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Abstract. We present a method to infer CO2 emissions from
individual power plants based on satellite observations of co-
emitted nitrogen dioxide (NO2), which could serve as com-
plementary verification of bottom-up inventories or be used
to supplement these inventories. We demonstrate its utility
on eight large and isolated US power plants, where accu-
rate stack emission estimates of both gases are available for
comparison. In the first step of our methodology, we infer
nitrogen oxides (NOx) emissions from US power plants us-
ing Ozone Monitoring Instrument (OMI) NO2 tropospheric
vertical column densities (VCDs) averaged over the ozone
season (May–September) and a “top-down” approach that
we previously developed. Second, we determine the relation-
ship between NOx and CO2 emissions based on the direct
stack emissions measurements reported by continuous emis-
sions monitoring system (CEMS) programs, accounting for
coal quality, boiler firing technology, NOx emission control
device type, and any change in operating conditions. Third,
we estimate CO2 emissions for power plants using the OMI-
estimated NOx emissions and the CEMS NOx/CO2 emis-
sion ratio. We find that the CO2 emissions estimated by our
satellite-based method during 2005–2017 are in reasonable
agreement with the US CEMS measurements, with a rela-
tive difference of 8 %± 41% (mean ± standard deviation).
The broader implication of our methodology is that it has the

potential to provide an additional constraint on CO2 emis-
sions from power plants in regions of the world without re-
liable emissions accounting. We explore the feasibility by
comparing the derived NOx/CO2 emission ratios for the US
with those from a bottom-up emission inventory for other
countries and applying our methodology to a power plant in
South Africa, where the satellite-based emission estimates
show reasonable consistency with other independent esti-
mates. Though our analysis is limited to a few power plants,
we expect to be able to apply our method to more US (and
world) power plants when multi-year data records become
available from new OMI-like sensors with improved capa-
bilities, such as the TROPOspheric Monitoring Instrument
(TROPOMI), and upcoming geostationary satellites, such as
the Tropospheric Emissions: Monitoring Pollution (TEMPO)
instrument.

1 Introduction

Thermal power plants, particularly coal-fired power plants,
are among the largest anthropogenic CO2 emitters, contribut-
ing∼ 40% of energy-related CO2 emissions globally in 2010
(Janssens-Maenhout et al., 2017). Coal-fired power plants
are expected to be one of the primary contributors of CO2
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emissions in the coming decades because of abundant world
coal reserves (Shindell and Faluvegi, 2010). Therefore, it is
important to accurately monitor global CO2 emissions from
power production in order to better predict climate change
(Shindell and Faluvegi, 2010) and to support the develop-
ment of effective climate mitigation strategies.

CO2 emissions from power plants are typically quanti-
fied based on bottom-up approaches using fuel consump-
tion and fuel quality, though fuel properties are not always
well known, resulting in uncertainties in the estimated CO2
emissions for individual plants (Wheeler and Ummel, 2008).
Even for US power plants that are considered to have the
most accurate information on fuel usage among world na-
tions, the difference between emissions estimated based on
fuel usage and those reported as part of continuous emissions
monitoring system (CEMS) programs is typically about 20 %
(Ackermann and Sundquist, 2008). Thus, emission estimates
based on independent data sources, such as satellite obser-
vations, are a desirable complement for the validation and
improvement of the current CO2 emissions inventories, es-
pecially in countries without CEMS data, which is the case
in most of the world.

Anthropogenic CO2 emissions have been estimated from
space-based CO2 observations, but the existing satellite CO2
sensors are designed to provide constraints on natural CO2
sources and sinks (Basu et al., 2013; Houweling et al.,
2015) and thus their capability for monitoring anthropogenic
point sources is limited (Nassar et al., 2017). Observa-
tions from sensors, including the Scanning Imaging Absorp-
tion Spectrometer for Atmospheric Chartography (SCIA-
MACHY; Burrows et al., 1995), Greenhouse gases Observ-
ing SATellite (GOSAT; Yokota et al., 2009), and Orbiting
Carbon Observatory-2 (OCO-2; Crisp, 2015), show statis-
tically significant enhancements over metropolitan regions
(Kort et al., 2012; Schneising et al., 2013; Janardanan et al.,
2016; Buchwitz et al., 2018; Reuter et al., 2019; Wang et
al., 2018). However, very few studies have focused on indi-
vidual point sources. Bovensmann et al. (2010) and Velazco
et al. (2011) presented a promising satellite remote-sensing
concept to infer CO2 emissions for power plants based on the
atmospheric CO2 column distribution. Nassar et al. (2017)
presented the first quantification of CO2 emissions from indi-
vidual power plants using OCO-2 observations. However, be-
cause of the narrow swath (∼ 10 km at nadir) and 16 d repeat
cycle of the OCO-2 sensor, the number of clear-day over-
passes is too small to allow for the development of a global
CO2 emissions database.

In contrast to CO2, inferring NOx emissions from individ-
ual power plants using satellite NO2 column retrievals has
been done with a higher degree of confidence (e.g., Duncan
et al., 2013; de Foy et al., 2015). The Dutch-Finnish Ozone
Monitoring Instrument (OMI) on NASA’s Earth Observing
System Aura spacecraft (Schoeberl et al., 2006) provides
near-daily, global NO2 tropospheric vertical column densi-
ties (VCDs) at a spatial resolution of 13× 24 km2 (at nadir)

(Levelt et al., 2006, 2018; Krotkov et al., 2017), which allows
emission signals from individual power plants to be resolved.
Beirle et al. (2011) first analyzed isolated large sources (i.e.,
megacities and the US Four Corners power plant) by aver-
aging OMI NO2 tropospheric VCDs separately for differ-
ent wind directions, which allows for the estimation of NOx
emissions and lifetimes by fitting an exponentially modified
Gaussian function. Several follow-up studies (e.g., de Foy et
al., 2015; Lu et al., 2015 and Goldberg et al., 2019a) fur-
ther developed this approach and inferred NOx emissions
from isolated power plants and cities. More recently, we ad-
vanced this approach for sources located in polluted areas to
infer NOx emissions for 17 power plants and 53 cities across
China and the US (Liu et al., 2016, 2017).

Since NOx is co-emitted with CO2, NOx emissions in-
ferred from satellite data may be used to estimate CO2
emissions from thermal power plants. Previous analyses es-
timated regional CO2 emissions based on satellite-derived
NOx emissions and the NOx to CO2 emission ratios from
bottom-up emission inventories (Berezin et al., 2013; Kono-
valov et al., 2016; Goldberg et al., 2019b) or co-located
satellite retrievals of CO2 and NO2 (Reuter et al., 2014).
Hakkarainen et al. (2016) confirmed the spatial correlation
between CO2 spatial anomalies and OMI NO2 VCD en-
hancements at the regional scale using satellite observations
at higher resolution. Hakkarainen et al. (2019) also showed
how overlapping OCO-2 CO2 data and data of NO2 from the
recently launched (October 2017) European Union Coperni-
cus Sentinel-5 precursor TROPOspheric Monitoring Instru-
ment (TROPOMI; Veefkind et al., 2012) can be used to iden-
tify small-scale anthropogenic CO2 signatures.

More recently, the co-located regional enhancements of
CO2 observed by OCO-2 and NO2 observed by TROPOMI
were analyzed to infer localized CO2 emissions for six
hotspots including one power plant globally (Reuter et al.,
2019). As emissions plumes are significantly longer than the
swath width of OCO-2 (10 km), OCO-2 sees only cross sec-
tions of plumes, which may not be sufficient to infer emis-
sion strengths. Because power plant emissions can have sub-
stantial temporal variations (Velazco et al., 2011) and the
cross-sectional CO2 fluxes are valid only for OCO-2 over-
pass times, the cross-sectional fluxes may not adequately rep-
resent the annual or monthly averages, which are required for
the development of climate mitigation strategies. In addition,
the cross-sectional fluxes may not be a good approximation
for emission strengths if meteorological conditions are not
taken into account (Varon et al., 2018). As compared to the
method proposed in this study, Reuter’s method has the ad-
vantage of not requiring a priori emission information. How-
ever, there are currently no satellite instruments with a wide
enough swath to allow wider application of Reuter’s method.

In this study, we present a method to estimate CO2 emis-
sions from individual power plants using OMI NO2 observa-
tions and auxiliary CEMS information necessary to estimate
NOx to CO2 emission ratios. Such estimates could serve as
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Figure 1. Locations of the power plants investigated in this study. The bar charts denote the relative differences, defined as (ESat
−

ECEMS)/ECEMS, averaged over 2005–2017 for NOx (blue) and CO2 (red) emissions. The upward and downward bars represent posi-
tive and negative differences, respectively. The Monticello power plant installed SNCR to control NOx emissions in 2008. The other power
plants are not equipped with post-combustion NOx control devices.

complementary verification of bottom-up CO2 inventories or
as a supplement to these inventories. For instance, Liu et
al. (2018) used satellite data of SO2 to identify large SO2
sources that were missing from a bottom-up emissions in-
ventory and created a merged bottom-up and top-down SO2
emissions inventory. We apply our approach to US power
plants, which have an exceptionally detailed CEMS database
of NOx and CO2 emissions, in order to validate our method.
Using auxiliary CEMS information, we explore the relation-
ship between NOx and CO2 emissions for individual power
plants, assessing variations in the ratio associated with coal
quality, boiler firing type, NOx emission control device tech-
nology, and changes in operating conditions. Understanding
the causes of these variations will allow for better-informed
assumptions when applying our method to power plants that
have no or uncertain information on the factors that affect
their emissions ratios. We discuss the uncertainties and ap-
plications of our approach and the potential of NO2 datasets
from new and upcoming satellite instruments, which will im-
prove the utility of our method for inferring CO2 emissions
from power plants around the world. Finally, we discuss fu-
ture research directions.

2 Method

In this section, we present our method to infer CO2 emissions
(ESat

CO2
) from satellite-derived NOx emissions (ESat

NOx ) for in-
dividual coal-fired power plants using the following equa-
tion:

ESat
CO2,y

=

ESat
NOx,y

ratioCEMS
i,y

, (1)

where i represents coal type and y represents the target
year. We demonstrate our method on US power plants since

there are accurate CEMS stack measurements of NOx and
CO2 emissions with which to validate ESat

CO2
. In Sect. 2.1,

we describe how we estimate ESat
NOx from OMI NO2 tropo-

spheric VCD observations. In Sect. 2.2, we discuss how we
estimate the ratio of NOx to CO2 emissions (ratioCEMS

y =

ECEMS
NOx ,y/E

CEMS
CO2,y

) from CEMS stack measurements in the
US Emissions and Generation Resource Integrated Database
(eGRID; USEPA, 2018). Since post-combustion NOx control
systems, including selective non-catalytic reduction (SNCR)
and selective catalytic reduction (SCR), change the relation-
ship between ECEMS

NOx and ECEMS
CO2

, we present separate meth-
ods to determine ratioCEMS

y for power plants without and
with post-combustion NOx control systems in Sect. 2.2.1
and 2.2.2, respectively. We discuss the validation of the esti-
mated ESat

CO2
in Sect. 3.

2.1 Estimating satellite-derived NOx emissions (ESat
NOx

)

From all US coal-fired power plants, we selected 21 power
plants for estimating ESat

NOx . We chose these plants based
on the magnitude of their annual emissions (i.e., ECEMS

NOx
> 10 Gg yr−1 in 2005) and relative isolation from other large
sources to avoid “contamination” of a power plant’s NOx
plume. Power plants located in urban areas (i.e., within a
radius of 100 km from a city center), or clustered in close
proximity (i.e., 50 km) with other large industrial plants were
excluded by visual inspection using satellite imagery from
Google Earth. We used the top 200 largest US cities (ranked
by 2018 population as estimated by the United States Cen-
sus Bureau, available at https://en.wikipedia.org/wiki/List_
of_United_States_cities_by_population, last access: 10 De-
cember 2019) to select power plants. As discussed below, we
were able to estimate ESat

NOx for 8 of the 21 plants. The loca-
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Figure 2. Mean OMI NO2 tropospheric VCDs around the Rockport power plant (Indiana, USA) for (a) calm conditions, (b) northeasterly
wind and (c) their difference (northeasterly minus calm) for the period of 2005–2017. The location of Rockport is labeled by a black dot.
(d) NO2 line densities around Rockport. Crosses are NO2 line densities for calm (blue) and northeasterly winds (red) as function of the
distance x to Rockport center. The grey line is the fitted results for NO2 line densities for northeasterly winds. The numbers indicate the net
mean wind velocities (windy minus calm) from MERRA-2 (w), the fitted lifetime (τ ), and the coefficient of determination (R2) of the fit.

tions of the 8 plants are shown in Fig. 1 and given in Table S1
in the Supplement.

We followed the method of Liu et al. (2016, 2017) to
estimate ESat

NOx for 2005 to 2017. In our analysis, we used
OMI NO2 tropospheric VCDs from the NASA OMI standard
product, version 3.1 (Krotkov et al., 2017), together with me-
teorological wind information from the Modern-Era Retro-
spective Analysis for Research and Applications, version 2
(MERRA-2; Gelaro et al., 2017). We only analyzed data for
the ozone season (May–September), in order to exclude win-
ter data, which have larger uncertainties and longer NOx life-
times. As in our previous study (Liu et al., 2017), we calcu-
lated one-dimensional NO2 “line densities”, i.e., NO2 cm−1,

as function of distance for each wind direction separately by
integration of the mean NO2 VCDs (i.e., NO2 cm−2) perpen-
dicular to the wind direction. We then used the changes of
NO2 line densities under calm wind conditions (wind speed
< 2 m s−1 below 500 m) and windy conditions (wind speed
> 2 m s−1) to fit the effective NOx lifetime. We then esti-
mated the average NO2 total mass integrated around a power
plant on the basis of the 3-year mean VCDs, in agreement
with previous studies (Fioletov et al., 2011; Lu et al., 2015).
The NO2 total mass was scaled by a factor of 1.32 in or-
der to derive total NOx mass, following Beirle et al. (2011).
The uncertainty associated with the NOx/NO2 ratio has been
discussed in detail in Sect. 3 of the Supplement to Liu et
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al. (2016). The 3-year average ESat
NOx was derived from the

corresponding 3-year average NOx mass divided by the aver-
age NOx lifetime of the entire study period (Liu et al., 2017).
Fitting results of insufficient quality (e.g., correlation coef-
ficient of the fitted and observed NO2 distributions < 0.9)
were excluded from this analysis, consistent with the crite-
ria in Sect. 2.2 of Liu et al. (2016). This final filtering left
18 power plants, of which 8 had valid results for all consec-
utive 3-year periods between 2005 and 2017. More details of
the approach are documented in Liu et al. (2017). The fitted
lifetimes and other fitting parameters for all power plants are
given in Table S1.

We use the Rockport power plant (37.9◦ N, 87.0◦W) in
Indiana to demonstrate our approach. This power plant is
particularly well suited for estimating ESat

NOx because it is a
large and isolated NOx point source. Figure 2 presents the
NO2 VCD map around Rockport and the fitted results. Fig-
ure 3 displays ESat

NOx based on 3-year mean VCDs. Each 3-
year period is represented by the middle year with an as-
terisk (e.g., 2006∗ denotes the period from 2005 to 2007).
For comparison to ESat

NOx , ECEMS
NOx is from Air Markets Pro-

gram Data (available at: https://ampd.epa.gov/ampd/, last ac-
cess: 1 May 2019) and averaged over the period of May to
September. For this particular plant, ESat

NOx is always higher
than ECEMS

NOx during the entire period, except the last 2 years.
The coefficient of determination for the entire period is R2

=

0.68. The relative differences for individual 3-year means
(defined as (ESat

NOx− E
CEMS
NOx )/ECEMS

NOx ) range from −20% to
41 % because of the uncertainties of ESat

NOx , as discussed in
Sect. 3.2. Both datasets present a declining trend from 2012∗.
The total declines of 45 % and 26 % since 2012∗ in ESat

NOx
and ECEMS

NOx are attributed to the 25 % decrease in net elec-
tricity generation for the plant. The average relative differ-
ence of ESat

NOx and ECEMS
NOx for the eight plants in this study

is 0%± 33%, ranging from −58% to 72 % for individual
3-year periods (Fig. 1).

2.2 Estimating NOx to CO2 emission ratios using
CEMS data (ratioCEMS)

We determined the relationship between ECEMS
NOx and ECEMS

CO2
for coal-fired power plants using eGRID information about
each plant’s net electric generation, boiler firing technol-
ogy (e.g., tangential or wall-fired boiler), NOx control de-
vice type, fossil fuel category (i.e., coal, oil, gas, and other),
and coal quality (i.e., bituminous, lignite, subbituminous, re-
fined, and waste coal). We used data of power plants with
more than 99 % of the fuel burned being coal, as reported in
eGRID. We analyzed the relationship between ECEMS

NOx and
ECEMS

CO2
by coal type, as emission characteristics vary widely

by coal type.
The eGRID includes two datasets of emissions for NOx

and CO2: (1) calculated from fuel consumption data and
(2) observed by stack monitoring (i.e., ECEMS

NOx and ECEMS
CO2

).

Figure 3. ESat
NOx

(Mg h−1; orange solid line, right axis) and ESat
CO2

(Gg h−1; blue solid line, left axis) for the Rockport power plant
from 2005 to 2017. ECEMS

NOx
and ECEMS

CO2
(dashed lines) are also

shown. The 3-year periods are represented by the middle year with
an asterisk (e.g., 2006∗ denotes the period from 2005 to 2007).

Here we focus on eGRID CEMS data, asECEMS
NOx are reported

to be highly accurate with an error of less than 5 % (e.g.,
Glenn et al., 2003). ECEMS

CO2
may have larger uncertainties

than fuel-based emissions estimates because of uncertainties
in the calculation of flue gas flow (Majanne et al., 2015).
Nevertheless, we used ECEMS

CO2
to relate NOx emissions to

CO2 emissions, since the primary uncertainty of ECEMS
NOx and

ECEMS
CO2

arises from the calculation of the flue gas flow, which
will cancel in ratioCEMS.

2.2.1 Coal-fired power plants without post-combustion
NOx control systems

We initially limited our analysis to ECEMS
NOx and ECEMS

CO2
from

coal-fired power plants without post-combustion NOx con-
trol systems in operation in a given year (Table 1). We find
that ECEMS

NOx and ECEMS
CO2

have a strong linear relationship
(Fig. 4). In Fig. 4a, we compare ECEMS

NOx and ECEMS
CO2

from
power plants (using bituminous coal) by boiler firing type
in 2005. We use bituminous coal-fired plants for illustra-
tion, as bituminous coal is the most widely used coal in
US power plants. We analyzed power plants that use cy-
clone or cell burner boilers separately and exclude them in
Fig. 4 because they typically produce higher NOx emissions
than other boiler types (USEPA, 2009; available at: https:
//www3.epa.gov/ttn/chief/ap42/ch01/index.html, last access:
1 April 2019). A strong linear relationship between ECEMS

NOx
and ECEMS

CO2
is evident with excellent correlation (R2

= 0.93,
N = 278), regardless of boiler firing type. Similar linear re-
lationships exist for other years (e.g., year 2016 in Fig. 4b)
and other types of coal (Table 1). The slope of the regression
of ECEMS

NOx and ECEMS
CO2

, ratioCEMS
regressed, is assumed by setting
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Table 1. The slope (ratioCEMS
regressed), coefficient of determination, standard deviation, and sample number of the linear regression of ECEMS

NOx
and ECEMS

CO2
by year for all US power plants without post-combustion NOx control devices from 2005 to 2016.

Coal type Year ratioCEMS
regressed R2 Standard Sample

deviation number∗

Bituminous 2005 1.74 0.93 0.63 278
2007 1.75 0.91 0.68 286
2009 1.49 0.88 0.64 241
2010 1.48 0.86 0.60 235
2012 1.33 0.87 0.56 190
2014 1.28 0.87 0.41 136
2016 1.20 0.87 0.45 66

Subbituminous 2005 1.31 0.65 0.73 226
2007 1.18 0.61 0.61 221
2009 1.02 0.66 0.56 230
2010 1.00 0.67 0.59 216
2012 0.93 0.74 0.51 200
2014 0.89 0.74 0.39 165
2016 0.84 0.70 0.39 111

Lignite 2005 0.91 0.74 0.33 20
2007 0.86 0.82 0.35 22
2009 0.88 0.91 0.32 16
2010 0.83 0.94 0.37 18
2012 0.76 0.91 0.40 15
2014 0.82 0.92 0.37 12
2016 0.73 0.78 0.09 9

∗ The sample number generally decreases from 2005 to 2016 as power plants installed
post-combustion NOx control devices over time.

the intercept to zero. Table 1 shows ratioCEMS
regressed,i,y by coal

type and year. In Sect. 3.1, ratioCEMS
regressed,i,y will be applied

to approximate ratioCEMS
i,y when estimating ESat

CO2
from ESat

NOx
for the eight plants (Fig. 1) for years before post-combustion
control systems were in operation.

The ratioCEMS
regressed value for power plants using bituminous

coal decreased from 2005 (Fig. 4a) to 2016 (Fig. 4b) by 31 %
on average because of reductions in NOx emission factors
associated with improvements in boiler operations, such as
by optimizing furnace design and operating conditions. The
NOx emissions factors, defined as NOx emission rates per net
electricity generation (Gg TW h−1), declined by 33 % from
2005 to 2016 (Fig. 4c). We interpolated ratioCEMS

regressed to get
year-specific ratios by coal type for the entire study period,
as eGRID data are only available for some years (i.e., 2005,
2007, 2009, 2010, 2012, 2014, and 2016).

In addition, ratioCEMS
regressed shows significant variation by

coal type and year (Fig. 5). The ratioCEMS
regressed value is 1.7,

1.3, and 0.91 Gg NOx/TgCO2 for bituminous, subbitumi-
nous, and lignite coal types in 2005, respectively. A reduc-
tion over time in ratioCEMS

regressed is observed for all coal types
(Fig. 5). The ratioCEMS

regressed value displays a large decrease of

31 %, 36 % and 20 % from 2005 to 2016 for bituminous, sub-
bituminous, and lignite coal types, respectively.

2.2.2 Coal-fired power plants with post-combustion
NOx control systems

Here, we describe how we estimated ratioCEMS for the en-
tire study period for plants that had post-combustion NOx
control systems installed at some time during our study pe-
riod, 2005–2017. The estimation is based on ratioCEMS

regressed
derived in Sect. 2.2.1 for plants without post-combustion
control systems in operation. We introduce a NOx removal
efficiency parameter, f , to adjust ratioCEMS

regressed for years
after the installation of post-combustion control systems,
ratioCEMS-estimated:

ratioCEMS-estimated
i,y = ratioCEMS

regressed,i,y×, (1− fy), (2)

f is commonly measured for individual power plants to de-
scribe the performance of their post-combustion NOx con-
trol systems. It is directly reported by some power plant
databases, such as the China coal-fired Power plant Emis-
sions Database (CPED; Liu et al., 2015). For databases that
do not report f , like eGRID used in this study, one can es-
timate it for an individual power plant by first estimating
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Figure 4. Scatterplots of ECEMS
NOx

versus ECEMS
CO2

for all the US bituminous coal-fired electric generating units for (a) 2005 and (b) 2016.

Values are color coded by firing type. (c) Scatterplot of ECEMS
NOx

versus electricity generation of the same units for years 2005 (triangle) and
2016 (square). Only plants without post-combustion NOx control devices within a given year are used. The electricity generation data are
also from eGRID. The lines in all three panels represent the computed linear regressions.

Figure 5. Interannual trends of ratioCEMS
regressed for power plants us-

ing bituminous, subbituminous, and lignite coal types and without
post-combustion NOx control devices in a given year. Error bars
show the standard deviations for ratios of ECEMS

NOx
to ECEMS

CO2
for

individual power plants.

the unabated emissions per electricity generation, eunabated,
which is the emission factor before the flue gas enters the
post-combustion control system:

fy =
eunabated,y − eCEMS,y

eunabated,y
, (3)

where eCEMS denotes the actual emission factor in terms
of CEMS NOx emissions per net electricity generation
(Gg TW h−1).
eunabated for a given year, eunabated,y , is estimated based

on the emission per electricity generation for years prior,
p, to the installation of the post-combustion control system,
eunabated,p:

eunabated,y = ky × eunabated,p, (4)

where the scaling factor, ky , is used to account for the change
over time in eunabated associated with improvements in boiler
operations discussed in Sect. 2.2.1. ky is calculated as the
ratio of the averaged eunabated (i.e., the slope of the regression
of NOx emissions on electricity generation) in year t to that
in year p.

To assess the reliability of ratioCEMS-estimated, we selected
all power plants that had post-combustion devices installed
between 2005 and 2016. Figure 6 shows a scatterplot of
ratioCEMS (i.e., the ratio of ECEMS

NOx to ECEMS
CO2

for individ-
ual plants) and ratioCEMS-estimated. We used the NOx emis-
sions factor in 2005, eunabated,2005, to predict the unabated
emission factor in 2016, eunabated,2016, following Eqs. (3)
and (4) in order to quantify the removal efficiencies for 2016,
f2016. The ratioCEMS-estimated

2016 value is based on the estimated
f2016 and ratioCEMS

regressed,2016 from Sect. 2.2.1. ratioCEMS and
ratioCEMS-estimated show good correlation (R2

= 0.64), which
increases our confidence that the estimated removal efficien-
cies approximate the actual efficiencies. The slight underesti-
mation suggested by the slope of 0.85 arises from uncertain-
ties in estimating unabated NOx emission factors (eunabated,y)
using Eq. (4) and thus removal efficiencies (f ), which is
a major source of error of ESat

CO2
for power plants that in-

stall post-combustion NOx control systems (see details in
Sect. 3.2).

3 Results and discussion

In Sect. 3.1, we present ESat
CO2

for our eight selected power
plants and, in Sect. 3.2, we discuss the uncertainties associ-
ated with ESat

CO2
. In Sect. 3.3, we compare the US ratios de-

rived in this study with those from a bottom-up inventory for
other regions to explore the potential of applying our method
to regions outside the US. We finally apply our approach to
one power plant in South Africa, which has several inde-
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Table 2. Summary of effective NOx lifetimes, satellite-derived NOx emissions (ESat
NOx

) and CO2 emissions (ESat
CO2

), bottom-up NOx emis-

sions (ECEMS
NOx

), and CO2 emissions (ECEMS
CO2

) for eight US power plants during May to September from 2005 to 2017. The 3-year periods
are represented by the middle year with an asterisk.

Category Year Four Corners Independence Intermountain Martin Monticello Navajo Rockport White
and San Juan Lake Bluff

NOx lifetime 2005–2017 2.7 2.5 2.2 2.3 3.2 2.3 2.4 4.3

ESat
NOx

2006∗ 10.5 2.0 4.0 2.4 1.1 4.6 2.9 1.0
(Mg h−1) 2007∗ 10.0 1.7 4.1 2.3 1.1 4.4 3.0 0.9

2008∗ 9.4 1.6 3.7 2.0 0.8 4.5 2.6 0.9
2009∗ 7.2 1.2 3.9 2.1 0.7 3.9 2.7 0.7
2010∗ 6.8 1.0 4.4 2.1 0.6 3.6 2.5 0.9
2011∗ 6.5 0.9 3.6 1.8 0.7 2.5 2.5 0.8
2012∗ 6.3 0.9 3.4 1.6 0.6 2.3 2.7 0.8
2013∗ 5.6 0.8 3.5 1.8 0.5 1.9 2.5 0.6
2014∗ 4.4 0.7 3.5 1.7 0.8 2.2 2.3 0.5
2015∗ 3.8 0.8 3.0 1.4 0.7 2.1 1.4 0.4
2016∗ 3.5 1.2 1.7 1.2 0.6 2.5 1.5 0.7

ECEMS
NOx

2006∗ 7.4 1.8 3.0 1.8 1.5 3.8 2.0 1.7
(Mg h−1) 2007∗ 7.3 1.8 3.1 1.8 1.4 3.9 2.1 1.6

2008∗ 6.8 1.8 2.9 1.8 1.3 3.8 2.0 1.6
2009∗ 6.5 1.6 2.9 1.8 1.2 3.4 2.1 1.8
2010∗ 6.2 1.6 2.8 1.7 1.1 2.8 2.1 1.8
2011∗ 6.2 1.4 2.5 1.5 1.0 2.2 2.2 1.9
2012∗ 6.1 1.3 2.4 1.4 0.9 1.9 2.1 1.9
2013∗ 5.6 1.3 2.4 1.3 0.9 1.9 2.0 2.0
2014∗ 5.2 1.2 2.5 1.3 0.8 1.9 1.9 1.9
2015∗ 4.3 1.2 2.0 1.3 0.8 1.7 1.8 1.5
2016∗ 3.9 1.1 1.5 1.2 0.8 1.6 1.6 1.2

(ESat
NOx
−ECEMS

NOx
)/ 2005–2017 10 % −22% 38 % 20 % −29% 21 % 20 % −56%

ECEMS
NOx

ESat
CO2

2006∗ 6.1 1.6 2.3 2.7 1.2 2.6 2.3 0.8
(Gg h−1) 2007∗ 5.9 1.5 2.4 2.6 1.3 2.6 2.5 0.8

2008∗ 5.6 1.4 2.3 2.3 1.1 2.8 2.4 0.8
2009∗ 4.1 1.1 2.6 2.4 1.0 2.5 2.6 0.6
2010∗ 3.7 1.0 3.0 2.5 0.9 2.5 2.5 0.9
2011∗ 3.4 1.0 2.6 2.2 1.0 1.7 2.5 0.8
2012∗ 3.3 1.0 2.5 2.1 1.0 1.7 2.9 0.9
2013∗ 3.1 0.9 2.6 2.3 0.8 1.5 2.7 0.6
2014∗ 2.5 0.8 2.8 2.2 1.2 1.8 2.6 0.6
2015∗ 2.3 0.9 2.4 1.8 1.1 1.7 1.7 0.5
2016∗ 2.2 1.4 1.4 1.6 1.0 2.0 1.7 0.8

ECEMS
CO2

2006∗ 3.1 1.5 1.7 2.4 1.9 2.2 1.8 1.2
(Gg h−1) 2007∗ 3.1 1.5 1.7 2.4 1.8 2.2 1.9 1.2

2008∗ 3.0 1.5 1.6 2.4 1.8 2.2 1.8 1.2
2009∗ 3.1 1.4 1.5 2.3 1.7 2.1 1.9 1.3
2010∗ 3.0 1.4 1.4 2.2 1.7 2.1 1.9 1.4
2011∗ 3.0 1.3 1.3 2.1 1.5 2.0 2.0 1.4
2012∗ 3.0 1.3 1.3 2.0 1.5 1.9 1.9 1.4
2013∗ 2.8 1.3 1.3 1.9 1.3 1.9 1.9 1.4
2014∗ 2.6 1.1 1.4 1.9 1.3 2.0 1.8 1.3
2015∗ 2.4 1.1 1.2 1.8 1.2 1.8 1.7 1.1
2016∗ 2.2 1.0 1.0 1.7 1.2 1.7 1.5 0.9

(ESat
CO2
−ECEMS

CO2
)/ 2005–2017 33 % −12% 75 % 7 % −30% 4 % 31 % −41%

ECEMS
CO2
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Figure 6. Scatterplot of ratioCEMS-estimated as compared to
ratioCEMS for 2016. All 44 coal-fired power plants that operated
post-combustion devices after 2005 and before 2016 (including
2016) are used in the plot. The sizes of the circles denote the mag-
nitude of the NOx reduction efficiency of post-combustion control
devices estimated in this study. The line represents the linear regres-
sion of ratioCEMS to ratioCEMS-estimated.

pendent estimates for its CO2 emissions as presented in the
scientific literature. Table 2 shows 3-year means of ESat

NO2
,

ECEMS
NO2

, ESat
CO2

, and ECEMS
CO2

for eight power plants (Fig. 1).
Table 3 lists the mean and the standard deviation of the rela-
tive differences between ECEMS

NOx and ESat
NOx , and ECEMS

CO2
, and

ESat
CO2

for all eight power plants.

3.1 Satellite-derived CO2 emissions (ESat
CO2

)

Figure 7a is a scatterplot of ESat
CO2

and ECEMS
CO2

for the eight
power plants (Fig. 1), seven of which did not have post-
combustion NOx control systems installed during the study
period, 2005–2017. The comparison shows a good correla-
tion, R2, of 0.66. The average ECEMS

CO2
for all power plants is

2.0 Gg h−1 and the average ESat
CO2

is 1.8 Gg h−1. The relative
difference for individual 3-year means (defined as (ESat

CO2
−

ECEMS
CO2

)/ECEMS
CO2

) is 8%±41% (mean ± standard deviation).
For example, Fig. 3 shows ESat

CO2
for the Rockport power

plant, which typically has a positive bias as compared to
ECEMS

CO2
because of a positive bias in ESat

NOx .
Figure 7b presents the generally consistent time series be-

tween ESat
CO2

and ECEMS
CO2

, with their annual averages for the
eight power plants exhibiting a declining trend of 5 % yr−1

and 3 % yr−1 from 2006∗ to 2016∗ for ESat
CO2

and ECEMS
CO2

, re-
spectively. The reduction in net electricity generation is the
driving force underlying the emission changes, which de-

creased by 37 % for the eight power plants from 2005 to
2016, as power producers shut down coal-fired units in fa-
vor of cheaper and more flexible natural gas as well as solar
and wind (USEIA, 2018). It is interesting to note that the
temporal variations in ESat

CO2
are not as “smooth” as those in

ECEMS
CO2

, which results from fluctuations in ESat
NOx . Such fluc-

tuations are caused by uncertainties associated with ESat
NOx , as

discussed in Sect. 3.2. For example, changes in VCDs do not
necessarily relate linearly with NOx emissions (e.g., Fig. 2 in
Duncan et al., 2013) because of temporal variations in meteo-
rology, and nonlinear NOx chemistry (Valin et al., 2013) and
transport. Averaging VCDs for a long-term period (3 years
in this study) helps reduce those influences, but small fluctu-
ations may still exist.

3.2 Uncertainties

We estimated the uncertainty of ESat
CO2

based on the fit per-
formance of ESat

NOx and comparison with ECEMS
CO2

. The ma-
jor sources of uncertainty are (a) ESat

NOx (Liu et al., 2016),
(b) ratioCEMS

regressed, and (c) f . We give the estimated uncertain-
ties of each source for individual power plants in Table S2.

3.2.1 ESat
NOx

The uncertainty of ESat
NOx is quantified following the method

described in Liu et al. (2017), accounting for errors aris-
ing from the fit procedure, the NOx/NO2 ratio, and OMI
NO2 VCD observations (Liu et al., 2016). The number 1.32,
used for scaling the NOx/NO2 ratio, is based on assump-
tions presented in Sect. 6.5.1 of Seinfeld and Pandis (2006)
for “typical urban conditions and noontime sun”. Note that
conditions are quite similar in this study because of the over-
pass time of OMI close to noon, the selection of cloud-free
observations, the focus on the ozone season, and the fo-
cus on polluted regions. A case study of chemical transport
model (CTM) simulations shows an identical value of 1.32
for Paris in summer (Shaiganfar et al., 2017). The simulated
NOx/NO2 ratio at the OMI overpass time within the bound-
ary layer (up to 2 km) in a chemistry–climate model, Euro-
pean Centre for Medium-Range Weather Forecasts – Ham-
burg (ECHAM)/Modular Earth Submodel System (MESSy)
Atmospheric Chemistry (EMAC)(Jöckel et al., 2016), was
1.28±0.08 for polluted (NOx > 1×1015 molec cm−2) regions
for the 1 July 2005, and 1.32±0.06 on average for the ozone
season. However, the coarse grid of EMAC (2.8◦× 2.8◦ in
latitude and longitude) may not capture the true range of vari-
ation in the NOx/NO2 ratio. Therefore, we assumed an un-
certainty of 20 % arising from the NOx/NO2 ratio, double
the standard deviation of the EMAC ratio.

Additionally, the tropospheric air mass factors (AMFs)
used in NO2 retrievals are based on relatively coarsely re-
solved surface albedo data and a priori NO2 vertical profile
shapes, likely causing low-biased VCDs over strong emis-
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Table 3. Summary of relative difference between satellite-derived NOx emissions (ESat
NOx

), bottom-up NOx emissions (ECEMS
NOx

), satellite-

derived CO2 emissions (ESat
CO2

), and bottom-up CO2 emissions (ECEMS
CO2

) for eight US power plants during May to September from 2005 to
2017. The 3-year periods are represented by the middle year with an asterisk.

Year Relative difference for NOx Relative difference for CO2

Mean Standard deviation Mean Standard deviation

2006∗ 15 % 29 % 17 % 39 %
2007∗ 10 % 29 % 16 % 38 %
2008∗ 5 % 30 % 14 % 39 %
2009∗ −3% 34 % 6 % 39 %
2010∗ −1% 38 % 9 % 46 %
2011∗ −5% 31 % 3 % 40 %
2012∗ −3% 31 % 5 % 41 %
2013∗ −4% 38 % 4 % 49 %
2014∗ −3% 36 % 7 % 46 %
2015∗ −8% 35 % 2 % 41 %
2016∗ −2% 29 % 8 % 22 %

Figure 7. (a) Scatterplot of ESat
CO2

for eight power plants, as compared to ECEMS
CO2

from 2006∗ to 2016∗. The solid lines represent the ratio

of 1 : 1. The dashed lines represent the ratios of 1 : 1.5 and 1.5 : 1, respectively. (b) Interannual trends of the averaged ESat
CO2

(blue lines) and

ECEMS
CO2

(pink lines) are for all power plants analyzed in this study from 2006∗ to 2016∗, as normalized to the 2006∗ value. The whiskers
denote the maximum and minimum values.

sion sources (e.g., Russell et al., 2011; McLinden et al., 2014;
Griffin et al., 2019). The average AMF uncertainty of∼ 30%
(see Table 2 in Boersma et al., 2007) likely contributes to
the underestimation of emissions from some power plants in
this study. Both random and systematic (bias) uncertainties
in VCDs directly propagate into the uncertainty ofESat

NOx (see
details in the Supplement of Liu et al., 2016 and Sect. 3.4 of
Liu et al., 2017).

The overall uncertainties ofESat
NOx range from 57 % to 64 %

for all power plants in our analysis, which is comparable with
the level of differences between ESat

NOx and ECEMS
NOx . We ex-

pect this uncertainty to be less for new (e.g., TROPOMI) and
upcoming (e.g., NASA Tropospheric Emissions: Monitoring
Pollution, TEMPO) OMI-like sensors, which have enhanced

capabilities relative to OMI. Further details are provided in
Sect. S1 of the Supplement.

3.2.2 ratioCEMS
regressed

For power plants without post-combustion devices,
ratioCEMS

regressed derived from the regression (Fig. 4a and b) and
the plant-specific CEMS measurements are within 15 %,
which is assumed as the uncertainty of the ratio for all power
plants.

3.2.3 f

For power plants with post-combustion devices, an additional
uncertainty of 20 % is applied to reflect the difference be-
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tween the predicted and the true removal efficiency as sug-
gested by Fig. 6.

We assume that their contributions to the overall uncer-
tainty are independent. We then define the total uncertainty,
expressed as a 95 % confidence interval, as the sum of the
root of the quadratic sum of the aforementioned contribution.
The overall uncertainties of ESat

CO2
are ∼ 60% for all power

plants in our analysis.

3.2.4 Summary of uncertainties

However, it is worth noting that this uncertainty estimate
is rather conservative. The mean and the standard devia-
tion of the relative differences between ECEMS

NOx and ESat
NOx ,

and ECEMS
CO2

and ESat
CO2

for all eight power plants provide a
good alternative measure of uncertainties (Table 3). The rel-
ative differences are rather small, which are 0%± 33% and
8%± 41% (mean ± standard deviation) for NOx and CO2,
respectively. We additionally calculate the geometric stan-
dard deviations (GSDs) of the difference between ECEMS

CO2

and ESat
CO2

from 2006∗ to 2016∗ for individual power plants
in Table S2. The small values of GSDs ranging from 1.07 to
1.31 further improve our confidence in the accuracy of the
derived emissions in this study.

3.3 Application

In this section, we assess the feasibility of applying our
method to infer CO2 emissions (ESat

CO2
) for power plants out-

side the US. We first compare the NOx to CO2 emission
ratios derived from this study with those from a bottom-up
emission database in Sect. 3.3.1. We then apply the US ratio
to a power plant in South Africa in Sect. 3.3.2.

3.3.1 Comparison with bottom-up ratios

Figure 8 shows the NOx to CO2 emission ratios for 2010
from the global power emissions database (GPED; Tong et
al., 2018a), which is the only publicly available bottom-up
emission database that reports both NOx and CO2 emissions
for individual power plants for every country. All countries
with over 30 coal-fired power plants in the GPED are shown
in Fig. 8. Not surprisingly, countries with more strict stan-
dards in place for NOx emissions from power plants (i.e.,
NOx emission limit value, ELV, < 200 mg m−3; hereafter re-
ferred to as “more strict countries”) have smaller NOx to
CO2 ratios (i.e., 1.0 versus 2.5 on average) than countries
with less strict standards (i.e., NOx ELV > 200 mg m−3; here-
after referred to as “less strict countries”). Additionally, the
correlation coefficients are smaller for more strict countries
(i.e., 0.82 on average) as compared to less strict countries
(i.e., 0.96 on average) because power plants in more strict
countries are more likely to have installed post-combustion
NOx control systems, which likely lowered ratioCEMS

y , sim-

Figure 8. Comparison of the regressed NOx to CO2 emission ra-
tios derived from the global power emissions database (GPED) for
different regions versus the correlation coefficient of the regression.
The blue and red circles denote regions that are subject to more strict
standards for NOx emissions from power plants (i.e., a NOx ELV of
200 mg m−3 or less) and other regions, respectively. The y axis is
the slope of the regression of the NOx to CO2 emissions with an as-
sumed y-intercept of zero. Error bars show the standard deviations
for the NOx to CO2 emission ratios for individual power plants.
The x axis is correlation coefficient of the regression. The dashed
line represents 2005 US ratioCEMS

regressed for bituminous coal derived

in this study. The grey shadow represents 2005 US ratioCEMS
regressed ±

standard deviation. ∗ China switched from being a less strict country
to a more strict country in 2014, when most coal-fired power plants
in China were required to comply with its new emission standards
(GB13223-2011).

ilar to what occurred in the US over our analysis period
(Sect. 2.2.2).

We further compare the 2005 US ratioCEMS
regressed in Table 1

with the GPED NOx to CO2 emission ratios for less strict
countries. We chose the 2005 value for comparison based
on the following considerations. In 2005, the US EPA is-
sued the Clean Air Interstate Rule (CAIR) to address the in-
terstate transport of ozone and fine particulate matter pollu-
tion for eastern US states, which reduced NOx emissions and
thus NOx to CO2 ratios (ratioCEMS

y ). However, similar com-
prehensive control strategies have not been adopted in less
strict countries. In this way, the 2005 values are expected
to show better consistency with the NOx to CO2 ratios of
less strict countries than values for more recent years. Note
that the GPED database does not give information on ratios
by coal type. Therefore, we use ratioCEMS

regressed for bituminous
coal, which is the most widely used coal type in coal-fired
power plants in most countries.

The ratios for individual power plants in less strict coun-
tries tend to be larger than the US ratioCEMS

regressed for 2005,
considering that power plants in those countries may not be
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equipped with any NOx control devices or even low-NOx
burners, a technology which is widely installed in US power
plants with and without post-combustion NOx control de-
vices. Most ratios range from US 2005 ratioCEMS

regressed to 2005
ratioCEMS

regressed+ standard deviation (Fig. 8). It is no surprise
that some less strict countries have ratios higher than this
range, which also occurs for some US power plants without
post-combustion emission controls (Fig. 4). However, there
are considerable uncertainties in the GPED database given
the scarcity of reliable emissions information in less strict
countries. For example, the GPED NOx and CO2 emissions
estimates for Turkey and Russia, which are outliers in Fig. 8,
are subject to more assumptions and thus larger uncertain-
ties than countries with high-quality country-specific emis-
sion data, such as China, which has a high-resolution emis-
sions database (CPED; Liu et al., 2015), and India, which has
a database developed by Argonne National Laboratory (Lu et
al., 2012).

Figure 9 shows a schematic of our methodology to esti-
mate the NOx to CO2 emission ratios for power plants out-
side the US. We adopt different approaches for more and less
strict countries. More strict countries, including Canada, Eu-
ropean Union (EU) member states, Japan, South Korea, and,
more recently, China, usually use CEMS to monitor emis-
sions, particularly from the largest emitters. For power plants
with CEMS measurements for both NOx and CO2 emissions,
it is straightforward to use the measured ratios. However,
there is still a significant number of power plants in those
countries without CEMS technology, particularly for CO2
measurements. For example, EU member states do not re-
quire power plants to use CEMS for CO2 reporting and the
majority of plants in the EU therefore reports CO2 emis-
sions based on emission factors (Sloss, 2011). Therefore, we
recommend applying our method described in Sect. 2.2 to
infer region-specific ratios for those power plants. The US
ratioCEMS

regressed could be a less accurate but reasonable approxi-
mation when no CEMS data are available, considering those
countries share NOx ELVs for power plants that are simi-
lar to the US. For less strict countries, we recommend using
the 2005 US values by coal type when ratios from countries
with similar NOx emission standards are not available. We
also recommend assigning a range from 2005 ratioCEMS

regressed

to 2005 ratioCEMS
regressed+ standard deviation, instead of a fixed

value, to the ratio for inferring CO2 emissions, considering
the knowledge about ratios from those regions is too low to
narrow the constraint.

As demonstrated in Sect. 2.2, our method presented in this
study provides a reasonable estimate of the ratio for power
plants without post-combustion NOx control devices with
only knowing coal type. Even for regions without reliable
emission information, the information on coal type, particu-
larly for large power plants, are very likely publicly available.
For power plants that install post-combustion NOx control
technology, we additionally require the removal efficiency of

the device to derive the ratio. The removal efficiency of post-
combustion NOx control devices is usually directly reported,
as the operation of such devices is very expensive and is ex-
pected to be subject to strict quality control and assurance
standards. In contrast to bottom-up approaches, many details
are required for calculating NOx and CO2 emissions, includ-
ing coal type, coal quality, boiler firing type, NOx emission
control device type, and operating condition of boiler and
emission control device.

3.3.2 Application to Matimba power plant in South
Africa

We apply the methodology shown in Fig. 9 to estimate CO2
emissions from a South African power plant, Matimba,
which is a strong isolated NOx point source (Fig. 10). It
is a well-studied power plant, having had its emissions
estimated using several different methods as reported in the
literature. We estimateESat

NOx for Matimba from 2005 to 2017
based on OMI NO2 observations following the approach in
Sect. 2.1. Matimba uses subbituminous coal with a calorific
value of ∼ 20 MJ kg−1 (Makgato and Chirwa, 2017). We
apply the ratio ranging from 2005 ratioCEMS

regressed to 2005
ratioCEMS

regressed+ standard deviation to Matimba, following
the methodology in Fig. 9, considering that South Africa
is a less strict country without any post-combustion NOx
control devices (Pretorius et al., 2015). Our derived ESat

CO2
is

shown in Fig. 11 and fluctuates over time. The growth after
2008∗ is most likely caused by the increased unit operating
hours driven by the desire to meet fully the demand for
electricity in South Africa after a period of rolling blackouts
(2007–2008) (Duncan et al., 2016). The decline afterwards
may be associated with the tripping of generating units
at the Matimba because of overload and shortage of coal
as reported by South African government news agency
(available at: https://www.sanews.gov.za/south-africa/
eskom-alone-cannot-solve-our-energy-challenges, last
access: 1 March 2019). The increase in 2016∗ may be asso-
ciated with a newly built power plant, Medupi, which began
limited operations in 2015. Note that the range of ESat

CO2
(grey

band) in Fig. 11 represents the emissions based on a range of
NOx-to-CO2 ratios and not the uncertainty. We calculate the
uncertainty of ESat

CO2
for Matimba following Sect. 3.2 with an

additional uncertainty of ∼ 50% to reflect the fact that the
ratio may range from ratioCEMS

regressed to ratioCEMS
regressed+ standard

deviation. The overall uncertainty of ESat
CO2

for Matimba is
81 %, as shown by the error bars in Fig. 11.

Figure 11 shows ESat
CO2

derived in this study and other in-
dependent estimates reported in the literature, including two
top-down (Nassar et al., 2017; Reuter et al., 2019) and three
bottom-up estimates (Wheeler and Ummel, 2008; Tong et
al., 2018a; Oda et al., 2018). Despite the uncertainties as-
sociated with each of these methods, the CO2 emissions es-
timates agree reasonably well, but we do not have sufficient
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Figure 9. Schematic of our methodology to estimate the NOx to CO2 emission ratios for power plants outside the US. ∗ China switched
from being a less strict country to a more strict country in 2014, when most coal-fired power plants in China were required to comply with
its new emission standards (GB13223-2011).

Figure 10. Mean OMI NO2 tropospheric VCDs around the Matimba power plant (Lephalale, South Africa) for (a) calm, (b) southwesterly
wind conditions, and (c) their difference (southwesterly minus calm) for the period of 2005–2017. The location of Matimba is represented
by a black dot.

information to understand the differences between these es-
timates. However, Tong et al. (2018a) present in their CPED
database both CO2 and NOx emissions, which allows us to
determine that the difference between ESat

NOx and the CPED
bottom-up estimate contributes significantly to the difference
in CO2 estimates from the two methods. ESat

NOx for Matimba
is 3.8 Mg h−1 for 2010∗, which is 65 % smaller than the es-
timate by Tong et al. (2018a) for 2010. It is not surpris-
ing to see such differences considering the uncertainties of
satellite-derived NOx emissions and bottom-up estimates for
power plants without reliable CEMS measurements. For in-
stance, ESat

NOx is potentially underestimated because of the

bias in the OMI NO2 standard product (version 3.1) asso-
ciated with a low-resolution static climatology of surface
Lambert-Equivalent Reflectivity (OMLER) (Kleipool et al.,
2008). We perform a sensitivity analysis by using the prelim-
inary new version of the OMI NO2 product, which uses new
geometry-dependent Moderate Resolution Imaging Spectro-
radiometer (MODIS)-based surface reflectivity. The inferred
ESat

NOx based on the new product is over 10 % higher than
version 3.1. The bottom-up estimates for Matimba are sub-
ject to significant uncertainties as well. For example, Tong et
al. (2018a) used national total fuel consumption of the power
sector for South Africa as reported by the International En-
ergy Agency to estimate fuel consumption at the plant level,
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Figure 11. Comparison of ESat
CO2

(Gg h−1) derived in this study,
with existing estimates for the Matimba power plant during 2005 to
2017. ESat

CO2
is inferred based on the NOx to CO2 emissions ratio

ranging from ratioCEMS
regressed to ratioCEMS

regressed+ standard deviation of
ratio. The upper and lower grey bands denote the emissions inferred
from ratioCEMS

regressed and ratioCEMS
regressed+ standard deviation of ratio,

respectively. The grey dots and error bars show the mean of the
upper and lower grey bands and their uncertainties, respectively.
a Emissions are estimated for 2009 by Wheeler and Ummel (2008),
for 2010 by Tong et al. (2018a), for 2014 and 2016 by Nassar et
al. (2017), for 2016 by Reuter et al. (2019), and for 2012 and 2016
by Oda et al. (2018).

as detailed fuel consumption for each plant is not currently
available. Additionally, they used default NOx emission fac-
tors obtained from the literature because of the absence of
country-specific measurement data.

4 Conclusions

In our study, we investigated the feasibility of using satel-
lite data of NO2 from power plants to infer co-emitted CO2
emissions, which could serve as complementary verification
of bottom-up inventories or be used to supplement these in-
ventories that are highly uncertain in many regions of the
world. For example, our estimates will serve as an inde-
pendent check of CO2 emissions that will be inferred from
satellite retrievals of future CO2 sensors (Bovensmann et al.,
2010). Currently, uncertainties in CO2 emissions from power
plants confound national and international efforts to design
effective climate mitigation strategies.

We estimate NO2 and CO2 emissions during the “ozone
season” from individual power plants from satellite obser-
vations of NO2 and demonstrate its utility for US power
plants, which have accurate CEMS with which to evaluate
our method. We systematically identify the sources of varia-
tion, such as types of coal, boiler, and NOx emission control
device, and change in operating conditions, which affect the

NOx to CO2 emissions ratio. Understanding the causes of
these variations will allow for better-informed assumptions
when applying our method to power plants that have no or
uncertain information on the factors that affect their emis-
sions ratios. For example, we estimated CO2 emissions from
the large and isolated Matimba power plant in South Africa,
finding that our emissions estimate shows reasonable agree-
ment with other independent estimates.

We found that it is feasible to infer CO2 emissions from
satellite NO2 observations, but limitations of the current
satellite data (e.g., spatiotemporal resolution or signal-to-
noise) only allow us to apply our method to eight large
and isolated U.S. power plants. Looking forward, we an-
ticipate that these limitations will diminish for the recently
launched (October 2017) TROPOMI and three upcoming
(launches expected in the early 2020s) geostationary instru-
ments (NASA TEMPO, European Space Agency and Coper-
nicus Programme Sentinel-4, Korea Meteorological Admin-
istration Geostationary Environment Monitoring Spectrome-
ter, GEMS), which are designed to have superior capabilities
to OMI. High-resolution TROPOMI observations are capa-
ble of describing the spatiotemporal variability of NO2, even
in a relatively small city like Helsinki (Ialongo et al., 2019)
and allow estimates of NOx emissions to be calculated for
shorter timeframes (Goldberg et al., 2019c). Higher spatial
and temporal resolutions will likely reduce uncertainties in
estimates of NOx emissions as well as allow for the separa-
tion of more power plant plumes from nearby sources, thus
increasing the number of power plants available for analy-
sis. Therefore, future work will be to apply our method to
these new datasets, especially after several years of vetted
data become available. Additional future work will include
applying our method to other regions of the world with reli-
able CEMS information, such as Europe, Canada and, more
recently, China, to develop a more reliable and complete
database with region-specific ratios.

Data availability. The OMI NO2 and MERRA-2 wind data
can be downloaded from the Goddard Earth Sciences Data
and Information Services Center (GES DISC). The OMI NO2
data are available at https://doi.org/10.5067/Aura/OMI/DATA2017;
Krotkov et al. (2018). The MERRA-2 wind data are available at
https://doi.org/10.5067/Aura/OMI/DATA2033; Joiner (2018). The
CEMS emissions data can be downloaded from Air Markets Pro-
gram Data (available at https://ampd.epa.gov/ampd/, US EPA,
2017). The GPED data are available at http://www.meicmodel.org/
dataset-gped.html; Tong et al. (2018b).
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