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Abstract. Sixty days after the lockdown of Hubei Province,
where the coronavirus was first reported, China’s true recov-
ery from the pandemic remained an outstanding question.
This study investigates how human activity changed dur-
ing this period using observations of surface pollutants. By
combining surface data with a three-dimensional chemistry
model, the impacts of meteorological variations and varia-
tions in yearly emission control are minimized, demonstrat-
ing how pollutant levels over China changed before and after
the Lunar New Year from 2017 to 2020. The results show that
the reduction in NO2 concentrations, an indicator of emis-
sions in the transportation sector, was clearly greater and
longer in 2020 than in normal years and started to recover af-
ter 15 February. By contrast, PM2.5 emissions had not yet re-
covered by the end of March, showing a reduction of around
30 % compared with normal years. SO2 emissions were not
affected significantly by the pandemic. An additional model
study using a top–down emission adjustment still confirms a
reduction of around 25 % in unknown surface PM2.5 emis-
sions over the same period, even after realistically updating
SO2 and NOx emissions. This evidence suggests that differ-
ent economic sectors in China may be recovering at different

rates, with the fastest recovery in transportation and a slower
recovery likely in agriculture. The apparent difference be-
tween the recovery timelines of NO2 and PM2.5 implies that
monitoring a single pollutant alone (e.g., NOx emissions) is
insufficient to draw conclusions on the overall recovery of
the Chinese economy.

1 Introduction

Measuring pollutants can provide empirical and immedi-
ate information on human activity compared with tradi-
tional survey-based measures, although interpreting spatial
and temporal trends in such data is complex. The novel coro-
navirus SARS-CoV-2 has struck globally since it was first
reported in December 2019 in China, the first country to be
affected. After strong efforts by the Chinese government, in-
cluding the lockdown of Hubei Province, the outbreak seems
to have eased as of the end of March 2020. New daily infec-
tions in Hubei have dropped significantly, with reported new
cases dropping to zero from the thousands of new cases re-
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ported daily in February (Worldometer, 2020), and lockdown
restrictions have been eased. As countries around the world
struggle to slow outbreaks of the pandemic disease, it be-
comes important to observe and analyze signals of recovery
in economic and public activity in China.

A large proportion of the surface pollutants in China orig-
inate from anthropogenic emissions by five major economic
sectors: transportation, industry, power generation, residen-
tial (cooking and heating), and agriculture (Li et al., 2017).
Emission changes for different economic sectors can be ap-
proximately inferred based on changes in ambient concen-
trations of specific pollutants if uncertainties associated with
real-world emissions and meteorological variations can be
reduced or accounted for. NO2 concentration is strongly as-
sociated with nitrogen oxide (NOx=NO+NO2) emissions
(Beirle et al., 2011; Georgoulias et al., 2019), and, since mo-
bile sources (transportation) account for a large proportion of
NOx emissions, NO2 concentrations can offer a good proxy
for traffic in urban areas (Li et al., 2017). Meanwhile, SO2
emissions are strongly related to the industrial and residential
sectors. The agricultural sector plays a critical role in tropo-
spheric chemistry, providing most of the ammonia emissions
that contribute to the formation of inorganic aerosols (Pinder
et al., 2007).

Surface observations of pollutants provide an independent
data set that can be compared with socioeconomic data based
on surveys. Three main components affect variations in pol-
lutant concentrations: (1) natural variations (e.g., short-term
synoptic weather, interannual meteorological variations, and
long-term climate change), (2) long-term trends due to emis-
sion control, and (3) sporadic socioeconomic events (Kim
et al., 2017a). The coronavirus offers a case of an emission
change caused by an unprecedented, isolated social event.
Therefore, signals from these first two components – me-
teorological variations and year-on-year emission controls –
must be minimized to isolate the true signal of the impact of
the pandemic on air pollutant concentrations. A state-of-the-
art three-dimensional atmospheric chemistry model can help
to separate these confounding factors. This study attempts to
estimate the impact of the pandemic on Chinese regional air
quality, thus inferring changes in social activity based on ob-
servations of surface pollutants.

Although early studies have reported Chinese air quality
during the period in question, in terms of surface observa-
tions and air quality indices (Bao and Zhang, 2020; Chauhan
and Singh, 2020; He et al., 2020; Shi and Brasseur, 2020; Xu
et al., 2020), satellite observations (F. Liu et al., 2020; Q. Liu
et al., 2020), atmospheric chemistry modeling (Kang et al.,
2020; Li et al., 2020; Wang et al., 2020), emission estimation
via inverse modeling (Miyazaki et al., 2020; Zhang et al.,
2020), secondary aerosol formation (Huang et al., 2021), and
human activity and energy use (Wang and Su, 2020), it re-
mains challenging to fully isolate the impact of the pandemic
on the region’s air quality. To quantitatively assess changes in
major surface pollutants and their precursor emissions over

China during the pandemic period, we conducted a series of
analyses using surface observations and atmospheric chem-
istry models, with simulations based on a bottom–up emis-
sion inventory and top–down assimilated emissions. Sec-
tion 2 describes the observational data recorded from sur-
face monitors and satellite, as well as the baseline modeling
methodology. Section 3 describes the methodology for pro-
cessing time-series data, estimating top–down emissions and
assessing sectoral impacts of emissions. Section 4 presents
and discusses the results. Finally, Sect. 5 summarizes the
findings and their implications.

2 Data

2.1 Observations

Surface observation data were obtained from the China
National Environmental Monitoring Center (CNEMC; data
available at http://www.pm25.in, last access: 25 June 2021).
Hourly ambient air concentration data for PM10, PM2.5, CO,
NO2, O3, and SO2 were available for 1571 sites (over China)
and 1459 sites (within the study domain; Fig. 1). After re-
moving sites with less than 80 % data availability for each
year (2017–2020, ± 60 d of Lunar New Year (LNY)), the
analysis used observations from 1332 sites. Data-processing
procedures are explained in Sect. 3.1 and further discussed
in Sect. 4.4.

2.2 Satellite

The TROPOspheric Monitoring Instrument (TROPOMI)
NO2 vertical column-density, level-2 data (S5P_L2_NO2)
were obtained from NASA GES DISC (http://tropomi.
gesdisc.eosdis.nasa.gov, last access: 25 June 2021).
TROPOMI is a hyperspectral spectrometer onboard the
Sentinel-5P satellite, with wavelength coverage over ultravi-
olet to visible (270 to 495 nm), near infrared (675–775 nm),
and shortwave infrared (2305–2385 nm) wavelengths (Eskes
et al., 2019; van Geffen et al., 2019). High-quality pixels
from level-2 data (3.5 km× 7 km resolution at the nadir)
were selected using the quality flags provided by the product
(qa_value > 0.75) and then spatially regridded into the study
domain using a conservative spatial-regridding method that
preserves mass during interpolation (Kim et al., 2018, 2016,
2020).

2.3 Model

Meteorological and atmospheric chemistry transport models
were used over East Asia with a 27 km horizontal resolu-
tion. The Weather Research and Forecasting Model (WRF,
version 3.4.1) was used for meteorological simulations (Ska-
marock and Klemp, 2008). The National Oceanic and Atmo-
spheric Administration (NOAA) National Centers for Envi-
ronmental Protection (NCEP) Final Analysis (FNL) product
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Figure 1. Geographical coverage of modeling domain and surface-monitoring sites. Monthly mean surface PM2.5 concentrations in February
2019 and February 2020 are shown.

Table 1. Physical options for meteorological and chemical simulations.

Model Physical options Descriptions

WRF
v3.4.1

Initial field
Microphysics
Cumulus scheme
Land surface model scheme
Planetary boundary layer scheme

FNL (NCEP, 2000)
WSM6 (Hong et al., 2004)
Kain-Fritsch (Kain, 2004)
NOAH (Chen and Dudhia, 2001)
YSU (Hong et al., 2006)

CMAQ
v4.7.1

Chemical mechanism
Chemical solver
Aerosol module
Advection scheme
Horizontal diffusion
Vertical diffusion
Cloud scheme

SAPRC99 (Carter, 2003)
EBI (Hertel et al., 1993)
AERO5 (Binkowski and Roselle, 2003)
YAMO (Yamartino, 1993)
Multiscale (Louis, 1979)
Eddy (Louis, 1979)
RADM (Chang et al., 1987)

(NCEP, 2000) provided the initial and boundary conditions
for the WRF simulations. For chemistry simulations, CMAQ
(version 4.7.1) (Byun and Schere, 2006), the Meteorology–
Chemistry Interface Processor (MCIP, version 3.6) (Otte and
Pleim, 2010), and the Sparse Matrix Operator Kernel Emis-
sion (SMOKE) modeling framework were used, employing
the meteorological inputs provided by the WRF simulations.
Table 1 details the modeling configurations, and Fig. S1 in
the Supplement compares models with observations. The
models provide a reasonably realistic simulation of atmo-
spheric chemical and physical processes over the considered
domain, especially in terms of their daily variations from
2017 to 2019 (e.g., R= 0.91∼ 0.94 for PM2.5, see Emery
et al. (2017) for general model performance guidance). How-
ever, in 2020, as the effects of the pandemic began to take
hold, the chemical model’s predictions – based on typical
(as opposed to pandemic-influenced) emissions – systemati-
cally overpredicted pollutant concentrations, consistent with
a pandemic-influenced reduction in emissions.

2.4 Emission inventory

This study used two sets of emission inventories, the Com-
prehensive Regional emission inventory for Atmospheric
Transport Experiment (CREATE, version 2.3) (Jang et al.,
2020) and the Model Inter-Comparison Study for Asia
(MICS-Asia) emission inventory (MIX inventory for the
year 2010) (Li et al., 2017). While the CREATE inventory is
based on the latest information, including the 2016 KORUS-
AQ campaign (https://espo.nasa.gov/korus-aq, last access:
25 June 2021), the MIX inventory has been tested in many di-
verse applications (J. Li et al., 2019; K. Li et al., 2019; Zhang
et al., 2017). The time-series analysis in Fig. 2 (discussed be-
low) was based on the CREATE emission inventory, but the
results of the analysis did not depend in any significant way
on a choice between these two base inventories. The CRE-
ATE inventory is provided as an annual mean for each Chi-
nese province for the year 2016 and the SMOKE preproces-
sor was used to convert the inventory to hourly model-ready
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Figure 2. Time series of estimated emissions for (a) NO2 and
(b) PM2.5 using 1332 surface-monitoring sites across China. The
gray lines indicate 2017–2019 variations, with their average in
the thick gray line, whereas the red line indicates the 2020 varia-
tion. The blue line indicates the 2020 variations in Hubei Province
(46 sites). BASE is used as the pre-LNY period, and (1) and (2) de-
note the period of maximum impact and the recovery period, re-
spectively.

inputs. The base model simulations use these 2016 emissions
for the entire 2017–2020 modeling period.

3 Method

This section describes the following aspects of the analysis:
(1) data-processing procedures for analyzing the time series,
(2) emission adjustment procedures to update SO2 and NOx
emissions to near real time, and (3) brute-force modeling pro-
cedures to estimate Chinese emissions by sector. It should be
noted that the time-series analysis (discussed in Sect. 4.1) uti-
lizes fixed emission inventory (i.e., bottom–up emission in-
ventory) and the emission adjustment experiment (Sect. 4.2)
utilizes observation-based top–down emissions. The sectoral
emission estimation method is for Sect. 4.3.

3.1 Time-series analysis

Four types of variation (meteorological, weekly, yearly, and
the Chinese spring festival) were reduced or accounted for
in the surface observations, as follows. Meteorological influ-
ences were reduced by combining surface data with output

from a three-dimensional chemistry model to calculate esti-
mated emissions. Since the model simulations with a fixed
emission inventory respond to the variations in meteorologi-
cal conditions, we can infer the relationship between emis-
sions and ambient pollutant concentrations under specific
weather conditions. By applying this relationship, we con-
vert the changes in observed concentrations into the changes
in emissions. Weekly variations, a unique feature of anthro-
pogenic emissions, were removed by using a 7 d moving av-
erage. The impact of the Chinese spring festival, the biggest
traditional holiday celebrating Lunar New Year (LNY), was
normalized by rearranging the time series to center on the
LNY in each solar year. The LNY alignment was neces-
sary to account for the irregular occurrence of the LNY
dates. Seven-day moving average filtering was also required
to avoid unfair comparisons between different weekdays af-
ter the LNY alignment. Otherwise, we may compare differ-
ent weekdays for different year (e.g., 2020 LNY on 25 Jan-
uary, Saturday, and 2019 LNY is February 5, Tuesday). Fig-
ure S4 shows that the 7 d moving average filter smooths but
does not significantly change the time-series results. Finally,
yearly emission variations were removed by setting a base
period (−60 to −10 d before LNY) and calculating relative
changes from the average of the base period.

We followed the data-processing procedures suggested by
Bae et al. (2020b) for their emissions-updating system (here-
after BAE2020). First, the observational and modeled data
were paired and tested, and observation sites with more
than 20 % of values missing were discarded. To avoid over-
weighting dense urban sites, observations occurring within
the same model grid cell were averaged. Second, weekly
variations were removed using 7 d moving averages, and the
impact of the Chinese spring festival was normalized by rear-
ranging the time series to center on LNY in each year. Third,
meteorological variations were removed by applying the ra-
tio between observed and modeled concentrations. Using a
simple linear assumption, observed pollutant concentrations
were combined with the results of the chemical model to cre-
ate estimates of actual emissions that are less sensitive to me-
teorological variations. Use of the linear assumption in the
concentration-to-emission conversion is further discussed in
Sect. 4.4 The total estimated emissions, Eest, and their rela-
tive variations, rEest, were calculated as

Eest(t)= Emod ·
Cobs(t)

Cmod(t)
, (1)

rEest(t)=
Eest(t)∑

t=base
Eest(t)/nbase

· 100%, (2)

where C is the daily pollutant concentration; t is days from
LNY; base and nbase are the pre-LNY base period (shown in
Fig. 2) and its number of days, respectively; and Emod is the
model emissions. To normalize the yearly changes, a base
period (−60 to −10 d before LNY) was set, with relative
changes calculated from the average of that base period (i.e.,
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Figure 3. Spatial distribution of the change in estimated NOx emissions from the baseline period (Fig. 2) during the period of maximum
impact (25 January–14 February 2020) and the recovery period (24 February–15 March 2020). Hubei Province is marked in red.

rEest(t)). The impact of the pandemic was inferred by calcu-
lating the difference in estimated emissions between normal
years and 2020. Since the model uses a fixed emission inven-
tory for each year, Emod cancels out in the comparison.

For the spatial analyses of the data (e.g., Fig. 3), point data
were converted to area format. Similar to the time-series data
processing, the observational and modeled data were paired
and tested. Considering the location of each paired data set,
we assigned point data to their corresponding Chinese pre-
fecture. By averaging all concentrations in each prefecture,
we constructed the prefecture-level concentration data set
(for each prefecture polygon), which was then converted into
domain grids using a conservative spatial-regridding tech-
nique. Section 4.4 further discusses the data-processing pro-
cedures.

3.2 Top–down emission adjustment

For the second analysis (discussed in Sect. 4.2), we updated
major pollutant emissions to a more realistic level and ana-
lyzed simulated chemical behaviors. Due to stringent emis-
sion control policies by the Chinese government, Chinese
anthropogenic emissions have changed dramatically over re-
cent years. For example, the annual mean surface SO2 con-
centration across China was 8.4 ppb in 2016 but dropped to
less than half of this level (3.7 ppb) in 2020. To incorporate
a realistic change in emissions from 2016 to 2020, we ap-
plied observation-based emission adjustment factors to the
2016 CREATE emission inventory to reproduce emissions in
2020. In general, model emissions can be adjusted based on
the ratios between observed and modeled surface concentra-
tions:

Eadj

Emod
= β ·

Cobs

Cmod
, (3)

where β is a sensitivity factor in the emission-to-
concentration conversion. β is close to 1 if less secondary
chemical reactions are involved. BAE2020 assumed a fixed

β = 1 to update SO2 emissions, and they demonstrated that
the adjusted emissions effectively reproduced surface SO2
concentrations over China. Similar approaches were also
confirmed to be effective for the NOx emission adjustment
over the same East Asian domain using satellite-based mea-
surements of NO2 column densities (Bae et al., 2020a; Chang
et al., 2016).

While this simple assumption works practically, we tried
to conduct the emission adjustment processing more care-
fully, considering the unprecedented changes in the chemical
environment during the pandemic period. We extend the ap-
proach of BAE2020, offering two major enhancements. First,
we calculate daily emission adjustment factors to represent
the rapid changes in emissions under the pandemic situa-
tion. We applied 14 d moving averages to avoid uncertainties
caused by insufficient data points day to day. Second, we cal-
culated spatial and temporal variations in β and then applied
these to the emission adjustment factors. Table 2 compares
the data-processing steps used in this study with those used
in BAE2020.

The β values are calculated as follows. In the real world,
the sensitivity of concentration to changes in emissions is not
unique or spatially homogeneous (i.e., β 6= 1), especially for
NOx emissions and NO2 concentrations. β values for specific
location and time can be calculated if we have two model
simulations with different emissions applied. Previous stud-
ies have calculated β values for a model by using changes in
concentration caused by a certain amount of perturbed emis-
sions (e.g., Lamsal et al., 2011, used a 15 % emission pertur-
bation).

To obtain more realistic β values, we have conducted two
model simulations: base and adj1 runs. First, the base model
simulation was conducted using a normal emission inventory,
CREATE, which we have introduced previously. The second
simulation, adj1 run, was conducted using perturbed emis-
sions to estimate how the model responds according to the
change in emissions. We adjusted emissions according to the
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Table 2. Comparison of data-processing steps in the emission adjustment methods used in BAE2020 and this study.

Data-processing steps BAE2020 This study

Spatial processing Prefecture-level Prefecture-level
Temporal processing Monthly Daily (14 d moving average)

Emission-to-concentration
conversion factor (β)

β = 1 Varying
(Daily and prefecture-level)

CMAQ simulations 1 (adj1) 2 (adj1 & adj2)
Emissions adjusted SO2 SO2, NOx

Note: results of “adj1” simulations were used to calculate β values for the “adj2” simulation.

ratio between observed and modeled surface concentrations,
so we can reproduce a more realistic chemical environment.

From these two simulations, the base and adj1 runs, we
calculate the emissions-to-concentration sensitivity, β val-
ues, on a specific spatial and temporal scale – for each Chi-
nese prefecture daily. β values are calculated as

βp,t =
[Eadj1/Ebase]p,t

[Cadj1/Cbase]p,t
, (4)

where p and t stand for indices of Chinese prefectures and
specific dates. Using calculated β values for each prefecture
and date, we finally obtain the adjusted emissions for the sec-
ond and final simulations: the adj2 run.

[Eadj2]p,t = βp,t ·

[
Cobs

Cbase
·Ebase

]
p,t

(5)

We further discuss the characteristics of the emissions-to-
concentration sensitivity in Sect. 4.4.2.

3.3 Estimation of sectoral contributions

The contributions of emissions from each sector to surface
PM2.5 concentrations over China were estimated using the
brute-force method (BFM), an approach that uses changes
in modeled outputs as a result of perturbed emission inputs
(Burr and Zhang, 2011). The MIX emission inventory pro-
vides information on five sectors: residential, industry, power
generation, transportation, and agriculture. Sectoral contribu-
tions were calculated by applying the perturbed emissions for
each sector:

Contr.(sector)=
(Cbase−C1E,sector)/1E

Cbase
· 100%, (6)

where C is the surface PM2.5 concentration and 1E is the
ratio of the emission perturbations. A 50 % reduction was
chosen to perturb emissions for each individual sector. Frac-
tional contributions of each emission sector were calculated
compared to the sum of all five emission sector contributions.
The application of the BFM to East Asian air quality mod-
els and a discussion of its uncertainties has been presented
elsewhere (Kim et al., 2017b).

4 Results

4.1 Time-series analysis

Reducing meteorological, weekly, and yearly variations, as
well as variations resulting from the Chinese spring festival
made the comparison of pandemic-influenced surface obser-
vations to normal conditions more robust and useful. Esti-
mated NOx emissions (Fig. 2) display variations from the
spring festival season. From 2017–2019, the estimated NOx
emissions demonstrate a clear reduction during the festival
period (by up to 45 % between −10 and +20 d from LNY).
In 2020, this reduction is slightly greater and continues for
longer, implying that the coronavirus outbreak further re-
duced traffic in China. The difference between the estimated
emissions in the 2017–2019 time series and those in the 2020
time series in Fig. 2 reflects the relative significance of the
impact of the coronavirus (p< 0.01 for t test of comparison
after LNY).

Interestingly, the 2020 time series (that is, the combined
effect of the spring festival and the coronavirus) remains
flat from the LNY to 15 February. As both effects likely
overlapped, they appear inseparable during the period. The
maximum impact from the coronavirus seen in the data is
a 58 % reduction on 15 February 2020 from the level seen
in prior, baseline years (2017–2019). The level of NOx emis-
sions from 1 to 15 February (close to a 50 % reduction) might
suggest a floor level for reduced emissions under current
conditions in terms of technology and infrastructure. This
might have important implications for chemical modeling
and emission control, perhaps implying a floor for emission
reductions that China can realistically reach under current
conditions. The blue line represents a time series from Hubei
only (46 sites), showing, as would be expected, that the im-
pact in Hubei has been more significant and sustained.

The reduced NOx emissions began to increase after
15 February, almost recovering to their normal level by
the end of March 2020. Hence, the impact of the coron-
avirus pandemic on NOx emissions in China lasted almost
2 months. Figure 3 shows the spatial distribution of the esti-
mated changes in NOx emissions from the base period to the
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period of maximum impact (25 January–14 February 2020)
and the recovery period (24 February – 15 March 2020). Just
after LNY, NOx emissions strongly reduce across China, but
their inferred recovery is spatially inhomogeneous. As shown
in Fig. 3, Hubei Province continued to show a strong reduc-
tion (by more than 50 %) compared with the pre-LNY level,
even in the recovery phase (period 2). Other regions show
various patterns in NOx levels compared with previous years.
These observations are consistent with space-borne, remote-
sensing measurements from the TROPOMI (Fig. S1). Similar
to the surface observations in Fig. 3, the spatial distributions
of NO2 column densities during the period of maximum im-
pact (25 January–14 February) and the recovery period (24
February – 15 March) were generated as changes from the
baseline period (26 November 2019–15 January 2020).

The impact of the virus may actually have begun before
the spring festival. In normal years (2017–2019), variation
in estimated pre-LNY baseline period (−60 to −10 d) NOx
emissions is relatively small because the model uses fixed
emissions and weekly variations have already been removed.
However, the estimated emissions in 2020 are relatively low,
starting from about 15 d before LNY, and this relative re-
duction is more pronounced in Hubei. This suggests that our
baseline period in 2020 already includes a partial coronavirus
impact. If this is true, the impact of the pandemic would be
even stronger than inferred here, as it is based on a year-
by-year comparison of concentrations during and after the
typical-year base period.

Unlike the temporal trend in NOx emissions and their spa-
tial distribution, a comparison of changes in the PM2.5 level
suggests a different story (Fig. 2b). Contrary to NOx emis-
sions, PM2.5 concentrations typically show a slight increase
near LNY, likely due to increased PM2.5 emissions from fire-
works, a long-held tradition in China (Kong et al., 2015), and
show only a relatively moderate reduction from typical lev-
els (by 10 %–20 %) over the remainder of the spring festival.
Unlike NOx emissions, the case of PM2.5 involves both di-
rect emissions of particulate matter and gas-to-particle con-
version of emitted precursors (e.g., SO2, NOx, NH3, VOCs –
volatile organic compounds) mediated by atmospheric chem-
ical transformations. As discussed in the Method section,
we assume the same approximate relationship for PM2.5 as
with NOx between the ambient observations and their asso-
ciated emissions. This approach suggests that emissions de-
creased by roughly 30 % from normal levels through the end
of March to reach 72.7± 6.6 % of the 2017–2019 level from
4 February to 25 March 2020. Interestingly, the pandemic
does not seem to have significantly affected SO2 emissions
(see Fig. S3), suggesting that the pandemic’s effects on the
power generation and industrial sectors have been relatively
small.

4.2 Experiment with updated SO2 and NOx emissions

As discussed in Sect. 3.2 above, we used an alternative ap-
proach to investigate unidentified PM2.5 emissions, specifi-
cally applying more realistic SO2 and NOx emission adjust-
ments. Using this methodology, we repeated CMAQ sim-
ulations with SO2 and NOx emissions adjusted based on
surface measurements. Daily and prefecture-level emission-
adjustment factors were calculated and applied to the base-
line emission inventory. The two CMAQ simulations – a
baseline simulation with the CREATE emission inventory
and an adjustment simulation with updated emissions – were
both compared with observations from surface-monitoring
sites (Fig. 4). Individual site comparisons are also available
in Fig. S11.

For both SO2 and NO2 concentrations, the CMAQ simu-
lation with adjusted emissions performed well, reproducing
observed variations in surface concentrations. It should be
noted that the CREATE v2.3 emission inventory we used was
constructed for 2016 and applied to a 2020 simulation. Be-
fore LNY, simulated NO2 concentrations with both the base-
line and adjusted emission inventory agreed well with obser-
vations, implying that there were no significant changes in
the NOx emission level between 2016 and 2020. Near LNY,
the baseline NO2 simulations differ significantly from obser-
vations, while the simulation with adjusted emissions suc-
cessfully reproduced the huge reductions in the LNY and
pandemic period. The difference between the baseline and
adjusted simulations almost disappears at the end of March,
consistent with the result of the time-series analysis (Fig. 2).
On the other hand, the baseline SO2 simulations greatly over-
estimate observations by 2 or 3 times, implying that nomi-
nal, real-world SO2 emissions in 2020 are much smaller than
those reflected in the 2016 emission inventory. By applying
the top–down adjustment described here, simulations could
successfully reproduce surface SO2 concentrations, reduc-
ing RMSE by 93 % from 9.19 to 0.62 ppb. The updated SO2
and NOx emission inventories appear to successfully repro-
duce variations in surface PM2.5 concentrations, even after
the start of LNY celebrations. However, in early February, as
the impact of the COVID-19 pandemic became more signifi-
cant, the baseline run (with the CREATE emission inventory)
does not simulate a sudden drop in PM2.5 observations, while
the adjusted emissions run does so.

A closer look, however, reveals that the real trend in PM2.5
emissions cannot be explained by the change in two major
inorganic aerosol precursors: SO2 and NOx. Figure 5 depicts
the time series of normalized mean biases (NMBs) of surface
PM2.5 concentrations. Before LNY, PM2.5 NMB is mostly
negative, showing the adjusted emission simulation slightly
underestimates particulate matter. After LNY, PM2.5 NMB
changes prominently, showing the simulation clearly overes-
timates observations by about 20 % NMB in PM2.5 concen-
tration. Before and after LNY, PM2.5 NMB moves by 25.1 %,
from −4.1 % to 21.0 %, implying that the model suddenly
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Figure 4. Time series and scatterplots of observed and modeled surface concentrations of SO2, NO2, and PM2.5 from 1332 Chinese surface-
monitoring sites during the pandemic period. Model simulations using the baseline emission inventory (CREATE) and top–down adjusted
emissions are shown in blue and red, respectively. Observations are represented by gray circles.

Figure 5. Time series of surface PM2.5 normalized mean bias dur-
ing the pandemic period between observed and modeled data with
adjusted emissions (i.e., SO2 and NOx emissions adjusted). Mean
NMBs before and after LNY are also marked. Raw, 7 d, and 14 d
moving average NMBs are shown in thin, medium-thin, and thick
lines, respectively.

overestimates PM2.5 concentrations by 25 % after LNY. In
other words, unknown, non-modeled emissions (that is, non-
SO2 and non-NOx emissions) are clearly reduced enough
during the pandemic period (February and March) to account
for 25 % of total PM2.5 concentration at baseline. This result
is consistent with findings (Sect. 4.1) that changes in SO2
and NOx emissions alone cannot explain the reduced PM2.5
concentrations in March.

4.3 Sectoral contributions to emissions

One remaining question is why the recovery of NOx emis-
sions and unchanged SO2 emissions at the end of March did
not lead to the recovery of PM2.5, which might be explained
by considering the time-varying emission contribution of
each economic sector. Sensitivity tests using the CMAQ
model reveal that the residential and agricultural sectors are
most dominant in the early months of the year (Fig. 6), ac-
counting for more than 60 % of surface PM2.5 concentration
over China. As emissions in the residential sector are primar-
ily from cooking and heating with anthracite coal and wood,
emissions which continue even during a pandemic, one pos-
sible explanation is that emissions from the agricultural sec-
tor reduced as a result of pandemic-related delays in planting
and fertilizing.
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Figure 6. Monthly variations in emission contributions to surface
PM2.5 concentrations over China by sector. The contributions from
the five sectors (residential, industry, power generation, transporta-
tion, and agriculture) were estimated using a brute-force perturba-
tion method.

February is the start of the spring-crop planting period in
southern China. The coronavirus outbreak could have im-
pacted both field crops and livestock farms. Inputs, such as
fertilizer and animal feed, have reportedly been scarce as
a result of transportation disruptions, and seasonal workers
have reportedly been lacking due to quarantine controls or
fears (Quanying, 2020; Yu, 2020; Zhang and Xiong, 2020).
Agricultural activities that generate particulate matter, such
as biomass burning to clear debris and the generation of air-
borne dust during tilling, are reduced in intensity during the
pandemic. Reduced NH3 emissions as a result of diminished
livestock farming activities might also be a factor leading to
lower PM2.5 concentrations.

4.4 Further discussions on the methods

4.4.1 On the data processing of time-series analysis

We further discuss data-processing procedures here. Fig-
ure 7 presents a time series of surface pollutants proceed-
ing through data-processing steps. Even in raw format, NO2
exhibits clear impacts from the pandemic. Impacts on other
pollutants (CO, PM10, and PM2.5), however, are not easily
recognizable until confounding signals are fully removed. In-
terpreting SO2 concentration data is particularly illuminat-
ing. While 2020 SO2 concentrations are substantially lower
than those of previous years, the time series obtained after
the data processing described here suggests that SO2 emis-
sions are mostly consistent before and after LNY. That is,
lower SO2 concentrations in 2020 seem to be a continuation
of year-over-year reductions and not a result of the pandemic.

Note that the various instances of linear assumptions used
in this analysis should be interpreted with caution espe-
cially considering its spatiotemporal resolution and chem-
ical characteristics. Variations in emissions and in chem-
ical and physical processes, including chemical reactions,

transport, and dispersion, can create large gradients on lo-
cal scales that are likely poorly represented in the WRF
and CMAQ modeling performed here, even as their impor-
tance is somewhat smoothed over regional and nationwide
scales. Observed concentrations of a pollutant are generally
proportional to the emissions associated with that pollutant;
conceptually, a simple linear relationship between emissions
and pollutants is assumed. For the pollutants NO2 and SO2,
these are NOx and SO2 emissions, respectively. BAE2020
demonstrated that this concentration-to-emission conversion
method can be used effectively at the Chinese prefecture
level. Discussion of the spatial representativeness of Chi-
nese surface-monitoring data and associated uncertainties
is also presented in BAE2020. For inferring PM2.5-related
emissions, the analysis is more complicated because PM2.5
results from both primary and secondary (precursor) emis-
sions. While the pollutant–emissions relation for PM2.5 is
nonlinear, especially over relatively small spatial and tem-
poral scales, it is still approximately valid over larger geo-
graphical regions and longer time periods.

The validity of the linear assumption was tested through a
model sensitivity analysis. A CMAQ simulation with 50 %
reduced emissions yielded an approximately 50 % reduc-
tion in surface PM2.5 concentrations over most regions in
China (Table S1 in the Supplement). Taken as a whole, sur-
face PM2.5 concentrations are roughly proportional to over-
all emissions. Thus, the simplifying assumption of linearity
appears reasonable for the more complex PM2.5 case, gener-
ating a time series of estimated pollutant emissions without
meteorological variations. Nevertheless, PM2.5 emissions es-
timated with this analysis are necessarily more uncertain than
are NOx emissions. Notably, Table S1 also shows that CMAQ
simulations with adjustments in SO2, NOx, and NH3 individ-
ually showed disproportionately lower responses, suggest-
ing that surface PM2.5 concentrations are influenced by other
emissions (e.g., elemental carbon and organic carbon emis-
sions) and/or nonlinear processes that likely vary with atmo-
spheric chemistry regime.

4.4.2 On the emission adjustment experiment

As stated in the methodology section, we further discuss
here the emissions-to-concentration sensitivities (i.e., β).
The β values can be calculated using any two model simu-
lations based on different emission inputs, by comparing the
change in emissions with the change in simulated concentra-
tions. Furthermore, if we specifically change the emissions
according to the ratio of observations and the base model
simulation, we further simplify the emission scaling factor
as follows.

For this simulation, adj1, if we apply the adjusted emis-
sions using the ratio of the observed and modeled concentra-
tions, the adjusted emissions for the adj1 run, Eadj1, are

Eadj1 =
Cobs

Cbase
·Ebase. (7)
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Figure 7. Time series of surface NO2, SO2, CO, O3, PM2.5, and PM10 concentrations over China following the data-processing procedures
step by step. Raw data (left column), data after applying a 7 d moving average and an LNY alignment (middle column), and data after
removing meteorological variations and calculating variations from the baseline periods (right column) are all shown.
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If we apply this to Eq. (4), we can obtain

β =
Eadj1/Ebase

Cadj1/Cbase
=
Cobs/Cbase

Cadj1/Cbase
=
Cobs

Cadj1
. (8)

Therefore, the emission adjustment factors in the next sim-
ulation (adj2) can be found using Eq. (5):

Eadj2 = β ·
Cobs

Cbase
·Ebase =

[
Cobs

Cadj1
·
Cobs

Cbase

]
·Ebase, (9)

where adj2 indicates the second and final simulation for the
top–down emission adjustment method.

From here, the
[
Cobs
Cadj1

]
term, or β, can be interpreted as an

additional adjustment factor to the original adjustment factor
in adj1,

[
Cobs
Cbase

]
. If the emission modification in adj1 results in

the same percentage change in concentrations, Cobs/Cadj1 =

1, we do not need the secondary adjustment. If the simulated
concentration from adj1 is smaller (larger) than the observa-
tions, we need to increase (reduce) the amounts of emissions.
This procedure was applied to create new 2020 emissions of
both SO2 and NOx.

In most cases, the calculated β values are close to 1
(Fig. S5), implying that the simple assumption β = 1 in
BAE2020 remains effective. The β values for NOx emissions
are slightly higher than those for SO2 emissions over polluted
areas (Fig. S6), which implies that more secondary reactions
are involved in tropospheric NOx chemistry.

Both enhancements to the top–down simulations – β val-
ues and the daily application of emission adjustment factors –
clearly improved the model’s performance, especially in the
pre-LNY periods. While the monthly emission adjustments
failed to represent the rapid changes in NO2 concentrations
after 25 January 2020 (Fig. S7), the daily adjustment method
successfully modeled these changes (Fig. 4). The general un-
derestimation of NO2 concentrations was corrected using the
β values (Fig. 4). The improved model performance was con-
firmed by comparing the spatial distributions and scatterplots
before and after these adjustments (Figs. S8–S10). Spatial
distributions of RMSEs of model performances in SO2, NO2,
and PM2.5 are also summarized in Fig. S12.

Understanding the characteristics of the β values in terms
of their spatial distribution, temporal variation, and chemical
difference is important for several reasons. In the emission
update procedure in practice, we can apply the pre-calculated
β values from the look-up table if the β values show general
consistency according to their location, time, and chemical
component. For the emission control policy, the β values pro-
vide valuable information on the efficiency of emission con-
trol because they suggest how effectively pollutant concen-
trations can be removed given the amount of emission control
by the government.

Figure 8 summarizes the characteristics of the β values.
As they are defined as the ratio of the emission change
(i.e., Eadj1/Ebase) to the change in concentrations (i.e.,
Cadj1/Cbase), the slopes of the fitted lines in the scatter-
plots describe the emissions-to-concentration sensitivities for
SO2 and NO2 (Fig. 8a and b). The histogram of the occur-
rence of the β values also confirms that for both SO2 and
NO2, the calculated β values are centered slightly over 1
(mean= 1.42 and median= 1.27 for SO2 and mean= 1.40
and median= 1.26 for NO2) (Fig. S13). Figure 8c and d
demonstrate the spatial distributions of the β values over Chi-
nese territories. Except for a few outside locations, the β val-
ues are mostly consistent, around 1. We further investigated
the temporal variations in the β values by showing the daily
variations in the estimated β values for selected Chinese
provinces (Fig. 8e and f). It is evident that the β values dif-
fer by location, implying that the emissions-to-concentration
sensitivities vary for different regions likely due to their
unique chemical and emission environment. However, for
each location, the β values are mostly consistent over time.
For the practical use of the β values in the emission update
procedure, we may use region-specific sensitivity parameter-
ization since their temporal variations over a specific region
are not significant.

To evaluate the emission update approach, the key feature
in this study is the validation of PM2.5 concentration. We
used observation-based SO2 and NO2 emission adjustments,
and there was no adjustment in the primary PM2.5 emissions,
meaning that the improvement of PM2.5 is achieved through
chemical reactions and their balances. The surface concen-
trations of surface PM2.5 concentrations, especially inorganic
aerosols, are formed by secondary reactions, which are deter-
mined by the balance of chemical reactions for nitrate, sul-
fate, and ammonium. The performance of the PM2.5 simu-
lations provides strong evidence that the top–down emission
adjustment method used in this study is valid and success-
fully reproduces a realistic chemical environment.

Formation efficiency of sulfate aerosols by updating SO2
and NOx emission is also very interesting. From Fig. 4, one
may notice that the change in total PM2.5 concentration is
not prominent in the pre-pandemic period, even with strong
reduction in SO2 emissions. Modeled PM speciation com-
ponents show that the reduced sulfate concentrations were
canceled out by the increased nitrate concentrations, due to
the balance of nonlinear nitrate–sulfate–ammonium chem-
istry. Nitrate is the most dominant component of PM2.5 dur-
ing the wintertime (contributing ∼ 50 % while sulfate con-
tributes 14 %), and the sudden drop of PM2.5 concentrations
during the pandemic is mostly driven by the change in nitrate
concentrations. This result implies an important message to
emission control policy, suggesting that both SO2 and NOx
emission reductions will be required to achieve better emis-
sion reduction efficiency.
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Figure 8. Calculation of the concentration-to-emissions sensitivities (β) for the emission adjustment experiment of SO2 (left column) and
NO2 (right column). The β values are obtained as the ratio of the emission change (i.e., Emis_adj / Emis_base) to the change in concentrations
(i.e., Conc_adj1/Conc_base), which is also consistent with the slope in the scatterplot (a, b). Spatial variations in the average concentration-
to-emissions sensitivities (β) during January to March 2020 over China (c, d). The temporal variations in the β values for selected Chinese
provinces are shown in the lower panel (e, f). (BJ: Beijing; SH: Shanghai; CQ: Chongqing; HU: Hubei; SD: Shandong; AH: Anhui; HN:
Hunan; JS: Jiangsu; SX: Shanxi).

5 Summary

We investigated changes in observed surface pollutant con-
centrations and precursor emissions over China and in-
ferred changes in human activity as a result of the coro-
navirus pandemic. Three analyses were conducted: (1) a
time-series analysis, (2) an emission adjustment experiment,
and (3) sectoral emission contribution estimations. First, we

removed four types of variation (meteorological, weekly,
yearly, and the LNY) to isolate impacts of coronavirus pan-
demic from observed surface pollutant concentrations. A
chemistry model simulation with fixed emission inventory
was used to remove meteorological variations. The analy-
sis has shown that NOx emissions across China recovered
to almost normal levels 2 months after LNY. However, con-
sidering the estimated changes in emissions associated with
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PM2.5, some emissions remain missing, as of the end of
March 2020, compared with normal years. Second, an al-
ternative modeling approach using updated real-time SO2
and NOx emissions also suggested that about 25 % of PM2.5
emissions are likely missing from the period. Third, impacts
of sectoral emissions were presented to infer the role poten-
tial missing emissions or activities.

The surface observations of pollutants and inferred pre-
cursor emissions across China suggest that the country is re-
covering, as evidenced by the apparent resumption of near-
normal transportation-related emissions. The pandemic ap-
pears not to have strongly affected the industrial sector; con-
tinued depression in estimated PM2.5-associated emissions
may be due to effects on the agricultural sector. If the sus-
tained reduction in PM2.5 is due to reduced activity in the
agricultural sector, agricultural production could be affected,
at least in the short term. This could hold important im-
plications for China’s path to recovery and, potentially, for
broader parts of the world if similar types of agricultural im-
pacts occur elsewhere.

The data analysis approach used here has attempted to iso-
late the ambient data signal due to the coronavirus from other
sources of variation. The apparent difference between the re-
covery timelines for NO2 and PM2.5 suggests that estimat-
ing NOx emissions alone is insufficient to draw conclusions
about the overall recovery of the Chinese economy. Overall,
changes in concentrations of atmospheric pollutants can pro-
vide useful information about the spatial and temporal eco-
nomic impacts of the coronavirus pandemic, a serious global
issue.
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