

Supplement of

Measurement report: Emissions of intermediate-volatility organic compounds from vehicles under real-world driving conditions in an urban tunnel

Hua Fang et al.

Correspondence to: Xinming Wang (wangxm@gig.ac.cn) and Yanli Zhang (zhang_yl86@gig.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

23 Text S1

24 Quantification of IVOCs

Speciated IVOCs were identified based on their retention times and mass spectra, and were quantified by 18 authentic standards including C₁₂-C₂₂ n-alkanes and 8 polycyclic aromatic hydrocarbons (PAHs). The pristane and phytane were quantified by the calibration curves of the nalkanes (n-C₁₇ and n-C₁₈) near them.
Total IVOCs mass were quantified by using the method developed by Zhao et al. (2014). Firstly, the

total ion chromatogram (TIC) was divided into 11 chromatogram bins based on retention times of C_{12} - C_{22} n-alkanes. The start time and end time of chromatogram bin were determined by successive n-alkanes. The example was illustrated as following:

$$t_{n, Bin-start} = \frac{t_{n-1} + t_n}{2}$$

$$t_{n, Bin-end} = \frac{t_n + t_{n+1}}{2}$$

Where n refers to the carbon number of n-alkane which centered in the corresponding chromatogram
bin. The t_n, Bin-start and t_n, Bin-end respectively represent the start time and end time of chromatogram
bin. The t_{n-1}, t_n and t_{n+1} are the retention times of C_{n-1}, C_n and C_{n+1} n-alkanes, respectively.

Secondly, the IVOCs mass in each defined chromatogram bin (M_{IVOCs, Bn}) was calculated by
 following equation:

40
$$M_{IVOCS, Bn} = \frac{TA_{TIC, Bn}}{RF_{n-alkans, C_n}} = \frac{TA_{m/z 57, B_n}}{RF_{n-alkanes, C_n}} \times \frac{1}{f_{m/z 57, TIC, Bn}}$$

Where TA _{TIC,Bn} is the abundance of TIC in the B_n chromatogram bin; RF_{n-alkane, Cn} is the response
factor of the C_n n-alkane; TA _{m/z 57}, _{Bn} refers to the abundance of m/z 57 in the B_n chromatogram bin;
f_{m/z 57, TIC, Bn} is the fraction of the m/z 57 in TIC of the B_n chromatogram bin. The total IVOCs mass
was the sum of the IVOCs mass calculated in each defined chromatogram bin.

Thirdly, the residual IVOCs (subtracting the speciated IVOCs), which was named as unresolved complex mixtures IVOCs (UCM IVOCs) in previous studies (Zhao et al., 2014, 2015, 2016), were further divided into unspeciated branched alkanes (b-alkanes) and unspeciated cyclic compounds. Here, we assumed that the signal of m/z 57 all came from n-alkanes and b-alkanes. The unspeciated b-alkanes mass (M_{b-alkane, Bn}) was defined as the difference between calculated mass of m/z 57 and n-alkane that falling in the same chromatogram bin (Zhao et al., 2015, 2016). Obviously, this assumption would somewhat cause an overestimation of b-alkanes in that other compounds like
cyclic alkanes also could contribute to the abundance of m/z 57 (Zhao et al., 2014).

53
$$M_{b-alkane, Bn} = \frac{BA_{b-alkane,Bn}}{RF_{n-alkane,Cn}} = \frac{BA_{m/z 57, Bn}}{RF_{n-alkane, Cn}} \times \frac{1}{f_{m/z 57, b-alkane}}$$

54
$$= \frac{(TA_{m/z 57, Bn} - NA_{m/z 57, Cn})}{RF_{n-alkane, Cn}} \times \frac{1}{f_{m/z 57, b-alkane}}$$

55 Where $BA_{b-alkane, Bn}$ is the abundance of b-alkanes in B_n chromatogram bin. The $BA_{m/z}$ 57, B_n 56 represents the abundance of m/z 57 came from b-alkanes in the B_n chromatogram bin while $NA_{m/z}$ 57, C_n is the abundance of m/z 57 produced by the C_n n-alkane. $TA_{m/z57, Bn}$ is the total abundance of 58 m/z 57 in B_n chromatogram bin. The $f_{m/z 57, b-alkane}$ is the average fraction of m/z 57 in the TIC of b-59 alkanes.

Lastly, the mass of unspeciated cyclic compounds were calculated as a consequence of subtracting
both the masses of speciated IVOCs and unspeciated b-alkanes from the total determined IVOCs
mass.

63 **Text S2**

64 Calculation of fuel-based emission factor

65 The fuel-based emission factor of IVOCs was calculated as following:

66 fuel – based EF (mg kg⁻¹) = $\frac{\text{mileage} - \text{based EF}(\text{mg km}^{-1})}{\text{fuel density (kg L}^{-1}) \times \text{fuel efficiency (L km}^{-1})}$ 67 Here, the 7.87 L/100 km and 7.5 L/100 km were used as the average gasoline and diesel 68 efficiency, respectively (http://icet.org.cn/admin/upload/2014101812382577.pdf). The fuel 69 density was 0.74 g mL⁻¹ for gasoline and 0.85 g mL⁻¹ for diesel (Zhang et al., 2016).

70 Text S3

Linear regression analysis of diesel vehicles fraction and SOA_{IVOCs}-to-SOA_{VOCs} ratio $R = R_{DVs} \times \alpha + R_{GVs}(1 - \alpha)$ where R represents the fleet average SOA_{IVOCs}-to-SOA_{VOCs} ratio calculated during the campaign. R_{DVs} and R_{GVs} are the SOA_{IVOCs}-to-SOA_{VOCs} ratios for DVs and GVs, respectively.

 α is the fraction of DVs in the total IVOCs-emitting vehicles traveling through the tunnel.

76 **Text S4**

77 Estimations of IVOCs emission

Firstly, we used the mileage-based EF_{IVOCs} and the average vehicle fleet composition observed
in tunnel to calculate IVOCs emissions percentage of DVs and GVs (Table S4). Then, as
showed in Table S4, the fuel-based EF_{IVOCs} and fuel consumptions in China in 2019
(http://www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/) were used to estimate IVOCs emissions from
diesel- and gasoline-fueled engines.

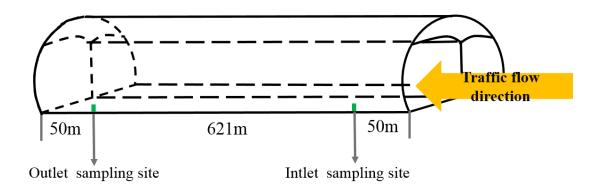
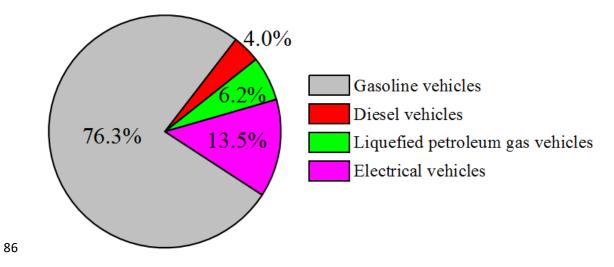



Figure S1. The schematic diagram of the sampling stations inside the Zhujiang tunnel.

87 Figure S2. The vehicle fleet compositions during the campaign.

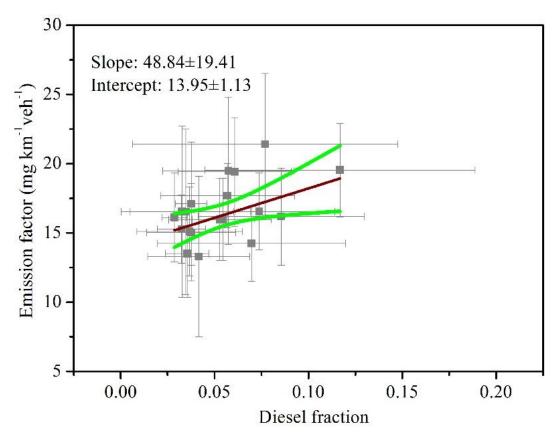


Figure S3. Linear regression analysis of diesel fraction and fleet-average EF_{IVOCs} during the
campaign. The green lines represent 95% confidence intervals.

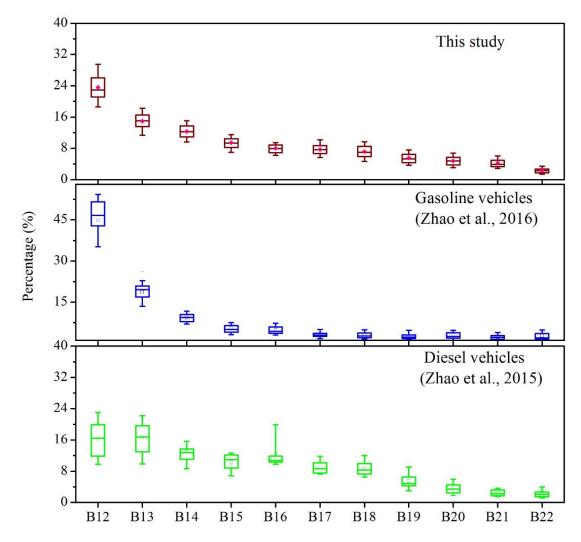
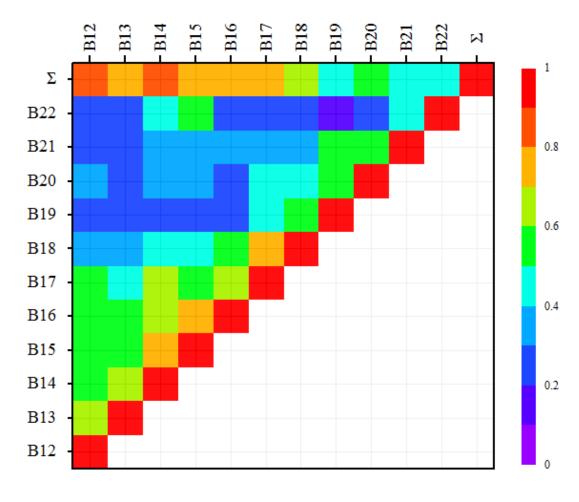



Figure S4. The comparison of distributions of total IVOCs in different volatility bins
determined in this study and in previous studies. The boxes represent the 75th and 25th
percentiles, the centerlines are the medians and squares are the averages. The whiskers represent
10th and 90th percentiles.

97 Figure S5. The Pearson correlations among IVOCs in each volatility bins (Σ represents sum of

100 Figure S6. The relationships of IVOCs with other primary species that concurrently measured

in the tunnel.

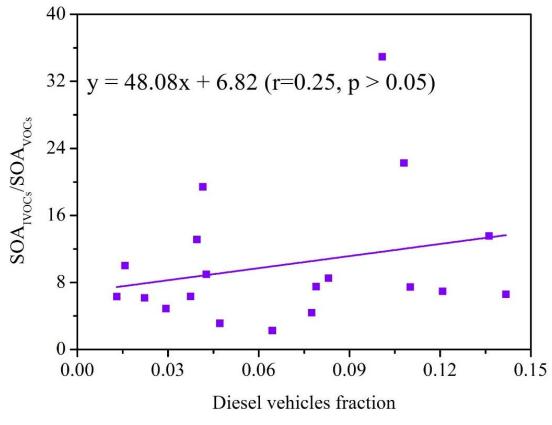


Figure S7. Linear regression analysis of diesel vehicles fraction and SOA_{IVOCs}-to-SOA_{VOCs} ratio.

Species	Mean ± 95% C.I.	Range
Dodecane	0.38±0.03	0.12-0.81
Tridecane	0.23±0.02	0.11-0.61
Tetradecane	0.22±0.02	0.10-0.53
Pentadecane	0.19 ± 0.02	0.08-0.50
Hexadecane	0.16±0.01	0.06-0.38
Heptadecane	0.15±0.01	0.06-0.29
Pristane	0.10 ± 0.01	0.03-0.24
Octadecane	0.13±0.01	0.05-0.25
Phytane	0.10±0.01	0.04-0.22
Nonadecane	0.10 ± 0.01	0.03-0.24
Eicosane	0.10 ± 0.01	0.01-0.21
Heneicosane	0.08 ± 0.01	0.01-0.19
Docosane	0.04 ± 0.00	0.00-0.11
Naphthalene	0.35±0.03	0.14-0.82
2-Methylnaphthalene	0.11±0.01	0.05-0.29
1-Methylnaphthalene	0.05 ± 0.00	0.02-0.13
Acenaphthylene	0.06±0.01	0.00-0.17
Acenaphthene	0.01±0.00	0.00-0.05
Fluorene	0.00 ± 0.00	0.00-0.01
Phenanthrene	0.01±0.00	0.00-0.05
Anthracene	0.02±0.00	0.00-0.11
Unspeciated b-alkanes B12	0.89 ± 0.07	0.27-1.87
Unspeciated b-alkanes B13	0.58±0.04	0.19-1.03
Unspeciated b-alkanes B14	0.52±0.04	0.21-1.29
Unspeciated b-alkanes B15	0.43±0.03	0.17-1.11
Unspeciated b-alkanes B16	0.37±0.04	0.13-1.30
Unspeciated b-alkanes B17	0.34±0.03	0.15-0.81
Unspeciated b-alkanes B18	0.35±0.03	0.09-0.86
Unspeciated b-alkanes B19	0.25±0.03	0.04-0.64
Unspeciated b-alkanes B20	0.21±0.02	0.04-0.46
Unspeciated b-alkanes B21	0.19±0.02	0.04-0.61
Unspeciated b-alkanes B22	0.08±0.01	0.02-0.27
Unspeciated cyclic compounds B12	2.36±0.23	0.96-7.13
Unspeciated cyclic compounds B13	1.54±0.13	0.21-3.74
Unspeciated cyclic compounds B14	1.33±0.10	0.42-2.69
Unspeciated cyclic compounds B15	0.89 ± 0.07	0.19-2.01
Unspeciated cyclic compounds B16	0.82±0.07	0.21-2.27
Unspeciated cyclic compounds B17	0.71±0.07	0.12-1.61
Unspeciated cyclic compounds B18	0.59±0.06	0.00-1.67
Unspeciated cyclic compounds B19	0.57±0.05	0.16-1.42
Unspeciated cyclic compounds B20	0.49±0.06	0.08-1.71
Unspeciated cyclic compounds B21	0.42±0.04	0.15-1.18
Unspeciated cyclic compounds B22	0.26±0.03	0.07-0.68
Σ Speciated IVOCs	2.59±0.14	1.43-4.37
Σ UCM IVOCs	14.19±0.79	7.41-25.60
ΣIVOCs	16.77±0.89	9.04-29.32

105 Table S1. The emission factors of IVOCs species (mg km⁻¹).

106 Table S2. The correlations and mass ratios of IVOCs with normal alkanes in the same volatility

	B12/n-C12	B13/n-C13	B14/n-C14	B15/n-C15	B16/n-C16	B17/n-C17
Ratios	11.20±0.61	11.59±0.76	10.03±0.60	9.00±0.64	9.02±0.63	9.37±0.64
Correlations (R)	0.76**	0.51**	0.60**	0.56**	0.63**	0.53*
	B18/n-C18	B19/n-C19	B20/n-C20	B21/n-C21	B22/n-C22	
Ratios	B18/n-C18 9.90±0.73	B19/n-C19 10.15±0.83	B20/n-C20 9.71±1.62	B21/n-C21 10.73±1.97	B22/n-C22 15.74±5.38	

108 The asterisks shown in table represent significance. **p < 0.01, *p < 0.05, no asterisks mean p > 0.05.

	Species	SOA yields	Species	SOA yie
	Dodecane	0.12	Heneicosane	0.55
	Tridecane	0.3	Docosane	0.55
	Tetradecane	0.4	Naphthalene	0.22
	Pentadecane	0.46	2-Methylnaphthalene	0.26
	Hexadecane	0.51	1-Methylnaphthalene	0.31
Speciated IVOCs	Heptadecane	0.55	Acenaphthylene	0.31
	Pristane	0.46	Acenaphthene	0.31
	Octadecane	0.55	Fluorene	0.31
	Phytane	0.51	Phenanthrene	0.31
	Nonadecane	0.55	Anthracene	0.31
	Eicosane	0.55		
	Bin12	0.05	Bin18	0.51
	Bin13	0.09	Bin19	0.55
Unspeciate h alkanas WOCa	Bin14	0.12	Bin20	0.55
Unspeciate b-alkanes IVOCs	Bin15	0.3	Bin21	0.55
	Bin16	0.4	Bin22	0.55
	Bin17	0.46		
	Bin12	0.12	Bin18	0.55
	Bin13	0.3	Bin19	0.55
	Bin14	0.4	Bin20	0.55
Inspeciated cyclic compounds IVOCs	Bin15	0.46	Bin21	0.55
	Bin16	0.51	Bin22	0.55
	Bin17	0.55		
	Benzene	0.21	n-Heptane	0.009
	Toluene	0.11	n-Octane	0.041
	Ethylbenzene	0.11	n-Nonane	0.084
	m/p-Xylene	0.06	n-Decane	0.146
	Styrene	0.11	2-Methylhexane	0.009
	o-Xylene	0.06	3-Methylhexane	0.009
Voc	Isopropylbenzene	0.11	2,3-Dimethylpentane	0.009
VOCs	n-Propylbenzene	0.11	2,4-Dimethylpentane	0.009
	m-Ethyltoluene	0.11	2,2,4-Trimethylpentane	0.041
	p-Ethyltoluene	0.11	2,3,4-Trimethylpentane	0.041
	1,3,5-Trimethylbenzene	0.06	2-Methylheptane	0.041
	o-Ethyltoluene	0.06	3-Methylheptane	0.041
	1,2,4-Trimethylbenzene	0.06	Cyclohexane	0.04
	1,2,3-Trimethylbenzene	0.06	Methylcyclohexane	0.04 ^d

109 Table S3. SOA yields that used in this study.

110 SOA yields of IVOCs and single-ring aromatics were from Zhao et al. (2015); ^a SOA yields are from Lim and Ziemann. (2009); ^b SOA yields are assumed the

111 same as n-Heptane; ^c SOA yields are assumed the same as n-October; ^d SOA yields are assumed the same as cyclohexane.

112 Table S4. Estimations of IVOCs emission from on-road DVs and GVs and from diesel- and

	Diesel vehicles	Gasoline vehicles
Mileage-based EF (mg km ⁻¹)	62.79±18.37	13.95±1.13
Fleet composition	5%	95%
IVOCs emission percentages	19.1%	80.9%
	Diesel-fueled engines	Gasoline-fueled engines
Fuel-based EFs (mg kg ⁻¹)	Diesel-fueled engines 984.9±288.2	Gasoline-fueled engines 239.5±19.5
Fuel-based EFs (mg kg ⁻¹) Fuel consumptions (Tg)	6	
	984.9±288.2	239.5±19.5

113 gasoline-fueled engines.

115 References

- Lim, Y. B., and Ziemann, P. J.: Effects of molecular structure on aerosol yields from OH radicalinitiated reactions of linear, branched, and cyclic alkanes in the presence of NOx. Environ.
 Sci. Technol., 43, 2328–2334, https://doi.org/10.1021/es803389s, 2009.
- 119 Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop,
- A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosols: semivolatile
 emissions and photochemical aging. Science 315, 1259–1262,
 http://doi.org/10.1126/science.1133061, 2007.
- Zhang, Y. L., Wang, X. M., Wen, S., Herrmann, H., Yang, W. Q., Huang, X. Y., Zhang, Z.,
 Huang, Z. H., He, Q. F., and George, C.: On-road vehicle emissions of glyoxal and
 methylglyoxal from tunnel tests in urban Guangzhou, China. Atmos. Environ., 127, 55–60,
 http://doi.org/10.1016/j.atmosenv.2015.12.017, 2016.
- Zhao, Y. L., Hennigan, C. J., May, A. A., Tkacik, D. S., de Gouw, J. A., Gilman, J. B., Kuster,
 W. C., Borbon, A., and Robinson, A. L.: Intermediate-volatility organic compounds: a
 large source of secondary organic aerosol. Environ. Sci. Technol., 48, 13743–13750,
 https://doi.org/10.1021/es5035188, 2014.
- Zhao, Y. L., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., and Robinson, A. L.:
 Intermediate-volatility organic compound emissions from on-road diesel vehicles:
 chemical composition, emission factors, and estimated secondary organic aerosol
 production. Environ. Sci. Technol., 49, 11516-11526,
 https://doi.org/10.1021/acs.est.5b02841, 2015.
- Zhao, Y. L., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., and Robinson, A. L.:
 Intermediate-volatility organic compound emissions from on-road gasoline vehicles and
 small off-road gasoline engines. Environ. Sci. Technol., 50, 4554–4563,
 https://doi.org/10.1021/acs.est.5b06247, 2016.