2009–2018). Shaded areas show the
standard deviation for each month. (c) Regions of South America
discussed in the text. The hatched area (AmBasin) represents the
Amazon basin across all countries, whilst the shaded areas show
Brazilian and non-Brazilian regions.

surprising that emissions from that region were reduced in
the inversion. The low emissions from a region where we ex-
pect significant methane release might mean that the model
transport errors affect comparisons in this region, that the
model–satellite bias included in the inversion (Eq. 1) is in-
accurate or that the GOSAT sampling does not cover this re-
gion well (note the relatively small error reduction in this
region, Fig. A4). The low emissions in the western Amazon
are also a consistent feature of our results. The FF emissions
do not change significantly in the inversion, although they
are slightly decreased towards the south-east of Brazil, close
to the large cities of São Paulo and Rio de Janeiro. The over-
all pattern of the posterior emissions displayed in Fig. 3 is
robust on a year-to-year basis, with the change relative to the
prior in each individual year displaying very similar patterns
to the multi-year mean (Fig. A5).

3.2 Temporal variations of CH4 emissions

The annual total prior emissions in Brazil are nearly constant
over time (Fig. 4), with a mean value of 48.6± 14.9 Tg yr−1

(uncertainty here from prior error covariance matrix). How-
ever, the posterior emissions show a positive trend, particu-
larly from 2013 onwards. Globally, the posterior flux rises
from 566.2 Tg yr−1 in 2009–2013 to 594.0 Tg yr−1 in 2014–
2018 (Table 1), consistent with other studies (e.g. Saunois

et al., 2020). In Brazil, the mean posterior annual emissions
are 49.8± 5.4 Tg yr−1 in the period 2009–2013 but rise to
55.6± 5.2 Tg yr−1 in 2014–2018, with a mean value over the
whole period of 52.7± 5.3 Tg yr−1. The uncertainty stated
for these figures represents the overall mean annual posterior
uncertainty for Brazil derived in the inversion for each 4-year
period. We report the mean annual uncertainty as we assume
that posterior uncertainty for each year is strongly correlated
with that in other years. Reporting the mean value implicitly
assumes a correlation of 1 between the years’ uncertainties;
in reality the correlation is likely smaller than 1. Our total
Brazilian mean flux is within the range found by Saunois
et al. (2020) and agrees well with the findings of Janar-
danan et al. (2020). There is a significant positive trend over
the whole time period (2010–2018) of 1.37± 0.69 Tg yr−2

(p < 0.05), driven by the NAT+AGR+BB emissions cat-
egory, although the distribution actually resembles a step
change in 2014.

Posterior emissions in Brazil peak in February and
September (Fig. 4b), representing the wet season and dry
season, most likely due to contributions from the local sea-
sonal cycles of wetland emissions and biomass burning emis-
sions, depending on the location. The peak monthly emission
rate of 66.2± 8.2 Tg yr−1 is in February, before lower rates
of emission during April to July. This February peak corre-
sponds to a peak in precipitation across the basin (from the
Global Precipitation Climatology Project (GPCP) v2.3 com-
bined precipitation dataset, Adler et al., 2018) but precedes
the peak in gravity anomaly – representative of soil water
depth – captured by the GRACE satellite (Fig. A6). Emis-
sions in August and September are almost as large as those
during the peak of the wet season. Again, almost all of this
seasonal variation comes from the NAT + AGR + BB emis-
sion category.

Within the entire Amazon region, emissions grew from
41.7± 5.3 Tg yr−1 in 2010–2013 to 49.3± 5.1 Tg yr−1 in
2014–2017. Emissions are largest in the eastern Brazilian
Amazon (EBrAm, Fig. 5) and are significantly larger than
suggested by the prior emissions, particularly in the most re-
cent years. The increase in emissions over the period is also
largest there, rising from 22.4± 3.4 Tg yr−1 in 2010–2013 to
26.8± 3.3 Tg yr−1 in 2014–2017 (trend: 1.06 Tg yr−2, p <
0.01). Emissions also increase from 10.0± 2.9 Tg yr−1 to
12.3± 2.8 Tg yr−1 between these two periods in the western
Brazilian Amazon (WBrAm). However, in the non-Amazon
region of Brazil (NonAmBr), emissions decrease slightly
over these years (from 17.5± 3.0 to 16.4± 2.9 Tg yr−1).
Trends in WBrAm and NonAmBr are not significant for
p < 0.01. The Amazon regions of Brazil display the two-
peak seasonal cycle of CH4 emissions, although this is much
more pronounced in the east. This is at least partly due to the
significant effect of biomass burning within the arc of defor-
estation in the south-east of the basin that usually occurs dur-
ing these months. Emissions are largest in NonAmBr during
the dry season, possibly due to fires or agricultural activity.
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Table 1. Prior and posterior emissions of CH4 for Brazil and other subregions of South America (2010–2017). Units are Tg yr−1.

Prior (Tg yr−1) Posterior (Tg yr−1)

2010–2013 2014–2017 2010–2013 2014–2017

NAT+AGR+BB FF NAT+AGR+BB FF NAT+AGR+BB FF NAT+AGR+BB FF

Brazil 38.9± 11.7 10.6± 9.2 38.2± 11.4 10.6± 9.2 39.9± 5.3 9.9± 0.9 45.7± 5.1 9.9± 0.9
South America 59.9± 16.4 23.9± 16.2 58.5± 16.0 23.9± 16.2 62.7± 7.0 31.6± 1.7 68.9± 6.7 28.9± 1.8
West Brazilian Amazon 10.1± 5.4 0.3± 0.5 10.2± 5.5 0.3± 0.5 9.7± 2.9 0.3± 0.0 12.0± 2.8 0.3± 0.0
East Brazilian Amazon 13.4± 7.1 2.7± 3.8 12.9± 6.7 2.7± 3.8 20.0± 3.4 2.4± 0.3 24.3± 3.3 2.5± 0.3
Non-Amazon Brazil 15.4± 6.3 7.5± 8.4 15.1± 6.2 7.5± 8.4 10.2± 2.9 7.2± 0.8 9.3± 2.8 7.1± 0.9
Amazon basin 35.6± 12.4 4.1± 4.3 35.1± 12.2 4.1± 4.3 38.2± 5.3 3.5± 0.3 45.6± 5.2 3.7± 0.3

Figure 5. (a–c) Total annual (red lines) prior and posterior emissions of CH4 (Tg yr−1) in three Brazilian subregions: the western Brazilian
Amazon (WBrAm), the eastern Brazilian Amazon (EBrAm) and non-Amazon Brazil (NonAmBr). Prior and posterior emissions during
the wet season (December–March, grey lines) and the dry season (August–October, maroon lines) are also shown. Shading represents the
posterior uncertainties for each region derived in the inversion. (d–f) Monthly mean prior and posterior emissions for the period 2009–2018
(Tg yr−1) for the three subregions. Shading shows the standard deviation of the monthly means.

We also show total emissions for each subregion dur-
ing the wet season (December–March) and the dry sea-
son (August–October). These periods were defined using
the GPCP precipitation data, as periods when the average
monthly precipitation during 2009–2018 within the basin
was more than 7 mm d−1 and less than 3 mm d−1, respec-
tively. In both WBrAm and EBrAm, the trends for the 2009–
2018 period are largest in the wet season. This suggests that
trends in wetland and floodplain emissions could be respon-
sible for the rising CH4 emissions, in line with reports of
intensifying flood extremes in the area in recent decades
(Barichivich et al., 2018). However, there are other poten-
tial explanations. These include escalating biomass burning
emissions during the wet season (Silva Junior et al., 2019)
and an intensification of agricultural emissions in these re-

gions, as seen in version 5.0 of the EDGAR anthropogenic
flux inventory in Brazil (Crippa et al., 2020), or some com-
bination of factors. Unfortunately, our results cannot be used
to say more about which sectors are responsible for the in-
creasing flux.

3.3 Comparison to independent observations

Observations of CH4 made during flights within the basin
between 2010 and 2018 were used to independently check
the performance of the prior and posterior emission distri-
butions in the model (Fig. 6, Table 2). For the observations
made at altitudes higher than 3 km, which represents the free
troposphere above the Amazon, the mean bias (MB) between
model using the posterior emissions and the observations is
significantly reduced at all locations, compared to that pro-
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Figure 6. Histogram plots showing prior (black) and posterior (red) (model–observation) differences at the four Amazon flight locations,
2010–2018. Measurements were taken at Alta Floresta (ALF), Rio Branco (RBA), Santarém (SAN), and Tabatinga and Tefé (TAB/TEF).
Model output has been interpolated to observation locations and altitudes, before both were averaged into monthly means and into altitude
bins of 3 km and above (a–d) and 1.5 km and below (e–h). Dotted vertical lines show the zero line, whilst dashed vertical lines show prior
and posterior mean model–observation bias.

duced when using the prior flux in the model. The correlation
between the model and the observations also increases at all
locations when using the posterior flux rather than the prior.
The absolute value of the model–observation bias is reduced
to below 6 ppb at all sites. However, the posterior model MB
against observations made in the boundary layer, at altitudes
below 1.5 km, is higher than the prior model MB at three
sites. At the western sites, RBA and TAB/TEF, the MB in
the model increases by approximately 15 ppb, although the
correlation improves, particularly at TAB/TEF. At ALF, the
correlation decreases slightly, and the MB increases by a
large amount (31 ppb). Finally, at SAN, the performance im-
proves significantly by both measures, with the MB being
reduced from −47.8 to −15.2 ppb. There are no significant
trends (at 95 % level) in the model–aircraft residual biases in
2010–2017, except at TAB/TEF below 1.5 km. This site has
a posterior residual bias trend of +2.1 ppb/yr, but this may
have been caused by the change in the flight location halfway
through the study period.

The improved performance at SAN is significant, as the
high mole fractions of CH4 sampled at this location relative
to expectations given its location situated close to the eastern
coast have been previously noted (Miller et al., 2007; Basso
et al., 2016; Wilson et al., 2016). The prior model therefore
has a large negative bias at SAN, particularly near the sur-
face. The posterior distribution of emissions, with a region
of high emission rates to the south and east of the basin, sub-

stantially reduces the model–observation difference at SAN.
The model still underestimates methane mole fractions at
this site even after the improvement, however, which might
be due to bias which remains in the posterior flux estimate,
possibly due to the allocated prior uncertainty in this re-
gion being too small, or model representation uncertainty.
The fact that ALF is also located near these significant emis-
sions leads to degradation in the model performance within
the boundary layer, which was previously better at ALF than
at SAN. The capability of assimilation of GOSAT XCH4 to
improve performance at both of these locations might have
been reduced due to the relatively coarse model grid. Webb
et al. (2016) found that comparisons between the flight-based
observations and a previous version of the GOSAT XCH4
used in this study showed that the GOSAT values were larger
than equivalents estimated using the flight data at ALF but
that the discrepancy was much smaller at SAN. This being
the case, it is not surprising that the model in which the
GOSAT data have been assimilated has difficulties in match-
ing the flight observations at both locations at once. Since
we assimilated XCH4 from GOSAT, which is mostly rep-
resentative of the troposphere, it is expected that the model
performance is improved at all locations when compared to
observations made at the higher altitudes. This also indicates
good model representation of inflow of CH4 to the basin from
elsewhere. However, the fact that the posterior comparisons
are generally degraded close to the surface, apart from at
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Figure 7. Anomalies of gravity anomaly (cm, black, left axis),
surface temperature (K, red, right axis) and heterotrophic respira-
tion (×10 gC m−2 d−1, blue, right axis) for the period 2009–2018
within the Amazon basin. Monthly mean anomalies are shown
as thin lines, whilst wet season (December–March) averages are
shown as thick lines. Interpolated values for gravity anomalies are
shown as dashed lines.

SAN, means that the local sources close to these sites might
be overestimated at this model resolution, that there are er-
rors in the model’s representation of vertical mixing or that
there remains a positive bias in the assimilated retrievals from
GOSAT in this region. Generally, however, the temporal vari-
ation and MB in the model is much improved after the assim-
ilation of GOSAT XCH4.

3.4 Bottom-up model results

The inversion suggests that CH4 emissions have been signif-
icantly increasing from eastern Amazon regions throughout
the 2010s, but it is not able to determine the source sectors re-
sponsible for this rise. The largest increases over time occur
during the wet season (Fig. 5), when wetland emissions dom-
inate the atmospheric signal, so it is possible that changes to
these emissions led to the increase. Emissions from seasonal
floodplains and wetlands are sensitive to temperature, precip-
itation (which affects wetland area) and carbon availability in
the soil (Bloom et al., 2017), so we examined these factors to
see how they varied during the previous decade and whether
wetlands could have been responsible for increasing wet sea-
son CH4 emission in the basin.

The mean surface temperature within the Amazon basin
increased throughout the period 2009–2018 (Fig. 7), while
there was no significant trend in precipitation (not shown)
or gravity anomaly. Estimating the trends of these factors is
significantly affected by one anomalously dry and hot period,
running from late 2015 to mid-2016. These record-breaking
conditions were caused by the 2015/16 El Niño and were
largely confined to the east of the basin (Jiménez-Muñoz et
al., 2016). A previous extreme event during this study period,
in the dry season of 2010, displayed a similar geographical
distribution but was easily surpassed by the scale of the 2016
drought (Lewis et al., 2011; Jiménez-Muñoz et al., 2016).
One other event that stands out is the prolonged flooded
period running through the wet season of 2013/14, during

which rainfall in the south-west of the basin was up to twice
as much as usual (Espinoza et al., 2014). This flooded pe-
riod did not coincide with a significant ENSO period but was
likely caused by warm conditions in the subtropical South
Atlantic.

Figure 7 also shows the wet season mean anomalies for
each year for the surface temperature, gravity anomaly and
modelled heterotrophic respiration. Wet season temperatures
were high in 2010 and in 2015, 2016 and 2018. The water
table was at its highest in 2012, 2014 and 2015. Finally, het-
erotrophic respiration was strongest in 2010, 2013 and 2014
but very low in 2015 and 2016. There was no heterotrophic
respiration model data available for 2017, so we used a cli-
matology value for that year. We felt that this was justified
since the temperature and water table depths also had only
very small anomalies during that season. As might be ex-
pected, the temperature and gravity anomalies in the wet sea-
son were strongly negatively correlated (r =−0.66), due to
coincidence of hot and dry conditions.

The temperature trend in the Amazon was positive
throughout almost the entire basin (Fig. 8a), particularly in
the far west and south-east. The trend in the wetland fraction
(Fig. 8b) was more heterogeneous, with positive trends in the
west contrasting with strong negative trends across the east
of the basin. Both sets of trends are strongly impacted by the
hot, dry conditions in 2015/16.

The geographical distribution of the NAT+AGR+BB
wet season CH4 emission trend produced by the inversion
(Fig. 8c) is positive across the north-west and south-east
of the basin, with a similar distribution to the temperature
trends. The positive emission trends in the north-west are col-
located with an area of increasing wetland fraction. However,
the regions to the east and south with strong positive emission
trends are located where wetland fraction had been decreas-
ing as temperatures increased. This suggests that, if wetlands
were responsible for increased wet season flux, the methano-
genesis must have been more sensitive to the increasing tem-
perature than to the decrease in wetland fraction or in het-
erotrophic respiration (not shown).

We ran the B-U model multiple times, varying the tem-
perature response and the GRACE anomaly scaling vari-
ables in order to produce a range of likely values for CH4
flux from the basin. We also optimised B-U model param-
eters, as described in Sect. 2.2.3, in order to best repro-
duce the INVICAT results using the B-U model (Fig. 8d
and e). The B-U model combines the three driving vari-
ables, but the strong anti-correlation between the tempera-
ture and wetland fractions means that this model does not
produce strong variations in emissions, since the two tend to
cancel out. Using the optimised B-U model produces weak
positive emission trends in the west of the basin and weak
negative trends elsewhere, giving no significant trend overall
(p = 0.36). The optimised values are included in Appendix
B. The standard deviation of the wet season emissions in the
B-U model is 1.7 Tg yr−1, compared to 2.4 Tg yr−1 in the
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Table 2. Prior and posterior bias (ppb) and correlation between TOMCAT and Amazon flight observations (2010–2018). The better value for
bias and correlation for each site and altitude is highlighted in bold.

Prior mean Posterior mean Prior Posterior
bias (ppb) bias (ppb) correlation correlation

ALF, > 3 km −13.7 2.6 0.71 0.75
SAN, > 3 km −19.4 −5.7 0.79 0.88
TAB/TEF, > 3 km −11.1 4.7 0.67 0.81
RBA, > 3 km −9.4 4.6 0.70 0.80
ALF, < 1.5 km 10.2 41.2 0.70 0.67
SAN, < 1.5 km −47.8 −15.2 0.32 0.49
TAB/TEF, < 1.5 km 0.0 15.0 0.48 0.65
RBA, < 1.5 km 5.7 21.4 0.54 0.56

inversion results. The mean posterior error in the inversion
results (2.9 Tg yr−1) is relatively large compared to the stan-
dard deviation, however, meaning that the B-U values almost
always remain within the posterior inversion uncertainty. The
exception to this is the wet season of 2014, when the in-
version results produce larger emissions than in any other
year (20.1± 2.7 Tg), and this feature is not reproduced by
the B-U model. As discussed, the wet season of 2014 was
subject to extreme precipitation and widespread flooding in
the basin (Espinoza et al., 2014), and the GRACE gravity
anomalies are large throughout this period (Fig. 7), whilst
heterotrophic respiration was high and temperatures were
relatively cool (although warmer than in 2011 and 2012). De-
spite these conditions which seem favourable to CH4 emis-
sion, the B-U model does not produce emissions significantly
larger than any other year. The discrepancy between the in-
version and B-U model results is discussed further in Sect. 4.
Figure 8e also shows the wet season emissions within the
basin from the full ensemble (FE) of the WetCHARTs emis-
sion dataset (Bloom et al., 2017), which use a similar method
to estimate wetland emissions that used in our B-U model.
These emissions also show a negative trend over the period
2010–2017 (−0.17 Tg yr−1), and the variation is again small
(0.93 Tg yr−1 standard deviation). They display no signifi-
cant change in emissions in the wet season of 2013/14. The
implications of the discrepancy between the inversion and
the B-U model are discussed in Sect. 4.

4 Discussion

We derive emissions of CH4 in Brazil for the period 2010–
2018 of 52.7± 5.3 Tg yr−1, split into two periods dur-
ing which mean Brazilian emissions were 49.8± 5.4 in
2010–2013 and 55.6± 5.2 in 2014–2017, an increase of
5.8± 5.2 Tg yr−1. This increase was found to be entirely
due to the NAT+AGR+BB emissions within the Ama-
zon region. In Amazonia, emissions grew from 41.7± 5.3 to
49.3± 5.1 Tg yr−1 over the same two periods.

This increase between the two periods is very similar
to that found by Tunnicliffe et al. (2020), although the to-
tal emissions found in our study are larger than their find-
ing of 33.3± 3.7 Tg yr−1. They removed a model–satellite
bias of 22± 8 ppb from the GOSAT observations used in
their study, which is much larger than our bias of 3–9 ppb
removed from XCH4 over the Amazon. This treatment of
bias, coupled with differences in model transport, could ex-
plain the different emissions derived. The positive biases in
our posterior CH4 relative to aircraft observations within
the boundary layer also suggest that our emissions could
be overestimated. However, we note the absence of signif-
icant trends in our posterior model minus aircraft residu-
als between 2010–2017. Our posterior total emissions agree
well with the findings of Janardanan et al., (2020), who de-
rived Brazilian emissions of 56.2± 10 Tg yr−1 for the pe-
riod 2011–2017, although temporal variation of this value
was not discussed in that study. Yin et al. (2020) did not
report total emissions but found a rise in Amazonian emis-
sions of 4.2± 1.2 Tg yr−1 over 2010–2017, along with small
increases in eastern Brazil. Our estimate of total flux from
Amazonia agrees well with that of Pangala et al. (2017), who
derived a total of 42.7± 5.6 Tg yr−1 for 2010–2013. A group
of 22 inverse model experiments presented by Saunois et
al. (2020) produced a range of 47.3–78.2 Tg yr−1 for Brazil-
ian emissions between 2008 and 2017, although one of those
results used the TOMCAT forward model to represent the
atmospheric transport, so it is not fully independent from
our results. Our findings here are within the range of these
models, albeit towards the lower end. The majority of those
top-down studies used either the same GOSAT and surface
observation data used in our study or some variation of it.
The fact that the derived emissions using similar observation
data can vary so much highlights the inherent uncertainties
still remaining in top-down studies of CH4 emissions, with
differences in model transport, chemistry representation, in-
version methodology, bias correction and error assumptions
all contributing to differences in results.

The increase in emissions that we derive from 2014 on-
wards coincides with a faster rate of increase in the observed
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Figure 8. Average wet season trends for the period 2010–2017 for the (a) temperature in K yr−1, (b) wetland fraction in 10−3 yr−1,
(c) NAT+AGR+BB CH4 surface flux in mg m−2 d−1 yr−1 from GOSAT inversion and (d) optimised bottom-up (B-U) model surface
flux of CH4 in mg m−2 d−1 yr−1. (e) Total Amazon basin wet season CH4 emissions in Tg (2010–2017) from GOSAT inversion (black
line, with grey shading representing posterior uncertainty). Red lines show ensemble of B-U model simulations, and the maroon line is the
optimised B-U model. The blue line shows the mean of the WetCHARTs full ensemble wet season flux.

surface mole fraction of CH4 (Nisbet et al., 2019). Unfor-
tunately, the extent that the increase in observed mole frac-
tions in the atmosphere is driven by increasing Amazon emis-
sions is difficult to constrain without more extensive knowl-
edge of the atmospheric chemical loss of CH4. Our global in-
version, using repeating OH values each year, indicates that
the increase of 5.8± 5.2 Tg yr−1 from Amazon emissions
is responsible for 24± 18 % of the global total increase in
emissions between 2010–2013 and 2014–2017, which was
24.1± 15.0 Tg yr−1.

The Amazon emissions derived in this study for 2010 and
2011 (41.6± 5.3 Tg yr−1) are a little above the higher limit
of those found in our previous study using the flight obser-

vations only (31.6–41.1 Tg yr−1, Wilson et al., 2016). This
indicates that using the vertical profile data only to calculate
basin-wide emission totals may lead to a small underestima-
tion of the total compared to using satellite data. This dis-
crepancy is supported by the positive bias seen in this study
within the boundary layer at most of the sites when compar-
ing the posterior model output to the in situ flight observa-
tions. However, the emission totals are fairly similar across
the different methodologies, with the caveat that the same
transport model was used for both findings.

The posterior fluxes lead to an improvement compared to
the prior in the mean bias and correlation at all four inde-
pendent sampling locations when only observations made
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above the boundary layer are considered. However, the pos-
terior comparison to observations made close to the surface
is inferior to the prior comparison at three of the locations.
It seems that improving the performance compared to the
GOSAT data throughout the troposphere is at the expense of
diminishing performance at the surface. There could, there-
fore, be transport errors in the inverse model, possibly in the
boundary layer transport. It is possible also that the relatively
coarse resolution of the inversion leads to poorer compar-
isons to the boundary layer observation. Finally, as stated by
Webb et al. (2016), comparisons between the flight obser-
vations and GOSAT at the Alta Floresta (ALF) site, which
displays the worst posterior performance in the model, are
also not as strong as at other locations. Despite the increased
posterior bias in the boundary layer at three of the sites, the
improved performance at Santarém suggests that the signif-
icant emissions close to the mouth of the Amazon derived
by the inversion are potentially a realistic feature, consistent
with the previous in situ data-based flux estimates of Miller et
al. (2007) and Basso et al. (2016). However, the degradation
in performance at Alta Floresta, also in the east of the basin,
suggests that the strong emissions do not extend as far south
as in our model posterior. We will in the future produce inver-
sions at higher resolution to investigate this feature further.
Due to computational constraints, we could not carry out in-
versions for the entire GOSAT period using a higher horizon-
tal resolution than the one chosen for our inverse model, but
to examine the sensitivity of our results to the model resolu-
tion, we ran an inversion for 2010 at 2.8◦ horizontal grid res-
olution (Fig. A7, Appendix C), finding that our results were
robust at both resolutions.

Our derived positive trends are largest during the wet sea-
son within the eastern Amazon, indicating that increasing
flux from wetland sources could be responsible for the in-
crease in total emissions. However, attempting to reproduce
these trends, and the interannual variations, using a B-U
model was largely unsuccessful. Although the B-U model
mainly stayed within the uncertainty derived in the inversion,
it was unable to capture a large increase in emissions in the
wet season of 2014. This indicates either that the variation
produced in INVICAT was overstated, that there were errors
in the B-U model set-up and input data, or that wetlands were
not the main driving factor for increasing wet season emis-
sions from the basin. It has been suggested that there have
recently been unusually large biomass burning CH4 fluxes in
the region outside of the dry season (e.g. Silva Junior et al.,
2019) or that agricultural emissions from enteric fermenta-
tion and manure were increasing at a significant pace (Crippa
et al., 2020), neither of which would be captured in our B-U
model.

Potential errors within the inverse model are likely due to
one of five factors. The model transport, sink distribution and
variation, error covariance matrices, satellite retrieval uncer-
tainty, and method of comparing the model and satellite can
all affect the posterior results. Regarding the use of repeating

OH values for each year of the inversion, however, it should
be noted that Tunnicliffe et al. (2020) used a regional model
in which the chemical sink of CH4 was not a factor and found
similar levels of interannual variably to those produced here.

The performance of the B-U model compared to the in-
verse model suggests conflicting hypotheses. The positive
trend in emissions produced in INVICAT was concurrent
with increasing temperatures across much of the Amazon.
This indicates that the temperature response of wetland emis-
sions in the region might be high. However, the fact that the
B-U model was unable to produce significantly larger emis-
sions during the 2014 wet season, as were produced by the
inversion, despite large wetland fraction and heterotrophic
respiration at the time, indicates that the wetland fraction re-
sponse might also be high and potentially non-linear. Com-
paring the results from the B-U model for 2012 and 2014 is
instructive, as 2014 had higher heterotrophic respiration and
temperature, as well as a similar (but slightly higher) mean
wetland fraction. However, the B-U emission totals for these
2 years were very similar. Although the observed mean grav-
ity anomalies were similar, they were characterised differ-
ently, with prolonged positive anomalies throughout 2013/14
but a short and intense positive anomaly during the end of
the 2012 wet season. This suggests that emissions could be a
function of the period of time for which the soil is saturated.
It should be noted that Tunnicliffe et al. (2020) also derived
large CH4 fluxes during this wet season, but they were al-
located to anthropogenic sources rather than wetlands using
their methodology, likely due to differences in the transport
model and sector allocation method. Increased complexity
in the B-U model and examination of correlations between
inversion-based fluxes and potential wetland flux drivers are
both necessary for future comparisons, but for now it is not
possible to determine the cause of the trend in CH4 emissions
in the Amazon basin.

5 Conclusions

Our global inversion of CH4 emissions using satellite data
and surface observations allowed us to quantify changes
in South American emissions over the period 2009–2018.
We found that emissions increased during this period, par-
ticularly during the wet season of December–March. Total
Brazilian emissions rose from 49.8± 5.4 Tg yr−1 in 2010–
2013 to 55.6± 5.2 Tg yr−1 in 2014–2017, whilst natural
emissions from the Amazon basin (from all countries),
an area of 6.9 million km2 on this model grid, rose from
38.2± 5.3 to 45.6± 5.2 Tg yr−1. We show that there was
substantial emission from the south and east of the basin
throughout this period and that the positive trends were
largest in the eastern Brazilian Amazon. We derive particu-
larly large emissions during the 2013/14 wet season, a period
during which there was widespread flooding. It is significant
that our inversions show improved performance at Santarém
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due to the large emissions in the east of the basin, similar to
previous aircraft-based studies (Miller et al., 2007; Basso et
al., 2016). Indeed, based on the remaining negative model–
observation bias at that location, it is possible that CH4 emis-
sions affecting that location could be even larger. However, it
appears that the Alta Floresta site is overly affected by these
large emissions in our analysis, indicating that the southerly
extent of the large emissions might be too great.

However, attempting to reproduce these trends in a sim-
ple bottom-up model was unsuccessful, mainly due to strong
anti-correlations between the wetland fraction and the tem-
perature within the basin leading to little variation in annual
wet season emissions. This suggests that the complexity of
the model must be increased in order to fully represent the re-
lationship between carbon availability, wetland fraction and
soil temperature. Our B-U model and another model (Bloom
et al., 2017) suggest a negative trend in emissions from driv-
ing conditions, but this is at odds with our inversion find-
ings and those of others. This suggests that temperature has a
strong role to play in wetland emissions of CH4 in the Ama-
zon region, since this has also had an increasing trend over
the past decade. It is also important to consider the role of
wetland variability, however. For the inverse model, the con-
tribution of how sinks of CH4 in the atmosphere might have
varied should also be considered.

The results of our inversion are in agreement with pre-
vious studies (e.g. Janardanan et al., 2020) and within the
range provided by Saunois et al. (2020). However, our poste-
rior emissions from Brazil are significantly larger than those
produced by Tunnicliffe et al. (2020) using a similar obser-
vational dataset, showing the importance of model transport
and bias correction in inversion results.

Our results show that the Amazon basin was responsible
for 24± 18 % of the total global increase in CH4 emissions
during the last decade, and it could contribute further in fu-
ture due to its sensitivity to increasing temperature. Our study
shows the benefit of using satellite CH4 data to inform on
emissions of CH4, particularly in poorly sampled tropical re-
gions, along with the benefits of long-term satellite missions
to produce large-scale, consistent datasets. As the satellites
and models improve, we can further refine our estimates of
emissions from the important and changing role of South
American ecosystems on global methane variability.
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Appendix A

Table A1. Locations and time periods covered by surface flask samples used in inversions, provided by the National Oceanic and Atmospheric
Administration’s Global Monitoring Laboratory.

Station code Latitude, longitude (◦) Time period Station code Latitude, longitude (◦) Time period

ABP 12.8 S, 321.8 E 2009–2010 LLN 23.5 N, 120.9 E 2009–2018
ALT 82.5 N, 297.5 E 2009–2018 LMP 35.5 N, 12.6 E 2009–2018
AMY 36.5 N, 126.3 E 2013–2018 MEX 19.0 N, 262.7 E 2009–2018
ASC 8.0 S, 345.6 E 2009–2018 MHD 53.3 N, 350.1 E 2009–2018
ASK 23.3 N, 5.6 E 2009–2018 MID 28.2 N, 182.6 E 2009–2018
AZR 38.8 N, 332.6 E 2009–2018 MKN 0.0 S, 37.3 E 2009–2011
BAL 55.4 N, 17.0 E 2009–2011 MLO 19.5 N, 204.4 E 2009–2018
BHD 41.4 S, 174.9 E 2009–2018 NAT 5.8 S, 324.8 E 2010–2018
BKT 0.2 S, 100.3 E 2009–2018 NMB 23.6 S, 15.0 E 2009–2018
BME 32.4 N, 295.3 E 2009–2010 NWR 40.1 N, 254.4 E 2009–2018
BMW 32.3 N, 295.1 E 2009–2018 OXK 50.0 N, 11.8 E 2009–2018
BRW 71.3 N, 203.4 E 2009–2018 PAL 68.0 N, 24.1 E 2009–2018
BSC 44.2 N, 28.7 E 2009–2011 PSA 65.0 S, 296.0 E 2009–2018
CBA 55.2 N, 197.3 E 2009–2018 PTA 39.0 N, 236.3 E 2009–2011
CGO 55.2 N, 144.7 E 2009–2018 RPB 13.2 N, 300.6 E 2009–2018
CHR 1.7 N, 202.8 E 2009–2018 SDZ 40.7 N, 117.1 E 2009–2015
CIB 41.8 N, 355.1 E 2009–2018 SEY 4.7 S, 55.5 E 2009–2018
CPT 34.4 S, 18.5 E 2010–2018 SHM 52.7 N, 174.1 E 2009–2018
CRZ 46.4 S, 51.9 E 2009–2018 SMO 14.3 S, 189.4 E 2009–2018
DRP 59.0 S, 296.3 E 2009–2018 STM 66.0 N, 2.0 E 2009
DSI 20.7 N, 116.7 E 2010–2018 SUM 72.6 N, 321.6 E 2009–2018
EIC 27.2 S, 250.5 E 2009–2018 SYO 69.0 S, 39.6 E 2009–2018
GMI 13.4 N, 144.7 E 2009–2018 TAC 52.5 N, 1.1 E 2014–2015
HBA 75.6 S, 333.8 E 2009–2018 TAP 36.7 N, 126.1 E 2009–2018
HPB 47.8 N, 11.0 E 2009–2018 THD 41.1 N, 235.8 E 2009–2017
HSU 41.0 N, 235.3 E 2009–2017 TIK 71.6 N, 128.9 E 2011–2018
HUN 47.0 N, 16.7 E 2009–2018 USH 54.9 S, 291.7 E 2009–2018
ICE 63.4 N, 339.7 E 2009–2018 UTA 39.9 N, 246.3 E 2009–2018
IZO 28.3 N, 343.5 E 2009–2018 UUM 44.5 N, 111.1 E 2009–2018
KEY 25.7 N, 279.8 E 2009–2018 WIS 30.0 N, 35.1 E 2009–2018
KUM 19.7 N, 205.0 E 2009–2018 WLG 36.3 N, 100.9 E 2009–2018
KZD 44.1 N, 76.9 E 2009 ZEP 78.9 N, 11.9 E 2009–2018
KZM 43.2 N, 77.9 E 2009
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Figure A1. Model–satellite bias function B(ϕ) (red line) varying with latitude, ϕ. This value is added to the simulated XCH4 to enable
comparison with the GOSAT XCH4. See main text for details. Vertical grey and black dotted lines show the latitudinal extent of the Amazon
basin and South America, respectively.

Figure A2. A priori gridded sectoral South American CH4 emissions (mg m−2 d−1) for 2010. Note different colour scales for top and bottom
rows. Description of sectoral emissions are in Sect. 2.2.2 of the main text. Here, the “Energy” sector refers to the energy industry, oil and
gas production, and energy for buildings and transportation; “Waste” refers to solid waste disposal and waste water; “Agriculture” refers to
enteric fermentation and manure management.
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Figure A3. Error-weighted monthly mean GOSAT XCH4 (black lines) over the Amazon basin (a) and Brazil (b). Also shown are the
simulated mean prior (blue) and posterior (red) XCH4 values with GOSAT averaging kernels applied. Grey shading shows the monthly mean
observation uncertainty within each region. It should be noted here that since simulations for each year were initiated using values from the
previous year’s posterior mean output for both the prior and the posterior initial atmospheric concentrations, the gradient of the blue line is
artificially higher than it would be for a free-running simulation using the prior emissions only.

Figure A4. Mean annual South American posterior error reduction after assimilation of GOSAT XCH4 and surface flask observations. Error
reduction is defined as 1.-(σ_a/σ_b), where σ_a is the derived standard deviation of the a posteriori grid cell flux uncertainty and σb is the
allocated a priori standard deviation of the grid cell flux uncertainty.
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Figure A5. Annual mean (posterior–prior) gridded total South American CH4 emissions (mg m−2 d−1) for each year covering the period
2010–2018.

Figure A6. Mean seasonal cycle of GRACE gravity anomaly (a, cm), temperature (b, ◦C) and precipitation (c, mm d−1) within the Amazon
basin for 2010–2018. Dashed lines show 1 standard deviation from the mean values. Temperature is taken from the Global Historical
Climatology Network (GHCN) gridded V2 product, whilst precipitation is from the Global Precipitation Climatology Project v2.3 combined
precipitation dataset product. Both were provided by the NOAA/OAR/ESRL Physical Sciences Laboratory (PSL).
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Figure A7. Prior (a) and posterior (b) emissions of CH4 (mg m−2 d−1) for 2010 from an inversion carried out on the 2.8◦ degree model
grid. (c) Posterior− prior emissions.
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Appendix B: Bottom-up wetland flux model

Our bottom-up (B-U) model calculates wetland CH4 emis-
sions, in which the CH4 emissions in a grid cell, x, at time,
t , are dependent on climatological factors as follows:

F (t,x)= s A(t,x) R (t,x) q
T (t,x)

10
10 , (B1)

where F(tx) is the flux of CH4 in molec. cm−2 s−1, A(tx)
is the wetland fraction, R(tx) is the heterotrophic respiration
of carbon per unit area, T (tx) is the surface temperature in
◦C and q10 is the relative CH4 : C ratio of respiration for a
10 ◦C change in temperature. Finally, s is a scaling factor.
We use monthly mean values for each element of Eq. (2) and
interpolate all parameters to the TOMCAT model grid for
comparison with the inversion results.

We take R from the CASA-GFED v4.1 model (Ran-
derson et al., 2015), which runs up to 2016, and grid-
ded 2 m temperature from the Global Historical Climatol-
ogy Network (GHCN) gridded V2 product provided by
the NOAA/OAR/ESRL Physical Sciences Laboratory (PSL,
https://psl.noaa.gov/, last access: 16 September 2019, Fan
and Dool, 2008). We estimate A using a combination of two
products. We take a climatology of wetland fraction w(x)
from the JULES land surface model version that was used to
produce the prior emissions used in the inversion (McNorton
et al., 2016). We then use measurements of gravity anoma-
lies made on the twin GRACE satellite mission, G(tx), as a
proxy for variations in the soil moisture, as in (e.g.) Bloom
et al. (2010) and Gloor et al. (2018). We then apply scaling
factors a1 and a2 to give wetland fraction as follows:

A(t,x)= a1w(x)+ a2G(tx). (B2)

This makes the assumption that anomalies in the grav-
ity anomaly G(tx) are linearly related to wetland fraction
anomalies, which may not be the case. The distributions and
variations of the GRACE gravity anomalies and surface tem-
perature are discussed in Sect. 4. We create an ensemble of
B-U estimates for F , letting the scaling factors a1 and a2 and
the temperature response function q10 vary within reasonable
limits, and varying s appropriately so that each member gives
the same mean total emissions over 2010–2017, equal to the
mean posterior value produced by the inversion. We are in-
terested only in the variations in time and space produced by
the B-U model rather than the absolute value. We let q10 vary
between 1 and 3, based on experimental bounds and previous
bottom-up studies of methane emissions (Yvon-Durocher et
al., 2014; Bloom et al., 2017); we let a1 vary between 0.8 and
1.2; and we let a2 vary in such a way that the overall wetland
fraction does not vary by more than 20 %, depending on the
value of a1. Since there is no data for 2017 given for the het-
erotrophic respiration, we use a climatology made up from
the preceding 7 years applied to that year. We also create an
“optimised” B-U model, in which we use a curve-fitting pro-
cedure (based on a gradient expansion algorithm) to choose

values of s, a1, a2 and q10 which best fit, in least-squares
terms, the results from the inversion for the monthly and
spatial mean values over the whole Amazon, for all months
within the wet season over 2010–2017. The optimised value
of q10 was 2.47, which is within the range of plausible val-
ues discussed in Sect. 2.2.3, whilst the optimised values of a1
and a2 were 0.73 and 0.0015, respectively. For comparison
to the B-U model, we consider only the posterior inversion
NAT+AGR+BB emissions within the Amazon basin dur-
ing the wet season, which we assume to be almost entirely
from wetlands (Fig. A2). We therefore also only consider the
B-U model output during the wet season.

Appendix C: Increased resolution inversion

We ran an inversion for 2010 at 2.8◦ horizontal grid resolu-
tion (Fig. A8) averaging the GOSAT XCH4 onto this model
grid. We did not split the results into different source sectors,
instead deriving total CH4 surface flux. Otherwise, the model
set-up was identical to the 5.6◦ inversions of the main study.
Many of the features of the posterior solution are identical to
those of the coarser grid, with higher emissions from the re-
gion to the south and east of the Amazon River and a decrease
in emissions from the south of Brazil, near the densely pop-
ulated cities. However, there is no decrease in emissions to
the west of the Amazon basin, as consistently seen when us-
ing the coarser model grid. Total derived emissions for Brazil
and for the Amazon basin are similar when using the 2.8◦ and
the 5.6◦ grids, however. We derive total posterior emissions
for Brazil in 2010 of 49.9 Tg yr−1 using the coarser grid and
51.4 Tg yr−1 using the finer grid.
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Code and data availability. University of Leicester GOSAT Proxy
XCH4 data can be accessed via the Centre for Environmental
Data Analysis data repository at https://catalogue.ceda.ac.uk/uuid/
f9154243fd8744bdaf2a59c39033e659 (ESA CCI GHG project
team, 2018) or by contacting Rob Parker. Prior and posterior mean
South American CH4 fluxes on the TOMCAT model grid (Wil-
son et al., 2021) are available from the data archive of the Centre
for Environmental Data Analysis (CEDA, https://www.ceda.ac.uk/,
last access: 2 June 2021, Wilson et al., 2021). The data DOI is
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