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Abstract. The Station for Measuring Ecosystem–
Atmosphere Relations (SMEAR) II, located within the
boreal forest of Finland, is a unique station in the world due
to the wide range of long-term measurements tracking the
Earth–atmosphere interface. In this study, we characterize
the composition of organic aerosol (OA) at SMEAR II by
quantifying its driving constituents. We utilize a multi-year
data set of OA mass spectra measured in situ with an Aerosol
Chemical Speciation Monitor (ACSM) at the station. To our
knowledge, this mass spectral time series is the longest of its
kind published to date. Similarly to other previously reported
efforts in OA source apportionment from multi-seasonal or
multi-annual data sets, we approached the OA characteriza-
tion challenge through positive matrix factorization (PMF)
using a rolling window approach. However, the existing
methods for extracting minor OA components were found to
be insufficient for our rather remote site. To overcome this
issue, we tested a new statistical analysis framework. This
included unsupervised feature extraction and classification
stages to explore a large number of unconstrained PMF runs
conducted on the measured OA mass spectra. Anchored by
these results, we finally constructed a relaxed chemical mass
balance (CMB) run that resolved different OA components

from our observations. The presented combination of sta-
tistical tools provided a data-driven analysis methodology,
which in our case achieved robust solutions with minimal
subjectivity.

Following the extensive statistical analyses, we were able
to divide the 2012–2019 SMEAR II OA data (mass concen-
tration interquartile range (IQR): 0.7, 1.3, and 2.6 µg m−3)
into three sub-categories – low-volatility oxygenated OA
(LV-OOA), semi-volatile oxygenated OA (SV-OOA), and
primary OA (POA) – proving that the tested methodology
was able to provide results consistent with literature. LV-
OOA was the most dominant OA type (organic mass fraction
IQR: 49 %, 62 %, and 73 %). The seasonal cycle of LV-OOA
was bimodal, with peaks both in summer and in February.
We associated the wintertime LV-OOA with anthropogenic
sources and assumed biogenic influence in LV-OOA forma-
tion in summer. Through a brief trajectory analysis, we es-
timated summertime natural LV-OOA formation of tens of
ng m−3 h−1 over the boreal forest. SV-OOA was the sec-
ond highest contributor to OA mass (organic mass fraction
IQR: 19 %, 31 %, and 43 %). Due to SV-OOA’s clear peak in
summer, we estimate biogenic processes as the main drivers
in its formation. Unlike for LV-OOA, the highest SV-OOA
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concentrations were detected in stable summertime noctur-
nal surface layers. Two nearby sawmills also played a sig-
nificant role in SV-OOA production as also exemplified by
previous studies at SMEAR II. POA, taken as a mix of two
different OA types reported previously, hydrocarbon-like OA
(HOA) and biomass burning OA (BBOA), made up a mini-
mal OA mass fraction (IQR: 2 %, 6 %, and 13 %). Notably,
the quantification of POA at SMEAR II using ACSM data
was not possible following existing rolling PMF method-
ologies. Both POA organic mass fraction and mass concen-
tration peaked in winter. Its appearance at SMEAR II was
linked to strong southerly winds. Similar wind direction and
speed dependence was not observed among other OA types.
The high wind speeds probably enabled the POA transport to
SMEAR II from faraway sources in a relatively fresh state.
In the event of slower wind speeds, POA likely evaporated
and/or aged into oxidized organic aerosol before detection.
The POA organic mass fraction was significantly lower than
reported by aerosol mass spectrometer (AMS) measurements
2 to 4 years prior to the ACSM measurements. While the co-
located long-term measurements of black carbon supported
the hypothesis of higher POA loadings prior to year 2012, it
is also possible that short-term (POA) pollution plumes were
averaged out due to the slow time resolution of the ACSM
combined with the further 3 h data averaging needed to en-
sure good signal-to-noise ratios (SNRs). Despite the length
of the ACSM data set, we did not focus on quantifying long-
term trends of POA (nor other components) due to the high
sensitivity of OA composition to meteorological anomalies,
the occurrence of which is likely not normally distributed
over the 8-year measurement period.

Due to the unique and realistic seasonal cycles and mete-
orology dependences of the independent OA subtypes com-
plemented by the reasonably low degree of unexplained OA
variability, we believe that the presented data analysis ap-
proach performs well. Therefore, we hope that these results
encourage also other researchers possessing several-year-
long time series of similar data to tackle the data analysis via
similar semi- or unsupervised machine-learning approaches.
This way the presented method could be further optimized
and its usability explored and evaluated also in other envi-
ronments.

1 Introduction

Despite the small sizes of atmospheric aerosol particles, they
play an important role in the climate system. They interfere
with solar radiation via direct absorption and scattering (di-
rect aerosol radiative effect) and participate in cloud forma-
tion and processing, thereby influencing the interactions be-
tween clouds and radiation (indirect aerosol radiative effect).
In addition to the size of aerosol particles, their chemical
composition plays an important role determining their direct

or indirect radiative effects via composition-linked parame-
ters such as aerosol hygroscopicity (water affinity), volatility,
and reflectivity.

The number concentrations of aerosol particles in the at-
mosphere range from a few particles per cubic centimetre
to even millions, so they cannot be considered individually
but are typically divided into populations, groups, or classes
based on for example some above-mentioned characteris-
tics. Thus, the classification of aerosol particles is a nec-
essary and critical task preceding their further understand-
ing. Real aerosol populations are spatially mixed, overlap-
ping, and smeared in the atmosphere, and their physical and
chemical characteristics are for the most part not discretely
distributed but continuous. Therefore, practically all classi-
fications of atmospheric aerosol are simplifications due to
their complex interactions and change processes in the at-
mosphere, and any divisions between classes are to some ex-
tent arbitrary and debatable selections. Nevertheless, various
statistical methods can be used to perform objective, well-
founded aerosol classifications and construct aerosol models
which strike a good balance between mathematical robust-
ness, complexity (or simplicity), and usability for various
purposes. In the following, some common classifications are
discussed.

Organic aerosol (OA) is a major sub-micrometre aerosol
constituent (Zhang et al., 2007). OA can be emitted directly
as primary OA (POA) or it can form in the atmosphere via
condensation or uptake of oxidized organic vapours. The
latter OA fraction is termed as secondary organic aerosol
(SOA). Various combustion processes are the main sources
of POA. These combustion processes include for example
diesel combustion in car engines, which emits hydrocarbon-
like OA (HOA), or biomass burning in forms of residential
heating or wild/agricultural fires, both of which emit biomass
burning OA (BBOA). The number of SOA precursors in the
ambient air is immense, making the linking of ambient SOA
observations to SOA precursors and detailed formation pro-
cesses extremely challenging.

The utilization of positive matrix factorization (PMF,
Sect. 4.1) on OA mass spectra recorded by aerosol mass
spectrometers (AMS; Aerodyne Research Inc., MA, USA;
Canagaratna et al., 2007) has linked SOA to two oxygenated
organic aerosol (OOA) groups characterized by volatil-
ity: semi-volatile oxygenated OA, i.e. SV-OOA, and low-
volatility oxygenated OA, i.e. LV-OOA. These groups are al-
ternatively also named by their degree of oxygenation: less-
oxygenated OA, i.e. LO-OOA, and more-oxygenated OA,
i.e. MO-OOA. In reality, atmospheric oxidation of aerosols is
a continuum process, and therefore such a division is math-
ematical, not clear cut, and to some extent arbitrary. Due to
the prominent link between OA degree of oxygenation and
volatility, the SV-OOA and LO-OOA and the LV-OOA and
MO-OOA usually describe the same OA fractions, respec-
tively (Jimenez et al., 2009; Ng et al., 2011a). LV-OOA is
typically identified by an AMS OA mass spectrum domi-
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nated by a CO+2 (at m/Q 44 Th in LV-OOA mass spectrum)
OA fragment (Jimenez et al., 2009; Ng et al., 2010). SV-
OOA in turn typically has lower CO+2 mass fraction but a
high C2H3O+ (atm/Q 43 Th in the SV-OOA mass spectrum)
fragment (Jimenez et al., 2009; Ng et al., 2010). The CO+2
fragment has been linked to various organic acids (Duplissy
et al., 2011), whereas the C2H3O+ has been thought of as
a marker of non-acid oxygenates (Ng et al., 2011a). Impor-
tantly, a large amount of evidence suggests that photochem-
ical ageing of OA leads to an increasingly significant contri-
bution of CO+2 in the OA mass spectrum (Alfarra, 2004; De
Gouw et al., 2005; Aiken et al., 2008; Kleinman et al., 2008;
Jimenez et al., 2009; Ng et al., 2010, 2011a). This indicates
OA transformation to more oxygenated forms upon atmo-
spheric ageing, which ultimately yields OA of low volatility.
Such OA processing (ageing scheme) has been shown to ap-
ply for several SOA and POA types.

While the direct POA emissions can nowadays often be
quite well distinguished from SOA, perhaps due to the lim-
itations in chemical information provided by AMS-type in-
struments and/or the overall similarity of SOA mass spec-
tra regardless of the source, ambient SOA source apportion-
ment is rarely successfully conducted. Source apportionment
is also generally difficult due to complexity of atmospheric
aerosol chemistry, meteorological and atmospheric transport
processes, and inherent methodological (both experimental
and data analytical) limitations. However, SOA formation
from various precursors has been a topic of numerous lab-
oratory studies giving insights into the most dominant am-
bient SOA formation pathways. Biogenic volatile organic
compounds (BVOCs) have been shown to have a high SOA
formation potential upon oxidation (Hallquist et al., 2009).
Although the number of different organic species in the at-
mosphere is enormous (104–105) (Goldstein and Galbally,
2007), isoprene and monoterpenes clearly distinguish them-
selves as the most emitted biogenic VOC (Guenther et al.,
2012). While isoprene-derived SOA formation is hampered
by the relatively high volatility distribution of isoprene ox-
idation products (Hallquist et al., 2009; Surratt et al., 2010;
Shrivastava et al., 2017), monoterpenes stand out as one of
the major biogenic SOA precursors, due to the production of
readily condensable vapours upon oxidation (Donahue et al.,
2011; Ehn et al., 2014). The boreal biome, which represents
∼ 15 % of the Earth’s terrestrial area, making up ∼ 30 % of
the world’s forests (Prăvălie, 2018), serves an example of a
region with relatively high monoterpene emissions (Guen-
ther et al., 2012; Rinne et al., 2009). Measurements from the
boreal forests also provide evidence of high content of nat-
urally produced biogenic SOA (Tunved et al., 2006; Yttri et
al., 2011).

The current study is targeted on the analysis of OA
composition at the well-established Station for Measuring
Ecosystem–Atmosphere Relations (SMEAR II; Sect. 2.1) lo-
cated in the monoterpene-rich boreal forest of Finland. What
makes this station unique is the large amount of long-term

measurements conducted at the site. We recently reported the
long-term phenomenology of sub-micrometre aerosol chem-
ical composition seasonality at the site (Heikkinen et al.,
2020). We reported a high OA mass fraction of the sub-
micrometre particulate matter, ranging between 50 % and
80 %. The current work specifically focuses on this sub-
micrometre particulate matter mass fraction with a goal to
gain understanding of OA composition and specifically its
seasonal variability at SMEAR II, which has never been re-
ported for the site before. The data analysis includes PMF
on the OA mass spectra recorded by an Aerosol Chemical
Speciation Monitor (ACSM, Sect. 2.2), but due to the near-
decade-long mass spectral input from a rather remote mea-
surement site, handling the data retrieved via PMF analyses
required also the utilization of new analysis tools. Inspired by
our previous work regarding statistical analyses of OA mass
spectra (Äijälä et al., 2017, 2019), we tackled the analysis
problem by combining and applying various advanced sta-
tistical methods and machine-learning tools. After the exten-
sive analyses, we not only report OA composition variability
at SMEAR II, but equally highlight the development of the
new framework for long-term OA mass spectral analysis.

2 Measurements

This section contains a brief description of the boreal
SMEAR II measurement site and the ACSM measurements
conducted. For a more comprehensive measurement and
station meteorology descriptions, we direct the reader to
Heikkinen et al. (2020).

2.1 Station for Measuring Ecosystem–Atmosphere
Relations (SMEAR II)

The measurements were conducted at the SMEAR II sta-
tion described in detail previously (Hari and Kulmala, 2005;
Williams et al., 2011; Heikkinen et al., 2020). SMEAR II
is well known due to the broad variety of measurements
taking place at the station, tracking more than 1000 differ-
ent environmental parameters within the Earth–atmosphere
interface (Hari and Kulmala, 2005). The station is located
in Southern Finland (61◦51′ N, 24◦17′ E; 181 m above sea
level) in a ca. 60-year-old Scots pine (Pinus sylvestris) dom-
inated forest. The station, recognized as a rural site, has low
anthropogenic emissions, apart from two nearby sawmills
situated 6–7 km to the southeast from SMEAR II. In the
event of south-easterly winds, both monoterpene and OA
concentration are elevated at SMEAR II (Eerdekens et al.,
2009; Liao et al., 2011; Äijälä et al., 2017; Heikkinen et al.,
2020). The dominant sources of air pollutants at SMEAR II
are air masses travelling from industrialized areas in South-
ern Finland, St. Petersburg (Russia), and continental Europe
(Patokoski et al., 2015; Riuttanen et al., 2013; Yttri et al.,
2011; Tunved et al., 2006). The surrounding forest emits
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multiple biogenic non-methane VOCs, dominantly monoter-
penes (Hakola et al., 2012; Barreira et al., 2017). Monoter-
penes have been recognized to yield condensable vapours at
SMEAR II (Yan et al., 2016; Rose et al., 2018; Ehn et al.,
2012) known to efficiently form SOA (Ehn et al., 2014).

2.2 Aerosol Chemical Speciation Monitor (ACSM)

The Aerosol Chemical Speciation Monitor (ACSM; Aero-
dyne Research Inc., USA), described in detail by Ng et
al. (2011c), serves as the key instrument in this study. The
ACSM measurements at SMEAR II, together with the data
processing techniques, are documented in detail in our ear-
lier work (Heikkinen et al., 2020). Here, we utilize ACSM
data recorded between April 2012 and September 2019. The
2019 measurements and data preparation were performed ex-
actly the same way as for the 2012–2018 data (Heikkinen et
al., 2020).

The ACSM, which is developed following the same tech-
nology as the AMS (Canagaratna et al., 2007), samples am-
bient air with a flow rate of 1.4 cm3 s−1 through an aerody-
namic lens having ∼ 100 % transmission of ca. 75–650 nm
particles in vacuum aerodynamic diameter (Dva) but further
passes through particles up to ca. 1 µm in Dva, albeit less ef-
ficiently (Liu et al., 2007). The particles are flash vaporized
at 600 ◦C under high vacuum and ionized with 70 eV elec-
tron impact ionization. The resulting ions and their fragments
are guided to a mass analyser that is a residual gas analyser
(RGA) quadrupole, which scans through different mass-to-
charge ratios (m/Q). The particulate matter detected by the
ACSM is referred to as non-refractory (NR) sub-micrometre
particulate matter (PM1). The term “non-refractory” is at-
tributed to the instrument limitation to detect only material
flash evaporating at 600 ◦C and being unable to reliably mea-
sure extremely-heat-resistant chemical components such as
sea salt and black carbon. The term “PM1” is linked to the
aerodynamic lens approximate cut-off at 1 µm.

The NR-PM1 reported from ACSM measurements is a dif-
ference (diff) between the signal of particle-laden air and sig-
nal recorded when the sampling flow passed a particle filter
(filtered air). In addition to the diff measurement style, which
is measured using a chopper instead of a filter in the AMS,
the lack of particle sizing and the cheaper detector model are
the major differences between the AMS and the ACSM. In-
deed, while the AMS utilizes a multichannel plate detector
(MCP) gaining high signal-to-noise (SNR) ratios, the ACSM
employs a secondary electron multiplier (SEM) that provides
a longer lifetime at the cost of SNR. To improve the SNR,
the ACSM data utilized here were 3 h averages instead of the
original sampling resolution of 30 min.

As explained previously (Heikkinen et al., 2020), the
ACSM was measuring through the roof of an air-conditioned
container. The inlet system contained a PM2.5 cyclone and
a 3 L min−1 overflow to avoid inlet losses. From summer
2013 onwards, a Nafion drier was included in the sampling

line, which kept the sample flow relative humidity (RH) be-
low 30 %. The instrument provides the NR-PM1 chemical
species’ mass concentration every 30 min. The mass concen-
tration calculations, namely the conversion from amperes to
µg m−3, were based on ionization efficiencies, routinely cali-
brated using size-selected ammonium sulfate and ammonium
nitrate particles and a TSI Condensation Particle Counter
(CPC; TSI 3772) as a reference instrument. A final collection
efficiency (CE) correction was applied based on a 2-month
moving median comparison with a collocated differential
mobility particle sizer as the commonly used composition-
based CE correction (Middlebrook et al., 2012) was not ap-
plicable due to ammonium concentration being most of the
time below the detection limit. A detailed description of the
CE correction is presented in Heikkinen et al. (2020). The
CE correction was applied to the OA mass spectra prior to
the PMF analyses.

3 The openair and time-over-land (TOL) analyses

This section provides a brief description of wind and air mass
trajectory analyses coupled to the analysis of OA composi-
tion at SMEAR II.

3.1 The openair polar plots

The openair polar plots are used in the paper to show how OA
composition varied under different wind direction and speed
combinations (openair polar plots using the R-based pack-
age presented by Carslaw and Ropkins, 2012). The concen-
tration fields were calculated by binning the OA component
concentration data into different wind direction and speed
bins. The field was then smoothed by interpolation, which
was performed between grid centres. These openair polar
plots are drawn utilizing the ZeFir pollution tracker (Petit et
al., 2017), which is an Igor Pro (WaveMetrics Inc., USA)
graphical interface for producing openair polar plots (among
other functionalities). The wind data used for openair polar
plots were recorded at the SMEAR II mast, above the for-
est canopy (16.8 to 67.2 m a.g.l.), with Thies 2D Ultrasonic
anemometers. The wind roses are presented in Fig. S1.

3.2 HYSPLIT trajectories and TOL

The time each air mass spent over land before reaching
SMEAR II was calculated hourly using 96 h long HYSPLIT
(Stein et al., 2015) air mass back trajectories, with arrival
heights of 100 m above ground level. The model was run with
NCEP/GDAS (Kanamitsu, 1989) archive data as the mete-
orological input, with the 1◦ horizontal resolution data set
used for years 2012–2013 and the 0.5◦ resolution data set
for 2014–2018. Trajectories were grouped into three different
source regions: clean sector, Europe sector, and Russia sec-
tor (Fig. S2). A source region criterion resembling our clean
sector classification was used before by Tunved et al. (2006),
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with similar calculations on the time spent over land. The
Europe and Russia sectors are considered polluted as men-
tioned earlier in Sect. 2.1. The grouping criterion was that
the trajectory had to spend a minimum of 90 % of the time
in a sector. This means that all the trajectories grouped into
the clean sector have spent minimum 90 % of the time in the
clean sector before arriving at SMEAR II. If the trajectory did
not reach this criterion in any of the sectors, it was discarded
and not considered in any further analyses. Time spent over
islands, other than the British Isles, is not considered in the
time-over-land (TOL) value.

4 Statistical methods

This section provides an introduction to the statistical meth-
ods utilized in this study. The application of these tools is
explained later in Sect. 5. Here, we provide the basics of
the main statistical tools utilized: PMF and its application
in aerosol mass spectrometry as well as k-means clustering.

4.1 Positive matrix factorization (PMF) and the
Multilinear Engine (ME-2)

Positive matrix factorization (PMF) (Paatero and Tapper,
1993; Paatero, 1997) is a widely used algorithm in chemo-
metrics, which helps sort complex measurement data into
factors with altering abundances, with static factor profiles
without prior knowledge regarding the factor features. More
precisely, PMF approximates the measurement data matrix
(X) as a linear combination of these constant factor profiles
(F) and their temporal proportions (G), with both F and G
containing only non-negative elements (gi,k ≥ 0, fk,j ≥ 0).
The PMF model iteratively minimizes uncertainty-weighted
model residuals (Q) using a least-squares algorithm, direct-
ing the model solution towards combinations of F and G best
describing X. The PMF equation in matrix notation can be
written as follows:

Xm×n =Gm×p ·Fp×n+Em×n,

where E equals to the model residual matrix. If written
element-wise, this equation becomes

xi,j =

p∑
k=1

gi,kfk,j + ei,j . (1)

Here, the subscript i is the time column index, j the variable
row index, and k the factor index in the PMF solution con-
taining p factors (p defined by user). The following equation
for Q,

Q=

m∑
i=1

n∑
j=1

(
ei,j

σi,j

)2

, (2)

can then be written as

Q=

m∑
i=1

n∑
j=1

(
xi,j −

∑p

k=1gi,kfk,j

σi,j

)2

, (3)

where σ equals the measurement uncertainty.
Importantly, the PMF algorithm is frequently solved in ro-

bust mode, in which outliers are dynamically reweighted to
prevent the PMF model fits from being pulled towards out-
liers. The outliers are defined as data cells where the ratio
between the model residual and uncertainty exceeds a user-
defined threshold, α, usually set as α = 4 (Paatero, 1997).
The Q values given by the PMF model are calculated using
the robust mode.

The reliability of one modelled Q minimum is not usually
enough. Indeed, sometimes the PMF solutions are represen-
tative of only a local Q minimum instead of the global Q
minimum. To avoid interpretations of a PMF solution repre-
senting a local Q minimum, it is recommended to start PMF
from multiple different starting points, e.g. seeds. Increasing
the number of seeds, preferably together with random resam-
pling (bootstrap) (Efron, 1979), helps map the stability of the
PMF solution. In the bootstrapping approach, the different
PMF seeds have slightly different input matrices, which con-
tain randomly chosen rows of the original matrix. Bootstrap-
ping is a suitable tool for PMF statistical uncertainty evalua-
tion if sufficient amounts of resamples are conducted (Norris
et al., 2008; Paatero et al., 2014).

Multilinear Engine (ME-2) is a popular PMF solver to re-
duce rotational ambiguity of PMF. One advantage of it is
the possibility to introduce known F rows (or G columns) to
PMF model during model initialization (Paatero and Hopke,
2009). This approach is traditionally conducted in three
ways: via techniques named chemical mass balance (CMB),
a value, and pulling techniques (Paatero and Hopke, 2009).
In CMB (Watson et al., 1984), all of the rows in F (i.e. all fac-
tor profiles) are known beforehand. It can be considered as a
far extreme from the traditional PMF, where none of the fac-
tor profiles is known. The a-value approach falls somewhere
between CMB and PMF. Now, certain elements of F or G can
be constrained to the PMF, and the model output variability
from the constraint is given by a scalar, a. a can be applied to
the entire F row (or G columns) or alternatively to their in-
dividual elements. The more constraints and the tighter they
are (a→ 0), the closer the a-value approach is to CMB. In-
deed, the case of having all p rows of F constrained with an
a value of zero equals the CMB method. If pulling equations
are introduced to the PMF model, PMF pulls the fj,k (or gi,k
in the event of G pulling) towards a user-defined anchor dur-
ing the iterative steps.

The evaluation of the appropriate number of factors in the
PMF solution (p) can be (for example) estimated by observ-
ing the decrease in Q and the ratio between Q and the ex-
pectedQ (Qexp, which is theQ normalized by the degrees of
freedom of the model solution) (Paatero and Tapper, 1993).
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The decrease in Q/Qexp as a function of p can be, to some
extent, used to understand what the optimal number of fac-
tors in the solution could be. While Q/Qexp tends to always
drop as a function of p, the optimal p is typically where the
Q/Qexp drops stop being significant.

PMF application in aerosol mass spectrometry

The application of PMF was first utilized with the organic
aerosol data matrix obtained via AMS measurements in 2007
(Lanz et al., 2007) and has since then become a widely
used and popular method in OA source apportionment. PMF
is conducted so that F equals the mass spectral profiles
and G the time series, usually in µg m−3. A comprehensive
overview of AMS PMF studies and methodologies utilized
between 2007–2011 has been given previously by Zhang et
al. (2011). Ulbrich et al. (2009) introduced thorough AMS
PMF interpretation guidelines and Crippa et al. (2014) intro-
duced guidelines for the ME-2 a-value approach. Since 2011,
PMF with ME-2 has also been applied successfully to ACSM
data (e.g. Fröhlich et al., 2015; Canonaco et al., 2013; Zhang
et al., 2019).

Preparation of the PMF input (organic aerosol data ma-
trix and a corresponding error matrix) for both AMS and
ACSM data can be done with their data processing software.
The preparations are based on PMF Evaluation Tool (PET)
WaveMetrics Igor Pro functions (Ulbrich et al., 2009). Be-
fore initializing any PMF solver (such as the ME-2), cer-
tain preparations are often necessary for optimal modelling.
The m/Q values with low SNR (i.e. m/Q having more
noise than signal) are downweighted by increasing their er-
ror. Paatero and Hopke (2003) suggested that m/Q having
SNR<0.2 should be downweighted heavily or removed from
the analysis andm/Q with 0.2<SNR< 2 downweighted by
a factor of 2–3. Another noisy data downweighting approach
was suggested by (Visser et al., 2015), where the errors are
downweighted continuously with a penalty function SNR−1,
when SNR< 1. These downweightings have been done ei-
ther based on the average SNR across the data set or cell-
wise. Another data input modification prior to PMF initial-
ization should be performed regarding CO+2 (m/Q 44 Th)-
related variables (i.e. m/Q 16–20 and 28 Th) because the
information stored at these m/Q is directly estimated from
m/Q 44 Th. Such high correlation between these variables
would be considered in the PMF modelling with importance
that is too high. To avoid this, CO+2 -related variables are typ-
ically excluded or downweighted accordingly.

PMF analysis has become easily accessible for the whole
AMS and ACSM community upon the development of Igor
Pro (WaveMetrics Inc., USA) based user-friendly PMF anal-
ysis tools, such as the Source Finder (SoFi, Paul Scherrer
Institute and Datalystica Ltd., Switzerland) (Canonaco et al.,
2013, 2021) and PET (Ulbrich et al., 2009). Recently, after
the launch of the commercial SoFi Pro software (Datalystica
Ltd., Switzerland) (Canonaco et al., 2021), many advanced

PMF methods also became available. These methods include
rolling PMF (Parworth et al., 2015) and PMF resampling
(bootstrap).

The assumption of static factor profiles serves one of the
questions of the atmospheric representativeness of the PMF
output. A rolling PMF approach was suggested (Parworth et
al., 2015) to account for such factor profile temporal vari-
ability. In the rolling PMF approach, a PMF run is conducted
a short time window at a time (the timescale for which the
static factor profile is assumed valid). This time window is
shifted across the data set in even smaller time steps, cre-
ating overlap between PMF windows. In practice this means
choosing an n day time window in anm day data set (n�m)
and shifting the window q days at a time (q<n) chronologi-
cally along the time axis, until all the m days are covered.

As the rolling PMF approach results in a large amount of
PMF runs, and the amount grows even larger in the event
of incorporating bootstrapping (typically 100–1000 seeds per
PMF window), manual investigation and conclusion making
becomes very challenging. The challenge of sorting as well
as accepting good rolling PMF runs and/or rejecting unreal-
istic rolling PMF runs is addressed in SoFi Pro via criteria-
based selection of PMF runs (Canonaco et al., 2021). The
user-defined criteria, best describing each PMF factor (for
example correlation between NOx and HOA, which both are
emitted from traffic), are evaluated for each PMF run, and
their scores (for example the Pearson correlation coefficient
R between NOx and HOA) are presented. The user can then
select all the PMF runs above certain thresholds (for exam-
ple R>0.5) or select all of the PMF runs. Such criteria-based
selection of PMF runs was first introduced by Daellenbach
et al. (2017) and Visser et al. (2015). Selection and the av-
eraging of all of the PMF runs without criteria-based sorting
would work only in the case of having all factors, or all but
one factor, constrained. In the case of having two or more free
PMF factors, it is likely that their positions in the PMF output
matrices are frequently changing, i.e. being situated in dif-
ferent columns in G. In the case of constrained PMF factors,
they will always appear in their pre-designated G columns.

4.2 k-means clustering

k-means clustering (Ball and Hall, 1965; MacQueen, 1967;
Steinhaus, 1956; Jain, 2010) is the most popular unsuper-
vised machine-learning approach utilized in data classifica-
tion. It works particularly well (and is computationally ef-
ficient) for large data sets with a small number of well-
definable clusters (k). The k-means algorithm works as fol-
lows:

1. picking k number of centroids (i.e. cluster centre points)
and assigning each sample (for example a mass spec-
trum) to its nearest centroid based on a selected distance
metric, usually the squared Euclidean distance – this
step is nowadays performed following the k-means++
algorithm (Arthur and Vassilvitskii, 2007), proven to
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not only speed up the clustering process, but also sig-
nificantly improve its accuracy;

2. moving the centroids to represent the new mean of the
cluster;

3. reassigning the all the points to their closest centroids
(this sometimes moves points from one cluster to an-
other);

4. repeating steps 2 and 3 until convergence is achieved
(i.e. data points stop moving between clusters and the
centroids stabilize).

The goal of the k-means clustering algorithm is to minimize
the following objective function:

J =

k∑
j=1

n∑
i=1

∥∥xi − cj∥∥2
, (4)

where k is the number of clusters, n the number of data
points, xi the ith data point, and cj the centroid of cluster
j , and

∥∥xi − cj∥∥2 represents the Euclidean squared distance
function. Hence, this makes the object function, J , the aver-
age squared Euclidean distance between points in the same
cluster.

Silhouette score

The silhouette score (Rousseeuw, 1987) is one of the many
metrics available for evaluating the number of clusters
present in the data set. It is calculated based on both intra-
cluster distances of data points (cohesion, a) and their dis-
tances to points assigned in other clusters (separation, b). The
silhouette score for the ith sample can be expressed as

si =
(bi − ai)

max(ai,bi)
. (5)

The silhouette scores range between [−1,1]. The scores for
the ith sample can be interpreted as follows:

1. si =−1 – the sample is (likely) assigned to a wrong
cluster;

2. si = 0 – the sample is at the decision boundary between
clusters;

3. si = 1 – the sample is well clustered.

The silhouette score (si) is calculated for an individual sam-
ple in Eq. (5) but can also be defined for clusters (s) as the
average over all silhouette scores of samples belonging to
the cluster, or for the entire solution (average over all sam-
ples), yielding diagnostic information on point, cluster, and
solution level. Kaufman and Rousseeuw (2009) further sug-
gested an average cluster silhouette s = 0.25 as a lower limit
for weak structure and s = 0.50 as a lower limit for strong

cluster structures. Strong structures indicate of a good clus-
tering result, where the samples in the cluster are very similar
to each other while being very different from the samples as-
signed to other clusters.

5 The application of PMF and k-means clustering in
the current study

The current study focuses on conducting rolling PMF on
8 years of OA data recorded by an ACSM at the SMEAR II
station. First, we performed unconstrained rolling PMF runs.
We used these runs to determine the common OA factor pro-
files through k-means clustering. The ultimate goal of the
unconstrained PMF and k-means clustering was to provide
mass spectral profiles as a priori input for a PMF run in which
all of the profiles are constrained with reported intra-cluster
mass spectral variabilities. This PMF approach is therefore
termed as rolling relaxed CMB, i.e. rolling rCMB. This sec-
tion contains a detailed description of this framework. A
written overview of the method is given below and the work-
flow is summarized Fig. 1.

5.1 Rolling PMF

The initial rolling PMF was conducted using the 2012–2019
ACSM data (Fig. 2a), prepared with the ACSM data pro-
cessing software, i.e. the WaveMetrics (USA) Igor Pro-based
ACSM Local 1.6.0.3 toolkit, as PMF input. No downweight-
ing based on low SNR or relation to CO+2 was conducted
with the ACSM Local software. The data matrices were im-
ported to an Igor experiment with the SoFi Pro (6.A1) toolkit
and averaged from the initial 30 min time resolution to 3 h
time resolution in order to improve the SNR. The error prop-
agation was accounted for during averaging (linear terms
of the squared Taylor series expansion on the measurement
data). Upon the initialization of the PMF matrices, all the
CO+2 -related variables (i.e. m/Q 16, 17, 18, and 28 Th) were
excluded from the analysis. Then, the errors of the noisy vari-
ables (SNR< 1) were weighted cell-wise by SNR−1.

Only the m/Q range of 12–100 Th was included in the
rolling PMF. This mass range has been typically chosen
for the ACSM PMF analysis, and it avoids introducing the
ACSM internal standard, naphthalene at m/Q 128, to the
PMF run. m/Q 29, 31, and 38 Th were excluded from the
analysis due to unknown interferences, likely from air and
instrumental issues from time to time affecting these signals
and yielding mass spectra not resembling any known aerosol
type.

The rolling PMF was initialized with a constant factor
number of three. The decision was made based on several
(standard, i.e. rolling mechanism disabled) PMF runs, hav-
ing time series lengths ranging from few months to years.
Three factors were considered as an upper limit of the num-
ber of factors, as a greater number would not significantly
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Figure 1. A pyramid flow chart roughly describing the steps from data collection to the final OA model (i.e. the time series of OA components
making up the total OA signal). The statistical analysis steps (in green) are explained in further detail in Sects. 4 and 5 in the paper as well as
listed in Appendix A.

Figure 2. (a) The 3 h averaged time series of OA measured at SMEAR II and utilized in the current study. The y axis represents OA mass
concentration in µg m−3 and the x axis the time. The figure also depicts the data coverage within the 8 years. The yellow shaded region
represents the first 2 months of measurement data, which are further shown in panel (b). (b) Schematic figure visualizing the rolling window
approach. Now, the x axis spans from 1 April to 1 June 2012, and the six OA time series represent the time spans of successive rolling PMF
windows. With the settings used in the current study, this 2-month period would be part of six rolling PMF windows.
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reduce Q/Qexp or produce meaningful factor profiles. This
step required a subjective decision.

The rolling window width was set to 30 d with 10 d
window shifts. Previous studies conducted by Parworth et
al. (2015) and Canonaco et al. (2021) set the window width
to 2 weeks and the shift to 1 d, which is much shorter than
selected here. However, as shown by Canonaco et al. (2021)
the PMF solutions were seemingly equally good for window
widths higher than 2 weeks (tests up to window width of
28 d). Only window widths shorter than 2 weeks led to a less
good PMF result. As the time span of our data was nearly
8 times greater than utilized in the previous studies, we sped
up the PMF modelling process by choosing a longer window
width and shift. More testing could be conducted on appro-
priate lengths. However, if the number of PMF runs were
to increase significantly from the amount performed here, it
would be feasible to perform the PMF modelling on a server.
With the current settings, the rolling PMF run performed in
this study using a PC lasted 48 h.

Finally, also, the bootstrap mechanism (resampling) was
enabled, and a hundred iterations were conducted at each
window. A subset of the rolling PMF input is visualized
in Fig. 2b. The rolling PMF yielded 62 700 factor profiles
(20 900 three-factor solutions) and time series, respectively,
distributed in 209 PMF windows.

5.2 k-means clustering PMF profiles

Selecting and sorting the rolling PMF output via various cri-
teria into three factors would have required a significant un-
derstanding of the PMF output beforehand. Choosing solid
criteria can be straightforward near known pollution sources,
but in the event of multiple unknown factors and distant
sources it becomes complicated. SMEAR II represents a sta-
tion with minimal anthropogenic sources. To exemplify the
challenges in correlation-based criteria at SMEAR II, we can
take the correlation between NOx and HOA as an example.
Both of these species are emitted from traffic and known to
correlate well near traffic sources. However, in the case of
transported traffic emissions, many things can affect the life-
time of the emitted species, which affects the correlation be-
tween the emissions at SMEAR II. If we pick the effect of
wet deposition as an example, it will remove the particulate
HOA much more efficiently than gaseous NOx . If HOA and
BBOA were constrained within a SMEAR II OA PMF run,
it would not be surprising that the PMF output would sug-
gest that 10 % of the OA mass was made up of HOA and
30 % of BBOA. As shown later on in this paper, these num-
bers are highly unrealistic. Due to the difficulty in interpret-
ing correlations between HOA and BBOA and their mark-
ers, correlation analyses do not directly answer when con-
straining HOA or BBOA would have been appropriate. This
is why traditional rolling PMF techniques would prevent us
from HOA/BBOA quantification. This complexity motivated
us to (1) use mass spectral clustering to explore the types of

OA resolved within the unconstrained rolling PMF runs (i.e.
answering when HOA/BBOA were present) and (2) perform
rolling rCMB (Sect. 5.3) to explore the temporal behaviour of
these OA types. The bootstrap iterations for each PMF win-
dow, respectively, were clustered using k-means (Phase I; see
detailed description in Sect. 5.2.1). This step was followed
by exploring the number of clusters across all PMF windows
by further clustering all the Phase I cluster centroids (Phase
II; see detailed description in Sect. 5.2.2). All the clustering
procedures conducted in this study were performed within
MATLAB 2017a using the kmeans algorithm, which utilizes
k-means++. k-means was selected as the clustering algo-
rithm due to previous successful OA mass spectral classifi-
cation performed by Äijälä et al. (2017, 2019). Future work
could be conducted in exploring the potential of other clus-
tering algorithms.

5.2.1 Solutions for rolling windows (k-means clustering
Phase I)

The rolling PMF output was uploaded into MATLAB from
Hierarchical Data Format (HDF) files created for each PMF
window, respectively, during the ME-2 modelling process.
Prior to clustering, we scaled the PMF output with the fol-
lowing function suggested by Stein and Scott (1994):

weightm
Q
=

(
m

Q

)sm
, (6)

where m/Q equals the mass-to-charge ratio ranging from
12–100 Th, and sm = 1.36 (recommendation by Äijälä et al.,
2017). We previously showed the information value gains of
mass scaling in conjunction with AMS data (Äijälä et al.,
2017). Indeed, if not applied, several OA types could not be
classified (Äijälä et al., 2017). Following Eq. (6), each sig-
nal at each m/Q was multiplied by its m/Q corresponding
weight value. As recommended by Äijälä et al. (2017), the
usage of this scaling factor gives gradually more weight to
the patterns at the end of mass spectrum, containing a lot of
information regarding OA sources.

Importantly, the following clustering of bootstrap itera-
tions one rolling window at a time was conducted using co-
sine (dis)similarity (Sokal and Sneath, 1963) as the k-means
distance metric as opposed to the commonly used squared
Euclidean distance. This decision was again based on our
earlier work in which various k-means distance metric alter-
natives were explored, and the best classification outcomes
(i.e. highest number of mathematically-well-structured clus-
ters, the centroids of which resembled well-known OA types
found in the literature) resulted from clustering efforts uti-
lizing cosine angles along with correlations (Äijälä et al.,
2017). While nearly equally good clustering outcomes were
achieved between these two metrics, we decided to report the
cosine (dis)similarity results due to the popularity of cosine
angles in mass spectral comparisons (Stein and Scott, 1994).
Cosine (dis)similarity describes the similarity between two

https://doi.org/10.5194/acp-21-10081-2021 Atmos. Chem. Phys., 21, 10081–10109, 2021



10090 L. Heikkinen et al.: Eight years of sub-micrometre organic aerosol composition data

n-dimensional (n, i.e. the number of m/Q, which was 70 in
our study) vectors (A and B in the equation below) via the
cosine of the angle between them. Hence, the metric is not
magnitude but orientation dependent. In our case this also
meant that normalization of the weighted mass spectra was
not necessary. The cosine (dis)similarity is defined as fol-
lows:

Cosine (dis)similarity=
A ·B

‖A‖‖B‖
, (7)

where A and B are n-dimensional vectors, which in the cur-
rent case would correspond to two mass spectra.

Silhouette values were utilized to evaluate the clustering
outcome similarly to Äijälä et al. (2017). Other metrics were
not tested within this work as they would operate only by us-
ing squared Euclidean distance measures within our analysis
software, MATLAB 2017a.

Finally, the PMF window-by-window clustering of boot-
strap iterations was conducted as follows:

1. clustering (MATLAB 2017a kmeans function using co-
sine (dis)similarity as the distance metric) and calcu-
lating mean silhouette values (MATLAB 2017a silhou-
ette function using cosine (dis)similarity as the distance
metric) for 2–4 clusters per PMF window – this step
was performed using the 300 mass-scaled (Eq. 6) mass
spectral profiles (3 factor profiles, 100 iterations) given
by the 30 d rolling window;

2. finding the number of clusters achieving the highest
mean silhouette value in the PMF window – only this
clustering result was used in the following steps as it
was considered the best solution;

3. undoing the mass scaling and calculating silhouette-
weighted cluster centroids (with the median of all mass
spectra belonging to the cluster, each multiplied by
their spectra-specific silhouettes) for each PMF win-
dow; the weighting of the cluster centroid calculation
by silhouette scores was performed similarly to Äijälä
et al. (2017, 2019) studies – all mass spectra possessing
a negative silhouette score were discarded from the clus-
ter centroid calculation and the rest of the mass spectra
were multiplied by their spectra-corresponding silhou-
ettes; this way, the spectra with the highest silhouette
scores would influence the cluster centroid the most,
and the spectra with the lowest silhouette score were ei-
ther discarded (if the silhouette score is zero or negative)
or have minimal weight on the final cluster centroid; this
step helps to alleviate possible k-means susceptibility to
outliers in clusters;

4. appending the silhouette-weighted cluster centroids in
a matrix (FI) – if the PMF window was clustered with
three factors in the third step listed here, then FI would
gain three new rows, one for each cluster centroid mass
spectrum;

5. moving to the next PMF window and repeating steps
1–6 until all PMF window are clustered and matrix FI
contains all the silhouette-weighted centroids from each
PMF window.

All the steps presented above were done programmatically
in MATLAB. The final number of mass spectra stored in FI
was 479. The overall mean silhouette values for 2–4 clusters
were high, strongly indicating segregation of strong cluster
structures in the PMF window-by-window clustering of boot-
strap iterations (Fig. 3a). The optimal number of clusters in
the PMF windows was 2 in ca. 80 % of the PMF windows
(Fig. 3b), which meant that only ca. 20 % of the PMF win-
dows contained three to four different resolvable PMF fac-
tors.

5.2.2 Overall classification of mass spectra (k-means
clustering Phase II)

The next step was to explore the dominant mass spectral clus-
ters in the whole data set. Phase II contained the following
steps:

1. performing mass scaling (Eq. 6) for FI mass spectra, as
performed earlier in the PMF window-by-window clus-
tering of bootstrap iterations (Phase I; Sect. 5.2.1);

2. calculating mean silhouette scores (MATLAB 2017a
silhouette function using cosine (dis)similarity as the
distance metric) for 2–10 clusters;

3. exploring how many clusters are needed to gain the
highest mean silhouette score; in the event of a vague
difference between silhouettes (as shown in Fig. 3c), the
step is followed by performing steps 1 and 2 again with
different mass scaling sm values; the optimal number of
clusters should preserve the high silhouette score even
at high sm values; we explored k= [3, 6] solution space
with different sm values (sm= [0, 5]); by increasing sm,
the silhouette value for k = 3 increased to the same level
as k = 2, while k>3 solution silhouettes decreased be-
low the strong cluster limit (Fig. 3d); we thus selected
three clusters for the following steps;

4. clustering (MATLAB 2017a kmeans function using co-
sine (dis)similarity as the distance metric) the mass
weighted mass spectra (sm = 1.36) with the number of
clusters defined in the previous step;

5. undoing the mass scaling and calculating silhouette-
weighted, normalized cluster centroids (cluster me-
dian) and the cluster mass spectral variability (lower
and higher quartiles); these cluster centroids represent
the prevailing OA types in SMEAR II sub-micrometre
aerosol.

The three different OA clusters found by this method were
named low-volatility oxygenated organic aerosol (LV-OOA),
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Figure 3. (a) Box-and-whisker diagram displaying the silhouette score distribution for k (number of factors)= [2, 4] representing all 209
PMF windows (Phase I). The green and red shadings indicate the ranges of strong and weak cluster structures, respectively. (b) Fraction
of PMF windows achieving the highest silhouette score when the number of clusters (k) was 2, 3, or 4. (c) Silhouette score distribution
for k= [2, 10] for Phase II (i.e. clustering the 479 profiles obtained from the 209 PMF windows in Phase I). (d) Evolution of the median
silhouettes in Phase II in k space as a function of the mass scaling (Eq. 6) factor, sm, which gives dynamically more weight to the end of
the mass spectrum. The colour scale presents the sm value for each line. (e) Cumulative distribution function (CDF) of the k = 3 Phase II
silhouette scores for the three clusters (named LV-OOA, SV-OOA, and POA), respectively. This subplot shows that POA has the weakest
cluster structure and LV-OOA the strongest. (f) Temporal behaviour of the median silhouette score of each cluster in the k = 3 Phase II
solution. Here, each month displayed must contain a minimum of 30 d of cluster appearance, explaining the gap in the POA seasonal cycle,
as it is not as frequently resolved as the other clusters.

semi-volatile oxygenated organic aerosol (SV-OOA), and
primary organic aerosol (POA). The LV-OOA and SV-OOA
clusters had generally high silhouette scores, whereas the
POA cluster had a weaker structure (Fig. 3e). More discus-
sion on the mass spectral features is provided in the results
section (Sect. 6.1).

5.3 Rolling rCMB

After gaining the prevailing OA types mass spectral features
via the above-explained clustering processes, we wanted to
gain understanding of the temporal features and mass load-
ing of each OA type. As the HDF files for each rolling PMF
window also contain time series information for each factor

profile, we were able to calculate cluster-specific time series
utilizing these time series connected to each cluster member
spectra. The time series of the OA types were discontinu-
ous since factors were not resolved in every window. There-
fore, we utilized the silhouette-weighted cluster interquartile
ranges (IQRs) gained in Sect. 5.2.2 to constrain a rolling
rCMB run to gain continuous time series for each OA type.
These cluster-specific time series extracted from the initial
PMF were afterwards used to evaluate the rolling rCMB run
(Sect. 5.3.1) but also enabled us to explore the silhouette
score temporal behaviour. The silhouette score monthly me-
dians are visualized in Fig. 3f. Only SV-OOA showed some
seasonality, which could hint that SV-OOA composition has
some, yet little, inter-annual variability. Due to the stability in
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the monthly median silhouettes, we consider the mass spec-
tral classification robust.

The rolling rCMB run was conducted via rolling PMF us-
ing the cluster centroids of the OA factor profiles as a pri-
ori information. After extracting the governing mass spec-
tral features across the data set, we exported the silhouette-
weighted and normalized mass spectra to SoFi Pro 6B. We
set up a PMF run with three factors, all of them constrained
with our silhouette-weighted cluster centroids (median fac-
tor profiles). However, differing from the traditional CMB
approach, we passed the ME-2 allowed limits within which
the factor profiles should vary. These limits were the 25th
percentile (lower limit) and 75th percentile (higher limit) of
the silhouette-weighted cluster centroid spectra. The rolling
rCMB was otherwise initialized exactly like the initial rolling
PMF run. The CO+2 related variables were excluded, and the
errors of the weak variables were treated similarly (cell-wise
SNR−1 penalty function). The rolling window length was
again 30 d with a 10 d shift, and resampling was enabled with
100 seeds. m/Q 29, 31, and 38 Th were still discarded from
the analysis. The final rolling rCMB results for each fac-
tor, respectively, were obtained by averaging over the 20 900
PMF runs for each time point (in total 3× 20900= 62700
factor profiles and time series). As all the factor positions in
rolling rCMB were fixed (LV-OOA profile was constrained
at the F matrix first row, SV-OOA at the second, and POA at
the third), such averaging was appropriate.

5.3.1 Rolling rCMB residual analysis and output
evaluation

To evaluate the averaged rolling rCMB output, we first com-
pared the Q/Qexp values between the initial rolling PMF
and rolling rCMB. The comparison of the Q/Qexp retrieved
from each iteration in each rolling window is visualized in
Fig. S3. As expected, the mean rolling rCMB Q/Qexp value
was higher (38 % increase) than that of the initial rolling
PMF Q/Qexp. This is typical as Q/Qexp tends to increase
whenever constraints are added to the PMF run. However due
to the relaxed approach, the Q/Qexp increase is for example
much less dramatic than shown in Canonaco et al. (2013)
CMB tests. We find the observed Q/Qexp increase accept-
able, considering the higher information value (interpretabil-
ity) provided by the rCMB solution.

To continue the rolling rCMB result evaluation via residu-
als, we investigated rolling rCMB model uncertainty-scaled
residuals (R matrix, ri,j in cell notation in Eq. 8). R elements
were calculated with SoFi Pro using the following equation:

ri,j =
ei,j

σi,j
, (8)

where σi,j indicates the measurement error provided in the
initial PMF input error matrix and ei,j the model residual
(i.e. the difference between model input and model output:
xi,j (measurement) – xi,j (modelled)). A normalized scaled

Figure 4. Normalized histograms (probability density function,
PDF) of the scaled residuals obtained from rolling rCMB. The ef-
fect of downweighting weak/bad variables is visible by the high
scaled residual frequencies at negative near-zero readings in green.
If rolling rCMB is conducted without downweighting, the scaled
residual distribution behaves in a highly normal manner (shown in
purple).

residual histogram is presented in Fig. 4. The scaled residual
histogram, presented in Fig. 4 in green, is fairly unimodal
and spreads between [−4,4] (most data between [−3,3]) as
desired (Paatero and Hopke, 2003) but tends to have high
frequency of slightly negative, near-zero readings. We con-
nected this behaviour to periods with high SNR (i.e. sum-
mers; Fig. S4). As downweighting of the noisy and weak
variables made as a function of SNR−1 (Sects. 4.1 and 5.1),
which further influences σij in Eq. (8), the seasonality in
SNR was seemingly driving the scaled residual seasonal cy-
cles. This was visible, yet to a lesser extent, in a test rCMB
run conducted without downweighting (Fig. 4 in purple) and
with a more traditional average stepwise downweighting pro-
cedure (not shown), which further brings us to the conclusion
that the PMF input matrix errors are also SNR dependent (Ul-
brich et al., 2009) and could perhaps be further optimized.
However, it should be kept in mind that the scaled residuals
in general speak for a good performance of rolling rCMB in
modelling the input data, and the scaled residual time series
shown in Fig. S5 reveal no evident patterns/trends except the
negative values in summers. An additional investigation into
the real unexplained variation within the data (shown later on
in Fig. 8) revealed no correlations with temperature or sub-
micrometre PM components.

Annual median scaled residual mass spectra are visual-
ized in Fig. S5. Even clustering attempts on the scaled resid-
ual matrix do not reveal clear structures in the scaled resid-
ual matrix, although an overall median scaled residual mass
spectrum calculated using the negative residuals alone would
hint towards some resemblance with POA at m/Q>50 Th.
We note that this could indicate minor POA overestima-
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tion in the rolling rCMB and speculate whether introducing
time-dependent profile variation limits to ME-2 could help
us overcome the issue. With the method presented here, we
could easily extract time-dependent limits for ME-2 variabil-
ity. However, introducing such limits to a dynamic approach
to the ME-2/SoFi Pro analysis software is not yet possible.

The comparisons between rolling rCMB time series
(Fig. S6) to the cluster-specific time series serve as the final
step in rolling rCMB validation. The overall Pearson corre-
lation coefficient between the mean-cluster time series and
the sum of rolling rCMB factor time series is approaching
unity (R = 0.99), and the correlations between different OA
classes are 0.97, 0.94, and 0.78 for LV-OOA, SV-OOA, and
POA, respectively (Fig. S6). In fact, such a high degree of
agreement indicates very good rolling rCMB performance in
retrieving time series for the different OA classes. As a fi-
nal note, as discussed previously, the POA appearance in the
time series retrieved after the Phase II clustering was likely
dependent on the POA mass fraction in different PMF win-
dows. We evaluated that 95 % (3σ ) of the PMF windows
where POA was not classified had a POA mass fraction (i.e.
the mass fraction of POA in relation to the total rolling rCMB
OA mass; fPOA) of 6 % (Fig. S7a), when the POA-explained
variation (i.e. rolling rCMB-derived variability explained by
POA compared to the total measurement variability) was 7 %
(Fig. S7b). Such numbers resemble the PMF rule-of-thumb
detection limit of ca. 5 % estimated by Ulbrich et al. (2009).
This final note indicates simply that the POA cluster was not
found when the POA concentration was near-zero in rolling
rCMB. Such behaviour is certainly a factor explaining the
slopes between the cluster-specific time series and rolling
rCMB time series presented in Fig. S6.

6 Results and discussion

In this section, we introduce the key features of the LV-OOA,
SV-OOA, and POA clusters’ mass spectra (Sect. 6.1). Af-
ter the detailed mass spectral investigation, which explains
the naming of each cluster, we further discuss the tempo-
ral behaviour of these OA classes (data retrieved via rolling
rCMB; Sect. 6.2). The section then includes a brief analysis
of wind direction and speed dependences of the OA classes
(Sect. 6.3.1) via openair polar plots (Carslaw and Ropkins,
2012; Petit et al., 2017). Finally, we explore LV-OOA, SV-
OOA, and POA loading as a function of time over land in the
clean sector (Sect. 6.3.2) to yield understanding on natural
OOA production over the NW quadrant of Europe.

6.1 Mass spectral features of OA clusters

The cluster centroids resulting from the overall classification
of SMEAR II mass spectra serve as one of the key results
of the current study (Fig. 5). The three OA classes were pre-
viously named as low-volatility oxygenated organic aerosol

(LV-OOA), semi-volatile oxygenated organic aerosol (SV-
OOA), and primary organic aerosol (POA), but we start this
subsection by motivating the decisions behind each OA clus-
ter name.

The naming of LV-OOA was based on the dominance
of m/Q 44 Th in the mass spectrum, and the naming of
SV-OOA was done due to the high m/Q 43 Th (higher
than m/Q 44 Th). The naming of the POA was moti-
vated based on the resemblance of the POA mass spec-
trum with both hydrocarbon-like OA (HOA) and biomass-
burning OA (BBOA). The cosine (dis)similarities between
POA and HOA or BBOA (both references from Ng et al.,
2011b; spectra downloaded from http://cires1.colorado.edu/
jimenez-group/AMSsd/, last access: 3 June 2020; Ulbrich et
al., 2009) were 0.85 and 0.80, respectively. If a mass scal-
ing (Eq. 6 with various sm) was applied to all spectra, the
cosine (dis)similarities between POA and HOA and BBOA,
respectively, approach 0.90 with high sm values. This pos-
sibly happened because less weight was given to m/Q 44
(and 43 Th), which is higher in our POA than in typical fresh
HOA or BBOA spectra (see for example Ng et al., 2011b),
likely meaning that our POA cluster is more oxidized than
fresh POA. As we expect HOA and BBOA to be primary in
origin, and our cluster centroid spectrum resembles both of
them, we decided to call this OA class POA.

To further motivate our selection of names for the three
clusters (as well as to visualize the cluster structures for the
readers), we displayed all the different mass spectra belong-
ing to each cluster in an m/Q 43 Th vs. m/Q 44 Th organic
signal contribution space (f44 vs. f43 space; Fig. 6a). Ng
et al. (2010) first introduced this projection, also called the
“triangle plot”. This perspective separates well the LV-OOA,
SV-OOA, and POA clusters. They are placed in each corner
of the triangle in Fig. 6a. LV-OOA lies on the top of the trian-
gle, exhibiting the highest OA mass fraction of m/Q 44 Th
(i.e. f44; hereafter this same nomenclature logic is used also
for other OA mass fractions of variousm/Q values), whereas
SV-OOA and POA lie at the bottom of the graph, possessing
nearly equally low f44. The f43, on the other hand, is highest
for SV-OOA and lowest for POA (nearly equally low as for
LV-OOA).

By using a parametrization provided by Canagaratna et
al. (2015), we converted the f44 vs. f43 plot into a hydrogen-
to-carbon ratio (H : C= 1.12+6.74×f43−17.77×f 2

43) vs.
oxygen-to-carbon ratio (O : C= 0.079+ 4.31× f44) space
(Van Krevelen (VK) diagram (Van Krevelen, 1950); Fig. 6b).
The bulk OA data from AMS measurements have been
shown to follow a −1 slope on the VK diagram (Heald et
al., 2010), where the most fresh OA has the highest H : C
and lowest O : C and the aged OA the opposite. The evolu-
tion of OA in the VK space following different lines results
mainly from OA functionalization. In the event of a slope of
0, OA functionalization would occur mostly by addition of
alcohol or peroxide groups. In the event of a slope of −1,
carboxylic acid groups are added and the slope of −2 would
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Figure 5. The left panels (a, c, e) represent silhouette-weighted median cluster centroid mass spectra for low-volatility oxygenated organic
aerosol (LV-OOA), semi-volatile oxygenated organic aerosol (SV-OOA), and primary OA (POA) obtained when the number of clusters (k)
equals 3 in Phase II k-means clustering (final result). Here, y axis indicates the relative signal intensity and the x axis the mass-to-charge
ratio (m/Q). The panel titles include the mean ± standard deviation of the cluster silhouette score (s) and the number of spectra belonging
to each cluster (N ). The error bars visualize the 25th and 75th percentiles (i.e. the lower and higher quartiles). The right panels (b, d, f) show
the mean LV-OOA, SV-OOA, and POA mass spectra obtained from rolling rCMB. The error bars visualize the standard deviation of each
m/Q signal fraction.

indicate additions of ketone or aldehyde groups. Factorized
OA data were previously visualized in the VK diagram by Ng
et al. (2011a), where the slope for OOA data was ca. −0.5.
They suggested that ambient OOA ageing would result from
addition of alcohol and peroxide functional groups without
introducing fragmentation and/or the addition of carboxylic
acid groups with fragmentation. Here, we visualize only SV-
OOA and LV-OOA, as they provide better statistics than POA
as the number of objects in POA cluster was small, and these
points would be highly scattered in the VK diagram. Further-
more, it is also mentioned in Canagaratna et al. (2015) that
the parameterization works less well for POA.

Before interpretation of the VK diagram, we revisit results
from European ACSM inter-comparisons conducted at the
Aerosol Chemical Monitor Calibration Center (ACMCC).
A large variability within f44 was observed between differ-
ent ACSM units (Crenn et al., 2015; Fröhlich et al., 2015;
Freney et al., 2019). Furthermore, the observed f44 were sys-
tematically higher than the f44 measured with a co-located
high-resolution AMS, which was shown to give consistent
O : C for a suite of organic samples with known O : C val-
ues. While the f44 variability was not significantly propa-

gated in OA class mass fractions retrieved with PMF analy-
ses of co-located ACSM data sets (Fröhlich et al., 2015), the
O : C ratios of different classes were naturally affected (as
O : C parameterization for AMS-type instruments is directly
f44 dependent). The f44 variability has been to some extent
explained by an AMS/ACSM vaporizer artefact, which leads
to a release of CO+2 in the presence of high nitrate mass frac-
tions (Pieber et al., 2016; Freney et al., 2019). Even though
the presence ofm/Q 44 Th has been minor in our ammonium
nitrate calibrations, and the nitrate mass fraction is generally
low at SMEAR II, we cannot be sure whether the f44 and
thus the O : C ratios presented in the VK are overestimated.
Thus, the absolute O : C values should be interpreted with
caution. However, if comparing the VK diagram to the VK
diagram drawn by Ng et al. (2011a) representing 43 ambient
AMS data sets, we can see that our SV-OOA O : C is sim-
ilar to the SV-OOA O : C retrieved by Ng et al. (2010), but
our O : C for LV-OOA is higher. Still, our LV-OOA values
do resemble those retrieved by Äijälä et al. (2019) with an
AMS.

In general, the separation of SV-OOA and LV-OOA in the
VK is distinct: the O : C of SV-OOA is ca. 30 % of the LV-
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Figure 6. (a) A triangle plot visualizing the mass spectra distribution in each cluster in f44 vs. f43 space, (b) Van Krevelen diagram
visualizing the mass spectra in H : C vs. O : C space for LV-OOA and SV-OOA, (c) mass spectra in f44 vs. f60 space for indications of fresh
BBOA, and (d) f55× f57 vs. f60 space for indications of HOA and BBOA.

OOA O : C. The SV-OOA H : C is highest and stays rather
constant in the SV-OOA cluster data cloud (slope= 0, slope
of adding alcohol or peroxide groups), whereas the H : C de-
creases as a function of O : C in the LV-OOA cluster data
cloud. Due to the scatter in the LV-OOA data cloud we do
not aim to quantify a slope for it.

The second row of projections visualized in Fig. 6 focuses
on visualizing key POA characteristics. The f44 vs. f60 vi-
sualization used in Fig. 6c is common to distinguish fresh
BBOA from aged OA (Cubison et al., 2011). The lower the
f44 is, the more fresh the OA is expected to be, and the higher
the f60 is, the higher the fresh BBOA fraction. The POA cap-
tured most of the high f60 cases (i.e. cases with an f60 above-
determined background of 0.003, Cubison et al., 2011), and
the rest (which also had the highest f44) were included in the
LV-OOA cluster. These were clear LV-OOA cluster outliers
as these spectra silhouette scores were all below 0.20. Owing
to their high f60, these outlier spectra likely originate from
biomass burning but are mixed within the LV-OOA cluster
due to the high humic-like substance content of the BBOA
(e.g. Ng et al., 2010). If moving to Fig. 6d, i.e. an f55× f57
vs. f60 diagram, we can see that these high f60-containing
LV-OOA points are situated at the bottom of the plot, and all
POA objects score a much higher f55×f57. f57 has been as-
sociated with HOA (Zhang et al., 2005), while f55 is present
in HOA mass spectra usually at equally high contributions.
However, f55 is not a good HOA marker alone, as it is present
in all of the mass spectra (Fig. 5). Thus, the y axis in Fig. 6d

was chosen to be a product of the two instead of a sum of
the two, as in this way a high f55 (often the case with bio-
genic SOA) with marginal f57 would not be classified as a
HOA marker. To conclude, Fig. 6c and d visualize how POA
contains both HOA and BBOA features.

6.2 Temporal variability of OA composition

This section contains the analysis of the OA components’
time series retrieved via rolling rCMB. These time series are
visualized in monthly resolution in Fig. 7. While some of the
OA composition variability could be visually extracted from
Fig. 7, we focus on the description of Figs. 8–10, which sum-
marize the temporal behaviour of each OA component. The
three components explained ca. 70 %–80 % of the OA varia-
tion at SMEAR II (Fig. 8a). The unexplained variation can be
split into data with low SNR (noisy) and data with high SNR.
The unexplained fraction due to high noise (low SNR) was
lowest in summer at ca. 10 % and otherwise ca. 20 %. The
rest of the unexplained OA variability (data with high SNR)
was nearly constant at 10 %–12 %. This fraction is termed as
the “real unexplained variation” and includes only the vari-
ation made up by variables having the unexplained variation
fraction less than 25 % (Paatero, 2004). As mentioned before,
the unexplained variation did not correlate with any external
data or show seasonal or diel patterns.
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Figure 7. Monthly resolution time series of LV-OOA (a), SV-OOA
(b), and POA (c) mass concentrations obtained with rolling rCMB.
The light shadings indicate the area between the 10th and 90th per-
centiles, and the dark shadings indicate the area between the 25th
and 75th percentiles. The solid line represents the monthly medians
for each month of measurements in 2012–2019. Note the different
y-axis scales (grid lines are drawn every 1 µg m−3).

6.2.1 LV-OOA

LV-OOA was always the dominating OA type at SMEAR II,
both in terms of OA mass fraction (fLV-OOA; Fig. 8b) and
absolute concentration (Figs. 7a and 9a). LV-OOA is under-
stood to form as a result of OA ageing in the atmosphere
(e.g. Jimenez et al., 2009). Indeed, several OA types have
been shown to chemically transform to LV-OOA in relatively
short timescales (e.g. Jimenez et al., 2009). This makes the
dominance of such aged OA product perfectly reasonable at
a rural background site, such as SMEAR II. LV-OOA made
up ca. 60 % of OA mass concentration, and the median ab-
solute LV-OOA loading was 0.74 µg m−3 (overall LV-OOA
IQR 0.35, 0.74, and 1.46 µg m−3).

LV-OOA loading had a bimodal seasonal cycle. The first
peak occurred in February (February LV-OOA IQR: 0.30,
0.64, and 1.28 µg m−3), similarly to previously reported
SMEAR II NR-PM1 inorganics (Heikkinen et al., 2020). We
previously speculated that this February peak of NR-PM1 in-

organics could result from a combination of meteorology-
driven phenomena, such as more southerly winds compared
to other winter months, the enhanced amount of solar radi-
ation enabling photochemistry, or relatively dry conditions
(in terms of less precipitation) diminishing wet deposition
of aerosol particles upon transport from more polluted areas.
Similar phenomena could certainly favour also higher LV-
OOA loading in February. While the LV-OOA mass spec-
trum does not offer insights of possible LV-OOA sources
(spectrum comprises mostly of m/Q 44 Th; Fig. 5a), we can
still assume the wintertime LV-OOA sources to be mostly
anthropogenic due to reduced biogenic activity in the winter-
time boreal environment. Wintertime LV-OOA could be to a
large extent for example aged wood-burning organic aerosol
as wood burning is expected to be the most dominant win-
tertime OA source in Europe (Jiang et al., 2019). Also an-
thropogenic SOA formation in urban plumes is a potentially
high source of wintertime OOA (Shah et al., 2019). Despite
the less efficient oxidation (OH radical concentration much
lower in wintertime compared to summer), the cold winter-
time temperatures enable condensation of less oxidized or-
ganic vapours (e.g. Stolzenburg et al., 2018), which could
favour wintertime SOA formation. Due to ageing processes,
it is likely that such wintertime (anthropogenic) SOA would
be detected as LV-OOA at SMEAR II due to OOA ageing
during transport from the faraway urban plumes. The diel cy-
cle of wintertime LV-OOA showed no diel pattern (Fig. 10a).
Such behaviour is typical for long-range transported, i.e.
not locally produced, air pollutants, as boundary layer dy-
namics will not influence their concentration in the surface
layer. More discussion on LV-OOA sources, supporting the
above-mentioned statements on the anthropogenic and bio-
genic influences on LV-OOA, is presented later in the paper
in conjunction with wind and air mass trajectory analyses
(Sect. 6.3).

The second, yet most significant, peak of LV-OOA load-
ing occurred in summer (summertime LV-OOA IQR: 0.65,
1.18, and 2.01 µg m−3; Fig. 9a), when biogenic emissions
rapidly produce SOA in ambient air. It is likely that in sum-
mertime biogenic processes were the dominating sources of
LV-OOA. LV-OOA possessed a diel cycle clearly only in
summer, where the LV-OOA reached a maximum concen-
tration during daytime (Fig. 10a). It is likely that in contrast
to wintertime, LV-OOA was produced also locally via photo-
chemical pathways during daytime.

6.2.2 SV-OOA

The highest SV-OOA OA mass fraction (fSV-OOA Fig. 8b)
and loading (Figs. 7b and 9b) were observed in sum-
mer (unimodal seasonal cycle). The summertime fSV-OOA
was ca. 40 % (summertime SV-OOA IQR: 0.33, 0.59, and
1.07 µg m−3), and otherwise it was ca. 25 %–30 % (winter-
time SV-OOA IQR: 0.10, 0.17, and 0.28 µg m−3). The sea-
sonal cycle of SV-OOA could be explained by the surround-
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Figure 8. Panel (a) depicts the variability of the rolling rCMB compared to measurement variability (scaled by uncertainty). The unexplained
fraction is ca. 30 % outside summer while in summer months it drops to ca. 25 %. This variation in the unexplained variation is due to
increased noisy fraction (light grey) outside summer. The real unexplained fraction (in black) stays at rather constant at ca. 11 %. Panel (b)
shows fLV-OOA, fSV-OOA, and fPOA in different months. This panel only visualizes their variability in rolling rCMB.

ing forest’s enhanced biogenic activity in summer months,
which leads to biogenic SOA formation. However, we are
not able to confirm whether all of the SV-OOA is of bio-
genic origin. This is because the nearby sawmills in Ko-
rkeakoski (ca. 7 km NE of SMEAR II; Sect. 2.1) represent
significant SV-OOA sources (e.g. Äijälä et al., 2017). It is
likely that SV-OOA production from terpenes emitted from
the Korkeakoski sawmills also expresses seasonality follow-
ing the air’s oxidation capacity. In addition, it is possible that
terpene emissions from the Korkeakoski sawmills are also
temperature dependent.

SV-OOA possessed a diel cycle in all months but Decem-
ber and January. The SV-OOA diel cycle was typical for
semi-volatile species: the maximum loading was achieved in
early mornings (Fig. 10b), when atmospheric mixing layer
is typically the shallowest and temperature the lowest. We
previously reported a similar seasonal cycle for NR-PM1 ni-
trate at SMEAR II (Heikkinen et al., 2020). The SV-OOA
formation is likely strongly linked to the accumulation of
monoterpenes in these shallow nocturnal boundary layers
in forests. During calm, stable nights radiative cooling pro-
motes formation of inversion layers hindering vertical dis-
persion of the forest’s emissions. The cooling of the air en-
ables partitioning of less-oxygenated gaseous species yielded
from monoterpene oxidation to the condensed phase enhanc-
ing also SV-OOA formation. SV-OOA formation via conden-
sation of highly oxidized organic molecules (HOMs, which
commonly originate from monoterpene oxidation; Bianchi et
al., 2019) has been previously suggested to occur at SMEAR
II’s nocturnal boundary layer(s) (Hao et al., 2018).

It is important to mention here that if these ACSM mea-
surements were conducted in a higher altitude, perhaps even
a few tens of metres above ground level, such a strong diel
cycle would likely not have been captured. In addition, upon
the development of the turbulent daytime boundary layer,
the SV-OOA yielded during the night likely does not play
any major role in the SV-OOA loading within this daytime

boundary layer. The BVOC oxidation in the boreal forest is
more efficient during daytime compared to night-time (e.g.
Peräkylä et al., 2014), which would mean a higher production
of condensable vapours potentially forming SV-OOA during
daytime.

When summing up SV-OOA and LV-OOA, we can see that
summertime OA was nearly exclusively OOA (which is typi-
cally a good approximation of SOA), and even in wintertime
the OOA organic mass fraction was ca. 80 %. High OA mass
fractions of OOA in PM1 have been observed all over the
northern mid-latitudes (Zhang et al., 2007).

6.2.3 POA

The fPOA seasonal cycle was opposite to that of SV-OOA,
with highest fPOA achieved in wintertime (13 %; Fig. 8b).
The summertime fPOA was 3 % and the overall median
ca. 6 %. Interestingly, when comparing the overall median to
fPOA estimated previously at SMEAR II, we observe much
lower fractions. For example, Äijälä et al. (2019) report a
HOA OA mass fraction of 6 % and BBOA OA mass frac-
tion of 21 %. The sum of them, which should somewhat rep-
resent POA, is 21 percentage points higher than the mean
fPOA reported here. As the Äijälä et al. (2019) study was
conducted with an AMS, the data set should certainly better
capture short-term pollution plumes compared to the ACSM,
which has significantly lower time resolution and higher
noise level. Another important fact to consider is that the Äi-
jälä et al. (2019) study period is situated between years 2008
and 2010. It is possible that POA emissions have reduced
since then or the emissions were for some reason higher than
usual between 2008 and 2010. Hints of such long-term re-
duction or higher concentrations in 2008–2010 at SMEAR II
can be observed in the equivalent black carbon (eBC) con-
centrations. The eBC concentration between years 2008 and
2011 was nearly twice as high as between years 2013–2018
(Luoma et al., 2021). This could certainly explain some of
the discrepancy between these studies.
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Figure 9. The monthly mass concentrations of LV-OOA (a), SV-
OOA (b), and POA (c) obtained with rolling rCMB. The light shad-
ings indicate the area between the 10th and 90th percentiles, and
the dark shadings indicate the area between the 25th and 75th per-
centiles. The narrow dotted lines represent monthly medians for
individual years, and the dark lines with circle markers represent
the overall monthly mean concentrations. Note the different y-axis
scales (grid lines are drawn every 0.2 µg m−3).

In addition to the fPOA, also the absolute POA concentra-
tion peaked in winter (Figs. 7c and 9c). The seasonal cycle
resembles that of NOx shown in our previous work (Heikki-
nen et al., 2020), which in turn follows the cycles of atmo-
spheric boundary layer height and temperature. Several phe-
nomena can explain a larger wintertime POA loading: win-
tertime POA dispersed in a shallower atmospheric mixing
layer compared to summer, and sources of POA are possibly
greater in winter due to enhanced need for residential heat-
ing and less POA evaporation due to cold temperatures. In
addition, POA wintertime ageing to LV-OOA is possibly hin-
dered compared to summertime, due to less efficient photo-
chemical oxidation. The wintertime POA diel cycle showed
most of the time a minor afternoon maximum, and a mi-
nor night-time elevation was slightly visible only in late Jan-
uary/early February (Fig. 10c). Typical HOA diel cycles in

Figure 10. The median diel cycles of LV-OOA (a), SV-OOA (b),
and POA (c) obtained via rolling rCMB. The y axes represent the
local time of day (UTC+2) and the x axes the month. The colour
scales represent the mass concentration of each OA type. Note the
different scales for each plot. Each grid point represents a 14 d× 3 h
period, visualized with the MATLAB 2017a contourf function.

populated areas show an extremely distinct diel pattern fol-
lowing morning and evening rush hours (e.g. Zhang et al.,
2005). In residential areas, BBOA in turn typically clearly
peaks in the evening, when domestic heating takes place,
and the emissions are dispersed in the nocturnal boundary
layer (e.g. Canonaco et al., 2013). Due to SMEAR II’s dis-
tance from major HOA and BBOA sources, we did not ob-
serve such clear POA diel cycles in either summer or winter.
The summertime POA diel cycle resembled a diel cycle of
the sum of LV-OOA and SV-OOA. As discussed earlier in
Sect. 5.3.1, it is likely that summertime POA loading was
overestimated by the rolling rCMB model (Fig. S3).

6.3 Wind and air mass trajectory influence on OA
composition

In this section we will discuss the wind direction and speed
dependencies of OA composition, which provide useful in-
sights in estimating whether OA is locally produced or trans-
ported. After this analysis we briefly examine the OA types’
behaviour as a function of time over land (Sect. 3) to under-
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stand the potential magnitude of natural aerosol formation
over the boreal forest.

6.3.1 Wind direction and speed dependency of OA
composition

The openair polar plot for LV-OOA is displayed in Fig. 11a.
Based on this figure, elevated LV-OOA concentrations could
be expected from SE (polluted sectors) regardless of the wind
speed. In the event of easterly winds, the LV-OOA concen-
trations were generally the highest if wind speeds stayed
below 20 km h−1 (ca. 5.6 m s−1). On the contrary, in the
case of NW winds (winds from the clean sector) with wind
speeds exceeding 20 km h−1, the LV-OOA concentration ap-
proached zero, implying clean air transport. The LV-OOA
openair polar plot resembles greatly the overall NR-PM1 or-
ganics’ openair polar plot visualized previously in Heikkinen
et al. (2020), which was also expected due to LV-OOA being
the dominant OA component. The LV-OOA openair polar
plot had more southerly influence in wintertime (Fig. 11b),
and significantly less LV-OOA was detected with SE winds
compared to the overall picture (Fig. 11a). The summertime
LV-OOA openair polar plot (Fig. 11c) in turn was nearly
identical to the median plot including all months.

The SV-OOA concentration was highest with low wind
speeds (below 10 km h−1, i.e. ca. 2.8 m s−1; Fig. 11d). In ad-
dition, SE winds favoured SV-OOA presence. As SV-OOA
loading peaked at night (Fig. 9c), the low wind speed depen-
dence of SV-OOA indicates that calm nights are most suit-
able for SV-OOA detection. Low nocturnal wind speeds pro-
mote the formation of shallow nocturnal boundary layers, as
the mixing is not enhanced by mechanically produced eddies.
Thus, both the SV-OOA diel cycle and the SV-OOA forma-
tion boost at low wind speeds support the hypothesis that SV-
OOA is produced locally and it builds up in the night-time
surface air. However, the Korkeakoski sawmills probably ex-
plain why the SV-OOA concentration field is darker at the SE
side of the openair plot origin (Fig. 11d). The wintertime SV-
OOA openair polar plot still showed highest SV-OOA load-
ing with low wind speeds but having less SE influence in the
concentration field (Fig. 11e). The summertime polar plot
(Fig. 11f) again resembled the overall plot (Fig. 11f). This
summertime concentration field of SV-OOA greatly resem-
bled the summertime LV-OOA concentration field (Fig. 11c).
The Pearson correlation coefficient between these fields was
R = 0.87. This similarity supports the previously stated hy-
pothesis that summertime LV-OOA was likely of biogenic
origin (also with possible sawmill influence).

Finally, the POA openair polar plot (Fig. 11g) exemplifies
how specific wind direction and speed combinations were
required for POA detection: POA was resolvable only if
the wind direction was S–SE and wind speed ca. 20 km h−1

(rarely the case at SMEAR II; Fig. S1). While such high
wind speeds ultimately reduce the time the air masses spend
over populated areas with potentially high POA emissions,

the high wind speeds also enable fast transport of the POA
types making their detection at fresh state possible (before
POA has evaporated and/or aged).

The wintertime POA openair polar plot also had SE in-
fluence with lower wind speeds (Fig. 11h). It greatly resem-
bled the wintertime LV-OOA openair polar plot (Fig. 11b).
The Pearson correlation coefficient between the wintertime
POA concentration field and LV-OOA concentration field
was R = 0.93. The high agreement between these concen-
tration fields supports the previously stated hypothesis that
wintertime LV-OOA was likely of anthropogenic origin. The
summertime POA openair polar plot (Fig. 11i) did not differ
greatly from the other POA openair polar plots, which gives
some confidence in summertime POA quantification: if most
summertime POA was overestimated, the summertime POA
openair polar plot would likely have a similar wind depen-
dence to OOA.

6.3.2 Time-over-land analysis

Tunved et al. (2006) showed how (organic) aerosol mass con-
centration increased as a function of time over land (TOL; i.e.
the number of hours the air mass spent over the forested land
surface upwind of SMEAR II) when the land surface had lit-
tle anthropogenic influence (e.g. in the clean north-westerly
sector; Fig. S2). This increase was attributed to natural (bio-
genic) OA production in the boreal boundary layer. Here, we
observe a similar increase in the clean sector (Fig. 12a), with
LV-OOA loading being the most sensitive to TOL (Fig. 12).
The lower increase shown for SV-OOA (Fig. 12) in compari-
son to LV-OOA supports our hypothesis of SV-OOA sources
being also local and SV-OOA ageing into LV-OOA. The rela-
tionship between POA and TOL was not significant (Fig. 12).
The increase in LV-OOA loading as a function of TOL indi-
cates OA formation in the boreal boundary layer, its build-
up in the air mass, and ageing into LV-OOA prior to arrival
at SMEAR II. Such a phenomenon is not visible when in-
vestigating the OA types’ behaviour as a function of TOL
in polluted sectors (Fig. S8). Indeed, none of the OA-types
indicate links between OA loading and TOL in either air
masses of European (southerly sector) or Russian (easterly
sector) origin. We are not surprised by such a lack of correla-
tion between OA and TOL as the picture is greatly hampered
by anthropogenic emissions. As the anthropogenic emissions
are minor in the clean sector, and as suggested by Tunved et
al. (2006), the OA production in the clean sector is dominated
by biogenic SOA formation.

The biogenic SOA hypothesis is supported also by the
seasonality of the OA vs. TOL relationship (Fig. 12b): the
highest correlation between the two and the steepest OA in-
crease as a function of TOL are observed in July, which
held the greatest temperatures during the measurement pe-
riod (Heikkinen et al., 2020). Such temperature dependence
is typically associated with biogenic SOA production (e.g.
Daellenbach et al., 2017; Stefenelli et al., 2019) as the emis-
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Figure 11. The openair polar plots (Carslaw and Ropkins, 2012) for LV-OOA (a–c), SV-OOA (d–f), and POA (g–i) obtained via the ZeFir
pollution tracker WaveMetrics Igor Pro toolkit (Petit et al., 2017). The first column represents the median over all seasons, the second column
the median over wintertime, and the third column the median summertime. The distances from the circle origins indicate wind speeds (in
km h−1). Wind speed grid lines are presented with dark grey dashed lines. The colour scales represent the mass concentration of each OA
type modelled via rolling rCMB during the specific wind direction and speed combinations. Note that the scales are different among the
subplots. As these figures do not indicate any likelihood of these wind direction and speed combinations, Fig. S1 is important to keep in mind
while interpreting them. Briefly, N–NE–E is the least likely direction of wind, and S–SW–W is the most likely. Wind speeds rarely exhibit
20 km h−1. The wind direction and speed data are collected above the boreal forest canopy.

sion rates of several SOA precursors (such as monoterpenes)
increase as a function of temperature (Guenther et al., 1993).
The linear regression slopes for a LV-OOA vs. TOL scatter
plot would suggest LV-OOA formation of ca. 42 ng m−3 h−1

in July, which is twice the SV-OOA vs. TOL slope (Fig. 12b).
To exemplify these numbers, 3 d over the boreal forest in
July would yield ca. 3 µg m−3 of LV-OOA and 1.6 µg m−3 of
SV-OOA. The slopes for LV-OOA stay below 10 ng m−3 h−1

between October and April (values similar to the slopes for
SV-OOA at the same time; Fig. 12b), when there is less of
biogenic plant activity. These slopes were similar in magni-
tude to those derived previously for SMEAR II data (Tunved
et al., 2006; Liao et al., 2014). Another interesting feature
extracted from this analysis was that if the OA type vs. TOL
slopes were calculated using data only below TOL= 40 h,
the SV-OOA and LV-OOA slopes would be identical, and
only after TOL exceeds 40 h, LV-OOA loading keeps increas-
ing while the SV-OOA loading shows a minor decreasing

trend (Fig. 12c). More analysis and perhaps investigations
of similar plots from other boreal research stations could
give us insights into whether the figure informs more on the
timescales of OA chemistry or whether it is linked to mete-
orology and/or distance to the ocean from the measurement
station. Additionally, cloud processing and subsequent pre-
cipitation will influence aerosol size distribution during the
transport to the observation site. However, in this study we
did not take these interactions and precipitation processes
into account. Our aim was to explore the net effect of TOL in
sub-micrometre aerosol chemistry at a fixed site. Therefore a
need to explore these features in a systematic manner in the
future also exists.

7 Conclusions

Organic aerosol (OA) mass spectra are recorded continu-
ously with an Aerosol Chemical Speciation Monitor (ACSM)

Atmos. Chem. Phys., 21, 10081–10109, 2021 https://doi.org/10.5194/acp-21-10081-2021



L. Heikkinen et al.: Eight years of sub-micrometre organic aerosol composition data 10101

Figure 12. (a) The different rolling rCMB factors (y axis in
µg m−3) vs. TOL (x axis in hours) for the clean sector (least pol-
luted north-western sector as defined by Tunved et al., 2006; see
Fig. S2 for a more precise sector definition). The data are binned
to 5-hourly TOL bins. The shaded areas represents the concentra-
tion interquartile ranges (25th to 75th percentile) and the square
markers the median concentrations. (b) The OA type vs. TOL scat-
ter plot slopes (y axis) for each month (x axis) colour coded by
the Pearson correlation coefficient for each scatter plot. The slopes
(in µg m−3 h−1) are calculated for a linear fit in the TOL range of
[20, 70] h. (c) The OA type concentration in a TOL bin divided
by the median OA type concentration when TOL was <25 h as a
function of TOL. The plot visualizes how the SV-OOA and LV-
OOA have similar OA type enhancements as a function of TOL
until TOL= 40 h.

since 2012 at SMEAR II station, located within the boreal
forest in Southern Finland. The goal of the current paper
was to yield understanding of the main OA components:
their mass spectral features and temporal behaviours. The
large extent of input data (8 years) and the relatively re-
mote measurement location required us to develop a new
framework for conducting OA chemical characterization, as
to our knowledge there are no previous studies where equally
long or longer time series of OA mass spectra from similar
environments have been characterized. We approached the
OA characterization via positive matrix factorization (PMF;
Paatero and Tapper, 1994). However, due to the length of the
data set, we conducted the PMF with a 30 d rolling window
approach, which enabled factor profile variability across the
8 years (Canonaco et al., 2021; Parworth et al., 2015). The
rolling PMF yielded an extremely large number of PMF solu-
tions (20 900 solutions, 62 700 factor profiles). We explored
the PMF profiles across the solution space using k-means
clustering to gain understanding of the dominant OA types
at the station. We revealed and identified three significantly
different OA clusters – low-volatility oxygenated OA (LV-
OOA), semi-volatile oxygenated OA (SV-OOA), and pri-
mary OA (POA) – from these data. To attain their temporal
variabilities, we performed a rolling relaxed chemical mass
balance (rolling rCMB) run, anchored by the observed clus-
ters and their intra-cluster variabilities as opposed to the more
conventional methods introduced by for example Canonaco
et al. (2021). The selection of k-means and rolling rCMB
combination instead of a conventional rolling PMF enabled
us to quantify POA at SMEAR II. The rCMB run explained
ca. 70 % of the observed OA at SMEAR II, and nearly two-
thirds of the unexplained variation was due to high noise
level of the data, leaving the real unexplained variation at
only 11 %. The analysis method utilized here turned out to
be robust, and it required little analyst interference. There-
fore, our framework presents a technique to effectively anal-
yse long-term AMS or ACSM data sets while reducing sub-
jective bias upon analysis. However, more work is potentially
needed in the future to optimize the analysis stages proposed.

With equal importance to the tested data analysis frame-
work, we also presented the OA composition and its vari-
ability at SMEAR II. The main conclusion to be drawn from
the OA composition at SMEAR II is that this boreal OA is
nearly exclusively oxidized organic aerosol, mostly highly
oxidized LV-OOA. The result was well in line with previous
studies from the Northern Hemisphere showing the ubiquity
of OOA especially at rural measurement sites (Zhang et al.,
2007). The LV-OOA seasonal cycle was bimodal, culminat-
ing in February and summer. The wintertime LV-OOA was
likely anthropogenic, and the February peak coincided with
NR-PM1 inorganics (Heikkinen et al., 2020). The summer-
time LV-OOA had enhanced biogenic influence, and it lin-
early increased the longer the air mass spent over the bo-
real forest. We estimated natural LV-OOA production of sev-
eral tens of ng m−3 per hour. These numbers were well in
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line with previous studies investigating the natural aerosol
production in the boreal forest (Tunved et al., 2006; Liao
et al., 2014). SV-OOA was the second most abundant OA
type, and the maximum SV-OOA concentration was detected
in early mornings during summer. Both biogenic processes
and emissions from the nearby sawmill contribute to the SV-
OOA mass as also exemplified in previous studies (e.g. Äi-
jälä et al., 2017). The highest SV-OOA loadings were ob-
served when sampling from shallow nocturnal surface layers,
but it is possible that the production of SV-OOA was highest
during daytime when most BVOC oxidation takes place. Fi-
nally, the POA, the mass spectrum of which resembled both
hydrocarbon-like OA and biomass burning OA, attained sig-
nificant OA mass fractions only in winter. Still, those OA
mass fractions were significantly lower compared to earlier
long-term descriptions of SMEAR II OA composition (Äijälä
et al., 2019). This discrepancy could be for example linked
to a decrease in POA emissions as hinted by decreasing BC
trends at the site (Luoma et al., 2021) or the ACSM limited
capability in detecting short-term (pollution) plumes, which
average out even more due to the 3 h averaging applied to the
PMF input data, which was necessary to improve the SNR at
this rural background site. More generally, due to OA com-
position sensitivity to meteorological conditions and anoma-
lies, even longer time series need to be accumulated in order
to reliably estimate trends of POA and other OA constituents
at SMEAR II based on ACSM data.
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Appendix A: Statistical analysis workflow

Figure A1. Workflow describing the machine-learning analysis approach utilized in the current study. In a nutshell, this method describes
how k-means clustering can be used to classify OA mass spectral profiles from a large number of unconstrained rolling PMF runs and
how this information can be further utilized in a relaxed CMB run to gain insight into the OA classes’ temporal behaviours. The method
comprises four main phases: (1) performing rolling PMF (Sect. 5.1), (2) performing window-by-window (file-by-file) clustering of rolling
window iterations (Phase I clustering; Sect. 5.2.1), (3) conducting overall classification of the centroids calculated for all PMF windows
(Phase II clustering; Sect. 5.2.2), and finally (4) performing rolling relaxed chemical mass balancing using the centroids retrieved in the
previous step as CMB anchors (Sect. 5.3). Sections 4 and 5 in the paper introduce all the vocabulary needed for understanding this figure.
These sections also contain detailed descriptions of each step in the method.
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