

Supplement of

Rapid increase in summer surface ozone over the North China Plain during 2013–2019: a side effect of particulate matter reduction control?

Xiaodan Ma et al.

Correspondence to: Jianping Huang (jianping.huang@noaa.gov) and Tianliang Zhao (tlzhao@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

List of Supplemental Figures

Fig. S1 Spatial distributions of a) NO_x and b) VOCs emissions from Multi-resolution
Emission Inventory in China used in this study
Fig. S2 A comparison of spatial distributions of monthly mean of NO ₂ (μ g m ⁻³)
monitored by China National Environmental Monitoring Center between (a)
2013 and (b) 2019 in eastern China (NCP indicated by the
box)
Fig. S3 Long-term changes in monthly mean of observed Ox (NO ₂ +O ₃) averaged over
the North China Plain (a) and urban areas Beijing in daytime (redline) and
nighttime (blackline) in June over the period of 2013-2019
Fig. S4 A comparison of monthly means of (a) the maximum daily 8-h average (MDA8)
O ₃ (ppb), (b) particulate matters with aerodynamic diameter of 2.5 micrometers
(PM _{2.5}) ($\mu g m^3$), (c) aerosol optical depth (AOD), (d) Tropospheric Column of
NO ₂ (TCNO ₂) (10 ¹⁵ cm ⁻²), (e) daily max temperature at 2 m (T _{2max}) (°C), (f)
short-wave radiation (W m ⁻²), and (g) planetary boundary layer height (PBLH)
(m) in North China Plain over the period of 2013–2019
Fig. S5 Average diurnal profiles of (a) O ₃ , (b) NO ₂ , (c) PM _{2.5} in June of 2013 (black.
lines) and 2019 (red lines)
Fig. S6 Long-term changes in monthly mean of observed NO_2 averaged over the North.
China Plain in June over the period of 2013–2019

Figure S1. Spatial distributions of a) NO_x and b) VOCs emissions from Multi-resolution Emission Inventory in June for year-2013 in China used in this study (<u>http://www.meicmodel.org/</u>).

Figure S2. A comparison of spatial distributions of monthly mean of NO₂ (µg m⁻³) monitored by China National
Environmental Monitoring Center between (a) 2013 and (b) 2019 in eastern China (NCP indicated by the box).

Figure S3. Long-term changes in monthly mean of observed Ox ($NO_2 + O_3$) averaged over the North China Plain (a) and urban areas Beijing in daytime (redline) and nighttime (blackline) in June over the period of 2013–2019.

Figure S4. A comparison of monthly means of (a) the maximum daily 8-h average (MDA8) O₃ (ppb), (b) particulate matters with aerodynamic diameter of 2.5 micrometers (PM_{2.5}) (μg m³), (c) aerosol optical depth
(AOD), (d) Tropospheric Column of NO₂ (TCNO₂) (10¹⁵ cm⁻²), (e) daily max temperature at 2 m (T_{2max}) (°C), (f) short-wave radiation (W m⁻²), and (g) planetary boundary layer height (PBLH) (m) in North China Plain over the period of 2013–2019.

115 Figure S5. Average diurnal profiles of (a) O₃, (b) NO₂, (c) PM_{2.5} in June of 2013 (black lines) and 2019 (red lines).

Figure S6. Long-term changes in monthly mean of observed surface NO_2 averaged over the North China Plain in June over the period of 2013–2019.