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Abstract. Vehicular emissions contribute a significant por-
tion to fine particulate matter (PM2.5) air pollution in urban
areas. Knowledge of the relative contribution of gasoline-
versus diesel-powered vehicles is highly relevant for policy-
making, and yet there is a lack of an effective observation-
based method to determine this quantity, especially for its
robust tracking over a period of years. In this work, we
present an approach to track separate contributions of gaso-
line and diesel vehicles through the positive matrix factor-
ization (PMF) analysis of online monitoring data measur-
able by relatively inexpensive analytical instruments. They
are PM2.5 organic and elemental carbon (OC and EC), C2–
C9 volatile organic compounds (VOCs) (e.g., pentanes, ben-
zene, xylenes, etc.), and nitrogen oxide concentrations. The
method was applied to monitoring data spanning more than
6 years between 2011 and 2017 in a roadside environment
in Hong Kong. We found that diesel vehicles accounted for
∼ 70 %–90 % of the vehicular PM2.5 (PMvehicle) over the
years and the remainder from gasoline vehicles. The diesel
PMvehicle during truck- and bus-dominated periods showed
declining trends simultaneous with control efforts targeted at
diesel commercial vehicles and franchised buses in the in-
tervening period. The combined PMvehicle from diesel and
gasoline vehicles by PMF agrees well with an independent
estimate by the EC-tracer method, both confirming PMvehicle

contributed significantly to the PM2.5 in this urban envi-
ronment (∼ 4–8 µg m−3, representing 30 %–60 % in summer
and 10 %–20 % in winter). Our work shows that the long-
term monitoring of roadside VOCs and PM2.5 OC and EC is
effective for tracking gaseous and PM pollutants from differ-
ent vehicle categories. This work also demonstrates the value
of an evidence-based approach in support of effective control
policy formulation.

1 Introduction

Vehicular emissions (VEs) are among the major sources of
air pollution in the urban environment. Major constituents in
VE include nitrogen oxides (NOx), carbon monoxide (CO),
volatile organic compounds (VOCs) and fine particulate mat-
ter (PM2.5). Two primary components in vehicular PM2.5
(PMvehicle) are elemental carbon (EC) and organic matter
(OM) (Kleeman et al., 2000; Chow et al., 2011). Growing ev-
idence has shown that exposure to VE affects human health
(Peters et al., 2004; Beelen et al., 2008; Benbrahim-Tallaa et
al., 2012; Rice et al., 2015). With an increasing number of
the global population residing in urban areas, VEs have be-
come the major target for source control in many parts of the
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world. But uncertainty over the relative importance of diesel
and gasoline vehicles to PMvehicle often poses a challenge in
effective policymaking (Gertler, 2005).

The chemical mass balance (CMB) model and positive
matrix factorization (PMF) model are two prevalent recep-
tor models for quantifying contributing sources to PM2.5,
including VE. However, their capability to resolve separate
contributions of diesel and gasoline vehicles is often severely
constrained when relying on chemical constituents residing
in the PM (particulate matter) fraction alone. In the CMB
model, EC and certain organic compounds (e.g., hopanes,
benzo[ghi]perylene and coronene) have been specifically
used as tracers for deriving diesel and gasoline PMvehicle
contributions, respectively (Schauer et al., 1996; Subrama-
nian et al., 2006; Chow et al., 2007). However, the contri-
butions of the two are often subjected to large uncertainty
due to the substantial variability in source profiles and oxida-
tion degradation of organic tracers (Subramanian et al., 2006;
Weitkamp et al., 2008). On the other hand, PMF analysis of
PM compositions often yields one overall VE factor due to
the lack of tracers specific to individual VE types, and the dif-
ficulty is compounded by the often similar temporal patterns
of traffic activity among different vehicle types (Dallmann et
al., 2014; Lee et al., 2015; Wang et al., 2017). Some other
chemical characteristics, such as subfractions of organic car-
bon (OC) and EC obtained from thermal analysis and metals
(e.g., Mn and Fe), have been used in PMF analyses to dif-
ferentiate between diesel and gasoline contributions (Kelly
et al., 2013). These characteristics, however, are relatively
less specific and thus they are often not applicable to typi-
cal urban areas where a complex mix of contributing sources
exists.

In Hong Kong (HK), the PMvehicle contribution from diesel
vehicles has reduced significantly over the last 2 decades, re-
sulting from a series of ambitious control efforts. The success
has been verified by results from an ad hoc roadside study
and a study comparing the emissions in a local tunnel be-
tween 2003 and 2015 (Lee et al., 2017; Wang et al., 2018).
Most HK studies in the past only reported overall PMvehicle
contributions due to the lack of separate local source profiles
for diesel and gasoline vehicles and constraints in the PMF
model posed by a lack of vehicle type specific tracers (Li et
al., 2012; Huang et al., 2014; Cheng et al., 2015; Sun et al.,
2016). Some studies achieved the separation either by using
nonlocal source profiles in the CMB model or by coupling
vehicle-type-specific traffic data collected in a short period
with aerosol-mass-spectrometry-based PMF (Zheng et al.,
2006; Lee et al., 2017). The lack of a robust means to differ-
entiate between diesel and gasoline contributions to PMvehicle
calls for the need to develop a more effective source appor-
tionment strategy, especially considering the long-term need
in monitoring their impact on air quality.

In VOC source apportionment studies, certain VOC
species have been used to track the contributions of spe-
cific vehicle types, such as propane and butanes for vehi-

cles fueled by liquefied petroleum gas (LPG) and pentanes
and toluene for gasoline vehicles (Lyu et al., 2016; Yao et
al., 2019). These gaseous species, however, are rarely con-
sidered for deriving vehicle-type-specific PMvehicle. Lambe
et al. (2009) added a few VOC species into their 2 h resolu-
tion organic-tracer-based PMF to explicitly apportion black
carbon in Pittsburgh, USA, to diesel and gasoline vehicles.
Thornhill et al. (2010) also used PMF with real-time gaseous
species (including VOCs) and PM2.5 concentration data cap-
tured by a suite of mobile equipment to quantify PM2.5 con-
tributions from diesel and gasoline vehicles in Mexico City.
Our group reported a limited exploration of the combined use
of hourly VOC and PM2.5 OC and EC data in PMF analyses
to estimate the total PMvehicle in a roadside environment in
HK (Huang et al., 2014). Here, we present a detailed inves-
tigation on the feasibility of such an approach for separating
PMvehicle contributions by diesel and gasoline vehicles using
a comprehensive dataset covering 6 years between 2011 and
2017.

The objective of this work is to establish an approach to
obtain vehicle-type-specific PMvehicle through the integration
of online routine monitoring data, such as NOx and hourly
VOC and OC–EC measurement data, into the PMF analysis.
The study features a 6-year-long monitoring (2011–2017) of
a roadside environment in HK. We evaluate this new method
by comparing the total PMvehicle derived from an indepen-
dent EC-tracer method developed previously, and for the first
time we report the long-term trends in PMvehicle for diesel
and gasoline vehicles in HK (Huang et al., 2014; Wong et al.,
2019). Several policies targeted at diesel vehicles fell within
the timeline of the study period, providing a valuable oppor-
tunity to examine their effectiveness. The methodology pre-
sented in this study for instrument deployment, data collec-
tion and analysis could help air quality management author-
ities to obtain measurement-based evidence from the routine
monitoring dataset for evaluating the effectiveness of control
policies targeting VEs.

2 Methods

2.1 Roadside measurements

The study window spans over a 6-year period from May 2011
to August 2017. Sampling was conducted at Mong Kok Air
Quality Monitoring Station (MK AQMS), which is a road-
side site in the Air Quality Monitoring Network operated
by the HK Environmental Protection Department (HKEPD).
The station is located at the junction of two trunk roads with
an annual average daily traffic count of ∼ 45 000 (Trans-
port Department, 2018). Previous vehicle counting exercises
showed that private cars fueled by gasoline, goods vehicles
and buses fueled by diesel, and taxis running on LPG made
up 32 %, 22 %, 16 % and 29 %, respectively, of the vehicle
fleet in the sampling area (Lee et al., 2017). In addition to the
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busy traffic, there are small shops, restaurants, and tall res-
idential and commercial buildings in the immediate vicinity
of the station. A previous study has shown that on-road ve-
hicles are the most important source of submicron carbona-
ceous aerosols at the site, followed by cooking activities (Lee
et al., 2015).

A semicontinuous OC–EC field analyzer system (RT-4,
Sunset Laboratory, OR, USA) was operated to obtain hourly
OC–EC concentration data of PM2.5. Details for the on-site
operation, instrument conditions and quality control work
during the entire sampling period are provided in the Sup-
plement. Hourly concentration data for PM2.5, C2–C9 VOCs
and trace gases including NOx and CO measured at the MK
AQMS were provided by HKEPD. Details of the monitoring
equipment can be found in HKEPD’s annual air quality re-
port (Environmental Protection Department, 2018). In partic-
ular, the VOCs were measured with a GC955 series 611/811
VOC analyzer (Syntech Spectras, The Netherlands), which
quantifies 30 species, including 11 C2–C8 alkanes, 9 C2–C5
alkenes, 1 C2 alkyne and 9 C6–C9 single-ring aromatics.

2.2 Data treatment

To avoid biased interpretation of the relationships between
the measured species, we excluded hourly samples with one
or more missing species from the subsequent data analyses.
Sampling days with a data cover rate (i.e., number of valid
data points/total number of hours during the study period)
<75 % were also excluded to maximize the representative-
ness of the concentration data of a sampling day. The trends
presented throughout this study are constructed from the
monthly averages. Only months with a data cover rate >33 %
are considered. The monthly data cover rates are summarized
in Fig. S1 in the Supplement.

2.3 Estimation of vehicular PM2.5 by positive matrix
factorization

In this work, vehicular contributions to PM2.5 are quantified
by PMF analysis using the United States Environmental Pro-
tection Agency (USEPA) PMF 5.0 software (Norris et al.,
2014). PMF is a receptor model that solves the chemical
mass balance of a speciated sample data matrix by decom-
posing it into factor profiles and factor contributions with
nonnegative constraints, with the objective being to minimize
the objective function Q (Paatero and Tapper, 1994; Paatero,
1997). The Q value represents the uncertainty weighted devi-
ation between observed and modeled species concentrations.

Hourly concentrations of OC, EC, NOx , CO and 12 se-
lected VOC species from the entire monitoring period are
considered in the PMF model for a single analysis. The
VOCs, which were consistently detected above the detection
limit (>80 % in each calendar year), include ethene, ethane,
propane, propene, i-butane, n-butane, i-pentane, n-pentane,
benzene, toluene, ethylbenzene, and m- and p-xylene. Some

examples of the excluded VOCs are butadiene, n-hexane and
n-heptane. Preliminary PMF analysis showed that including
these species had no advantage in identifying more sources.
Meanwhile, the considerable fraction of data below the de-
tection limit for these species would affect the quality of the
PMF solutions. Details regarding other modeling inputs are
provided in the Supplement.

Vehicle-related VOCs in the roadside environment are
freshly emitted and thus should be mostly conserved, ren-
dering them suitable for receptor modeling. However, for the
non-roadside environment, the effect of photochemical reac-
tions should first be examined and the correction of VOC in-
put data should be made when needed to avoid bias in source
apportioning (He et al., 2019).

PMvehicle for individual vehicle types are calculated as the
sum of OM and EC in the corresponding factor profiles, con-
sidering that it is primarily composed of OM and EC. OM
is estimated to be OC multiplied by a factor of 1.2 based on
organic aerosol mass spectra measured for both diesel and
gasoline VEs (Dallmann et al., 2014; Lee et al., 2015).

We note that cooking emissions, a known OC source in
MK, is not considered in the current PMF analysis as the
measurement of relevant tracer compounds was not sup-
ported with the instrumentation deployed in this study. We
therefore relax the modeling of OC (i.e., allow the modeled
OC to have a relatively larger deviation from measurement)
by tripling its uncertainty. This approach lets the apportion-
ing of OC have a larger degree of freedom, which in effect
allows the model to only capture the OC that is associated
with the fitting species whilst leaving the unrelated fraction
as unapportioned OC. A sensitivity test showed that a further
doubling of the OC uncertainty would not cause a discernible
impact on the PMF solutions.

The robustness of the PMF solutions is examined through
executing the displacement (DISP) and Fpeak (strength val-
ues of −5 and 5) functions. In the bootstrap (BS) analysis,
the input dataset was split into three groups of equal sample
size for execution because of the limited computing capabil-
ity of the software (total sample size= 24 586). Nevertheless,
this practice allows us to assess the model uncertainty asso-
ciated with using different subsets of samples, which will be
discussed in the result section.

2.4 Estimation of vehicular PM2.5 by the EC-tracer
method

To evaluate the PMF estimation, an EC-tracer method specif-
ically designed for estimating PMvehicle contributions in
roadside environments is applied. Details regarding the prin-
ciple and application of this method are documented in our
previous work, and a brief account is given here (Huang et
al., 2014; Wong et al., 2019). In this method, VE is assumed
to have a characteristic OC-to-EC ratio – (OC / EC)vehicle –
and to be responsible for all ambient EC. The latter repre-
sents a reasonable approximation given that the EC at MK
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AQMS was dominated by traffic exhaust over the entire study
period, which will be discussed further in Sect. 3.1.2. With
these assumptions, OCvehicle can be estimated as the prod-
uct of the ambient EC concentration and the (OC / EC)vehicle,
while PMvehicle can be estimated using the approach similar
to that introduced in Sect. 2.3 (i.e., PMvehicle = ECambient+

OCvehicle× 1.2).
The (OC / EC)vehicle is determined using the minimum

OC / EC ratio approach, in which the ambient OC in a certain
lowest percentage range by the OC / EC ratio is regressed on
ambient EC, and the slope obtained represents the target ra-
tio (Lim and Turpin, 2002). This minimum ambient OC / EC
ratio is perceived to be of minimal contributions from sec-
ondary formation and non-vehicular primary sources, which
typically have a higher OC / EC ratio than VEs (e.g., cook-
ing emissions and biomass burning). In this study, the op-
timal Deming regression evaluated previously is applied to
the lowest 5 % data by the OC / EC ratio on a monthly ba-
sis (Huang et al., 2014). The analysis is performed using
the Igor-based (WaveMetrics, Inc. Lake Oswego, OR, USA)
computer program developed by Wu and Yu (2018).

3 Results and discussion

3.1 Ambient trends

3.1.1 OC trends

The monthly OC concentration showed a decreasing trend
over the 6-year period from May 2011 to August 2017, as
shown in Fig. 1a. A consistent seasonal cycle with fall–
winter (mid-September to mid-March of the next year) high,
summer (mid-May to mid-September) low and spring (mid-
March to mid-May) in between is observed over the years.
The study-wide OC in the three seasonal periods were 6.9±
3.4, 3.9±2.6 and 5.9±2.8 µg C m−3, respectively (Fig. S2).
The main cause for the seasonal variations of OC is related
to the geographical location of HK, which is in the coastal
area facing the South China Sea to the south and mainland
China to the north. During the fall/winter monsoon season,
the prevailing northeasterly wind transports pollutants from
the continental area to HK, while in summer the prevailing
southerly wind carries clean air masses from the sea (Louie
et al., 2005; Hagler et al., 2006; Huang et al., 2014). Another
plausible reason for the elevated OC observed in wintertime
is the enhanced partitioning of semivolatile organic com-
pounds (SVOCs) into the particle phase due to lower tem-
perature and higher organic aerosol loading. Previous stud-
ies at the same monitoring site show that VE-related organic
aerosol (derived from PMF analysis of organic aerosol mass
spectra) decreases by 40 % in summer relative to spring de-
spite consistency in traffic flow volume, which points to a
sizable influence of the gas-particle partitioning of SVOCs
(Lee et al., 2017).

It is noted that the winter OC had a larger improve-
ment than summer OC over the monitoring period, as shown
in the season-specific trend plot in Fig. S3. The aver-
age OC concentration in winter dropped by 6.4 µg C m−3

(from 10.7 µg C m−3 in 2011 to 4.3 µg C m−3 in 2017), while
the decrease in summer was 2.3 µg C m−3 (from 5.1 to
2.8 µg C m−3) during the same period. Such a difference
demonstrates the benefit on local air quality of collaborative
efforts in reducing regional air pollution over the years.

3.1.2 EC trends

The 6-year trend of EC concentration is plotted in Fig. 1b,
which shows a different temporal characteristic compared to
OC. A main feature of the EC trend is the lack of seasonal-
ity throughout the years. The study-wide seasonal concentra-
tions remained at∼ 5 µg C m−3 for all seasons (Fig. S2). The
absence of seasonal variation indicates local emissions dom-
inated EC at this roadside site, and the impact of regional
sources on EC, as opposed to OC, was limited. We previ-
ously demonstrated that EC at MK AQMS was mainly influ-
enced by vehicular traffic by showing similarities in their di-
urnal and weekday–holiday variation patterns (Huang et al.,
2014). Such correlations persisted over the years, as shown
in Fig. S4. Specifically, during workdays, EC concentration
increased 4-fold from its minimum during the small hours to
∼ 4–8 µg C m−3 during daytime. The corresponding increase
was 2-fold for the holiday period, consistent with the reduced
traffic flow volume. These multiple lines of evidence indicate
that EC at the site was mainly affected by local VE sources
and less impacted by regional sources.

In the first 3 years, the monthly EC concentrations fluctu-
ated in the 5–6 µg C m−3 range. Starting from mid-2014, they
declined significantly to the level of∼ 3 µg C m−3 toward the
end of the measurement period. A similar variation trend was
also observed for NOx (Fig. 1c), which is mainly generated
by on-road diesel vehicles in the roadside environment. No-
tably, these decreasing trends coincided with the launch of
a program to phase out pre-Euro IV diesel commercial ve-
hicles in March 2014 in HK. The results here imply diesel
vehicles were the major EC contributor at the sampling site.

3.1.3 Carbonaceous aerosols and PM2.5 trends

The relative contributions of carbonaceous aerosols to PM2.5
at MK AQMS over the study window are shown in Fig. 1d.
OM was approximated as OC×1.4 for typical urban aerosols
with primary and secondary origins. The PM2.5 concentra-
tion is overlaid on the same plot. As shown in the figure,
PM2.5 concentration displayed a seasonal variation (winter
high and summer low) similar to that of OC over the years,
which was the result of the combined effect of regional air
pollutant transport and meteorological conditions, as dis-
cussed in Sect. 3.1.1. In the middle of the year with warmer
weather and lower PM2.5 mass (∼ 20 µ g m−3), EC showed
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Figure 1. Trends in concentrations of (a) OC, (b) EC, (c) NOx , (d) PM2.5, (e) n-butane and (f) i-pentane at MK AQMS. Each data point
represents the monthly average of the hourly concentrations. Shaded areas represent 1 standard deviation for the hourly data. The commence-
ment of the program to phase out pre-Euro IV diesel commercial vehicles (DCVs) and the catalytic converter replacement program for LPG
taxis is marked in (b), (c) and (e). In (d), relative contributions to PM2.5 from EC, OM and other components are shown on the secondary
axis. OM is approximated as OC×1.4. Other components are the difference between measured PM2.5 and EC+OM.

an elevated relative contribution of ∼ 30 %, and EC and OM
had comparable contributions to PM2.5. The opposite was
observed in the colder season with higher PM2.5 mass (30–
60 µg m−3). EC only made up ∼ 15 % of the aerosol mass,
while OM accounted for ∼ 30 %. About two-thirds of the
PM2.5 in these periods was composed of non-carbonaceous
materials. Based on HKEPD’s chemical speciation results
for 24 h filter samples, these materials mainly consist of sec-
ondary inorganics (sulfate, nitrate and ammonium), followed
by crustal material and trace elements (Yu and Zhang, 2018).
The secondary inorganic components have long been at-
tributed to regional air pollution. The persistently large con-
tributions from these components over the years indicate that
controlling PM2.5, including its gaseous precursors (SO2,
NOx and NH3), on a regional scale is still important for re-
ducing the overall PM2.5 at this roadside location.

3.1.4 The n-butane and i-pentane trends

Figure 1 also shows multiyear trends in VOCs that are asso-
ciated with specific vehicle types (LPG and gasoline). At MK
AQMS, n-butane has been used to track LPG-fueled vehicles
(Lyu et al., 2016; Yao et al., 2019). As shown in Fig. 1e, the
n-butane level did not show obvious monthly variations over
the years, supporting the theory that this species was predom-

inantly emitted by local LPG vehicles (box-plot statistics of
the monthly concentration are shown in Fig. S5). It remained
at the ∼ 10–15 ppbv level in mid-2011–mid-2013, dropped
precipitously to ∼ 7 ppbv in the second half of 2013 and was
followed by a steadily declining trend until the end of the
study period. Yao et al. (2019) reported similar trend char-
acteristics for the same site with a more continuous dataset
(September 2012–April 2017). The drop in the second half
of 2013 was a response to a catalytic converter replacement
scheme for LPG-fueled vehicles implemented by the govern-
ment (Lyu et al., 2016).

Similar to n-butane, i-pentane was also dominated by a
local source as reflected in the absence of seasonality over
the years (Fig. 1f). This gasoline exhaust/evaporation tracer
remained fairly stable at the ∼ 1 ppbv level over the entire
study period. Such an invariability is in line with a previ-
ous study showing that the VOC contributions from gasoline-
powered vehicles in the same study area were relatively sta-
ble over the similar period (Yao et al., 2019).

3.2 (OC / EC)vehicle for EC-tracer method

(OC / EC)vehicle determined using summer month data (June,
July and August) is very similar over the years and does not
exhibit an obvious trend over the years, as shown in Fig. 2a.
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The ratios range from 0.30 to 0.47, with R2 between 0.56
and 0.96 (sample size n= 18–33). Figure 2b plots the fre-
quency of occurrence of the lowest 5 % of OC / EC ratios
in the 24 h of a day for the summer months. It shows that
the lowest ratios occurred most frequently near the morn-
ing rush hour (07:00–10:00 LT; all times are in Hong Kong
local time) with minimal contributions from other primary
sources (e.g., cooking emissions), supporting the theory that
these ratios were dominated by VEs. The ratios were a factor
of 2–3 higher in winter (Fig. S6), likely as a result of en-
hanced OC contributions from aged air masses and biomass
burning from regional transport, as discussed in Sect. 3.1.1.
Thus, these values were likely biased high. Another compli-
cating factor is that the reduction in ambient temperature and
elevation in organic aerosol concentration in the colder sea-
son would favor the partitioning of SVOCs into the parti-
cle phase, thereby inflating the (OC / EC)vehicle (Robinson et
al., 2007). We did not account for this effect in this study.
Instead, the summer values were adopted for deriving the
(OC / EC)vehicle, and this ratio is considered a lower estimate
for colder season samples. Given that similar (OC / EC)vehicle
values were obtained in the summer months over the years,
the mean value of 0.35 (standard deviation= 0.05) is consid-
ered to be the best estimate of (OC / EC)vehicle for subsequent
analyses.

3.3 Vehicular contributions from the PMF analysis

3.3.1 Source identification

Among various PMF solutions, the five-factor solution is the
most interpretable for source identification and quantifica-
tion. The drop in Qtrue/Qexpected value, which reflects the im-
provement in modeled species concentrations against mea-
surements, is more significant when the factor number is in-
creased by one from three to five compared to from five to
eight (Fig. S7). This implies that five factors are sufficient
and suitable for explaining the variations of input species
data. The contributing sources are identified by studying the
presence of marker species and temporal variations in nor-
malized contributions, as shown in Fig. 3.

Three vehicular factors are identified, corresponding to the
vehicle types observed near the sampling site. The first factor
represents diesel exhaust as it contains the majority of NOx

and EC, which are largely attributed to diesel vehicles. The
low OC / EC ratio of 0.5 and diurnal profile, in line with the
traffic flow of diesel vehicles next to the site, further confirm
its source identity.

The second factor is associated with gasoline vehicles due
to the dominant presence of i- and n-pentane. This factor also
has a diurnal profile consistent with gasoline vehicle flow
near the site, with the evening peak occurring 2 hours later
than that of diesel vehicles. The i- and n-pentane could be
emitted through fuel evaporation and as unburned gasoline in

tailpipe exhaust, whereas the carbonaceous particulates with
an OC / EC ratio of 2.5 and CO signal tailpipe exhaust.

The contribution of LPG-fueled vehicles is identified in
the third factor by propane and i- and n-butane originating
mainly from fuel evaporation. Its diurnal variation pattern is
consistent with the activity pattern (busy in the small hours)
of local taxis running on LPG (Yu et al., 2016). Note that this
vehicle type has a negligible contribution to PM in agreement
with the highly volatile nature of LPG.

The fourth factor contains a notable amount of toluene,
ethylbenzene, and m- and p-xylene that commonly exist in
consumer and industrial products as solvents or in gasoline
as additives (Bolden et al., 2015). Previous studies attributed
this factor to solvent usage (Lyu et al., 2016; Yao et al.,
2019). However, upon closer examination of its diurnal pat-
tern, we found that this factor shows regular peaks around
11:00 and 17:00. Given that the MK AQMS is surrounded
by 16 around-the-clock gas stations within 1.5 km (Fig. S8)
and that the peak business hours of some of these stations
show a similar diurnal variation pattern (based on popular
times information from Google Maps; Fig. S8), we classify
this factor as a fuel-filling process instead of solvent usage.
The VOC characteristic ratios (e.g., ethylbenzene / m- and p-
xylene ratio) of this profile are also in reasonable agreement
with the local fuel composition. Details of the comparison
are given in Table S3.

The last factor has abundant chemically stable ethane and
benzene. Particulates in this factor are also enriched substan-
tially in OC (OC / EC ratio ∼ 9). In contrast to the three
vehicle-related factors, the absence of diurnal variation and
the presence of winter high and summer low contributions
were noted (Fig. 3). These characteristics collectively indi-
cate that this factor is an aged air mass.

3.3.2 Model evaluation

Modeling uncertainty estimation from DISP, Fpeak and BS
(grouped samples) shows that the solutions are rotationally
and statistically robust, with details provided in the Sup-
plement. In particular, the factor profiles from the three
grouped PMF analyses are very similar, as shown in Fig. S9.
The (OC / EC)vehicle ratios for diesel vehicles are 0.5 in all
grouped runs, while those for gasoline vehicles are 1.8–2.2,
implying that the chemical characteristics of PMvehicle of
the two remained similar over the study period. The PMF
(base run) solution is also evaluated with the modeling per-
formance of the fitting species, which are summarized in
Table S4. Most gaseous species are well reproduced (R2

=

0.73–0.95) except ethene and ethane (R2
= 0.32–0.40) due

to their higher measurement uncertainties. Modeled EC is
also consistent with the measurement (R2

= 0.90), but OC
in comparison shows a larger discrepancy (R2

= 0.64).
To unveil the cause of the OC discrepancy, we compare the

modeled and measured OC concentrations on a diurnal basis.
The result is presented in Fig. 4 using a box diagram. The plot
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Figure 2. Determination of (OC / EC)vehicle for MK AQMS using the optimal Deming regression of the lowest 5 % data by OC / EC ratio
from summer months. Panel (a) presents the month-by-month (OC / EC)vehicle (gray columns), R2 of OC and EC (red markers), and number
of data points considered (blue markers). Panel (b) shows the frequency of occurrence of the lowest 5 % OC / EC ratios at different hours of
the day considering all of the summer data.

Figure 3. Factor profiles resolved by PMF analysis of hourly PM2.5
OC–EC, C2–C8 VOCs and other trace gas data at MK AQMS. Pan-
els on the left present the species’ relative contributions to each fac-
tor. The middle and right panels respectively show the diurnal and
seasonal profiles of normalized contribution for each factor in box
plots. For each box, the solid square marker, horizontal line, and
lower and upper bounds are mean, median, and 25th and 75th per-
centiles, respectively. Whiskers in the seasonal plots represent 5th
and 95th percentiles.

reveals that the discrepancy mainly occurred during 12:00–
14:00 and 18:00–21:00. More specifically, the modeled OC
was considerably lower than the measurement during these
two periods. This feature remained across all seasons, as de-
picted in Fig. S10. Previous studies have attributed the two
organic peaks during these two mealtime periods to cooking
emissions (Lee et al., 2015; Sun et al., 2016). As mentioned
in Sect. 2.3, we were unable to account for this source in
the PMF analyses due to the lack of suitable tracer species
for cooking emissions. Nevertheless, Fig. 4 shows that the
modeled and measured OC had good agreement during the
non-mealtime hours (i.e., 0:00–11:00 and 15:00–17:00). This
indicates that the aged air mass factor and VE factors re-
solved by the PMF were able to explain the non-cooking OC,
lending support to the PMF-derived OCvehicle. It should be

Figure 4. Diurnal variations of OC concentrations in box plots de-
rived from ambient measurement (green boxes) and PMF modeling
(gray boxes). For each box, the solid square marker, horizontal line,
and lower and upper bounds are mean, median, and 25th and 75th
percentiles, respectively. The afternoon and evening mealtime peri-
ods are indicated in the orange frames.

noted that although PMF without down-weighting OC could
bring the modeled OC into better agreement with the mea-
surements, the resolved factor profiles were less consistent
among the three grouped PMF analyses, which caused dis-
continuity in factor contributions between different periods.
The improved interpretability of the PMF results indicates
that down-weighting OC is necessary in our situation.

3.3.3 PMF-derived OCvehicle trends

The separate diesel and gasoline OCvehicle concentrations
over the entire study period are shown in Fig. 5a. A decreas-
ing trend in the overall OCvehicle started to emerge in mid-
2014 which was driven by the reduction in diesel OCvehicle.
Between mid-2011 and mid-2014, diesel OCvehicle hovered
at the ∼ 2 µg C m−3 level. It then started decreasing until
2017, at which point the concentration had dropped by half.
Gasoline contribution, on the other hand, remained at the
∼ 1 µg C m−3 level over the entire study period. As a result of
the different pace of reductions, gasoline OCvehicle had grown
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in relative importance over the years, as shown in Fig. 5d. In
the first 3 years, gasoline vehicles were a smaller contribu-
tor compared to diesel vehicles, accounting for∼ 30 % of the
OCvehicle, but afterwards their contribution became compara-
ble to that of diesel vehicles, growing to 40 %–50 %. Diesel
and gasoline OCvehicle derived from the grouped PMF analy-
ses and the associated uncertainties derived from the 5th and
95th percentiles of the BS results are plotted in Fig. S11a,
while the results obtained from the base run are also shown as
solid lines in the graph. It appears that the division of samples
into three time periods does not exert discernible influence on
the results, though the gasoline OCvehicle occasionally devi-
ated from the base result noticeably in the first time period.
But in general, OCvehicle from the two vehicle categories has
converged over the whole study period.

The overall OCvehicle derived from the EC-tracer method
is plotted in Fig. 5a for comparison. It appears that this in-
dependent method can only account for the diesel fraction
of PMF-derived OCvehicle. A plausible reason is that the
(OC / EC)vehicle determined through the minimum OC / EC
ratio approach (0.35) is biased toward diesel exhaust with a
low OC / EC ratio (0.47 from PMF). The comparison here
suggests the OCvehicle derived from the EC-tracer method re-
flects the diesel influence better.

The relative contribution of total OCvehicle to ambient OC
exhibited a large seasonal dependence (Fig. S12a). In win-
ter months when the ambient OC concentration was high,
VE made up 30 %–40 % of OC. The percentage share in-
creased sharply to 70 %–100 % in summer months when am-
bient OC was low. However, it should be noted that the PMF-
modeled OC occasionally exceeded the measurement, and
the exceedance increased with decreasing ambient OC levels
(Fig. S13). This could be attributed to the uncertainties aris-
ing from PMF modeling and the measurement of low levels
of OC, and thus the relative importance in summer months is
likely overestimated.

3.3.4 PMF-derived ECvehicle trends

Trends in vehicular EC (ECvehicle) were very similar to those
for OCvehicle, as shown in Fig. 5b. Different from OCvehicle,
the ECvehicle derived from the PMF and EC-tracer method,
which is essentially the ambient EC, agree well with each
other. This is because PMF attributed the majority of the
ambient EC to VE sources, more than 70 %, as shown in
Fig. S12b. For this reason, the change in ECvehicle was very
similar to that of ambient EC and thus is not repeated here.
A key finding is that diesel vehicles dominated the ECvehicle
over the entire study period, constituting more than 80 %
of ECvehicle, as shown in Fig. 5e. Such dominance remains
valid after the consideration of PMF modeling uncertainties
(Fig. S11b). The above findings emphasize that the reduc-
tion in EC over the years was mostly attributed to the control
of diesel vehicles, and this vehicle category should deserve
closer attention for further EC abatement.

3.3.5 PMF-derived PMvehicle trends

The positive impact on air quality of vehicle control poli-
cies, if any, is more obvious if EC and OM from VEs are
considered together (i.e., PMvehicle). The monthly average
PMvehicle by vehicle category is given in Fig. 5c. As of mid-
2014, PMvehicle fluctuated slightly around the 8 µg m−3 level,
followed by a considerable reduction to the∼ 4 µg m−3 level
in the beginning of 2017. This amount of reduction repre-
sents one-fifth of typical PM2.5 concentrations at MK AQMS
during summer (∼ 20 µg m−3). As noted in Fig. 5c, the re-
duction in PMvehicle was mainly driven by diesel vehicles,
which were also the dominant PMvehicle contributors over
the whole study period, as shown in Fig. 5f. Another find-
ing from Fig. 5f is that the relative importance of gasoline
vehicles has only grown slightly from ∼ 20 % before mid-
2014 to ∼ 30 % afterwards despite the drastic decrease in
diesel PMvehicle. After considering the PMF modeling uncer-
tainties, as depicted in Fig. S11c, it is still clear that diesel
vehicles have dominated PMvehicle at MK AQMS over the
entire study period, and this vehicle class should remain the
focal point for the further control of PMvehicle.

PMvehicle estimated by the EC-tracer method is also com-
pared with the PMF method in Fig. 5c. As shown, the dispar-
ity between the two approaches has narrowed considerably
compared to OCvehicle. The improvement mainly involves the
consideration of EC, which is similarly perceived as a tracer
for VEs in the two estimation methods. The similarity be-
tween the PMvehicle obtained from the two methods lends
support to our PMF model as producing reasonable estimates
for separate diesel and gasoline PMvehicle contributions. Fur-
thermore, the consistent results obtained from both methods
highlight that PMvehicle was an important contributor to the
PM2.5 at MK AQMS with noticeable seasonal variations sim-
ilar to those of OCvehicle, as shown in Fig. S12c. Based on
the PMF results, during summer and under the dominance
of local sources, VEs were responsible for ∼ 30 %–60 % of
ambient PM2.5 during the study period. When PM2.5 con-
centrations increased in winter due to regional influence, VE
contributions dropped to roughly 10 %–20 %.

3.4 Policy evaluation

Tackling tailpipe emissions from diesel commercial vehicles
(DCVs) and franchised buses is a long-term need in HK (En-
vironment Bureau, 2013). A 3-day detailed traffic counting
exercise was conducted by the government at the MK AQMS
in May 2013. The details were reported in Lee et al. (2017).
From that we are able to identify a truck-dominated period
around midday (11:00–13:00) during which the number of
trucks (i.e., DCVs) is a factor of 2–3 higher than that of buses
(∼ 100 vs. ∼ 40 vehicles h−1), as well as a midnight period
(22:00–0:00) with the bus count being 3 times higher than
the count of trucks (∼ 60 vs. ∼ 20 vehicles h−1). Hence, the
annual trends in diesel PMvehicle extracted from these two
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Figure 5. Trends in contributions of diesel and gasoline vehicles at MK AQMS derived from PMF analysis (stacked areas) in terms of
(a) OCvehicle, (b) ECvehicle and (c) PMvehicle concentrations. Relative contributions of the two vehicle types to the corresponding pollutants
are shown in (d–f). The stacked areas are constructed by the interpolation of the monthly data points. In all plots, each data point represents
the monthly average of the hourly concentrations. Only months with a data cover rate >33 % are considered. Overall vehicular contributions
derived from the EC-tracer method are shown in blue markers in (a–c).

periods could provide an indication of how diesel PMvehicle
was impacted by different policies. The results are presented
in Fig. 6. Also shown in the figure is a background condition
represented by the small hours (02:00–04:00) when diesel
vehicle numbers reach the minimum (∼ 10 vehicles h−1). A
clear declining trend in diesel PMvehicle is noted for both
vehicle-dominated periods, with both trends approaching the
levels in the background period.

For the truck-dominated trend, the PMvehicle levels started
to drop after March 2014, which marks the commencement
of the program to phase out pre-Euro IV DCVs implemented
by the government. This program aimed at progressively re-
placing all pre-Euro IV DCVs (∼ 82 000) in HK by the end
of 2019 (Environment Bureau, 2013). The diesel PMvehicle
concentrations in the pre-DCV program period and the start
of 2017 were respectively ∼ 9 and ∼ 5 µg m−3, represent-
ing almost a 50 % reduction. The reduction also appeared
to respond reasonably with the progress of the program
shown in Fig. 6. Prior to this DCV program, another scheme
that replaced ∼ 7400 Euro II DCVs was launched during
July 2010–June 2013. That program, however, did not pro-
duce an obvious impact on diesel PMvehicle possibly because
of the smaller scale of the implementation compared to the
more recent DCV program.

Figure 6. Trends in PMF-resolved diesel PMvehicle concentrations
(left axis) at the MK AQMS during truck-dominated hours (11:00–
13:00; blue line), bus-dominated hours (22:00–0:00; brown line),
and background hours (02:00–04:00; gray line). All times are in
Hong Kong local time. The dashed vertical line represents the com-
mencement of the program to phase out pre-Euro IV diesel commer-
cial vehicles (in March 2014). The green-shaded area represents the
percent completion of the program (right axis).
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The declining trend in diesel PMvehicle during the bus-
dominated period could be attributed to a host of control
measures for franchised buses. In the intervening years, lo-
cal franchised bus companies have been continuously scrap-
ping and replacing old model buses with newer model buses
that comply with higher Euro standards (Environment Bu-
reau, 2013). At the level of transportation management, the
government has been pursuing reductions in bus trips in con-
gested corridors through a rationalization of the bus routes.
Setting up low emission zones in densely populated spots in-
cluding the MK area, where only cleaner-model franchised
buses are allowed, might also contribute to the decrease
in bus-related PMvehicle contribution (Environment Bureau,
2013).

4 Conclusions

We present a holistic analysis on the long-term monitoring
data of hourly PM2.5 OC and EC, vehicle-specific VOCs
(e.g., n-butane and i-pentane), and NOx concentrations in an
urban roadside environment in HK. The dataset covers a 6-
year period from May 2011 to August 2017. Both OC and
EC concentrations were observed to decrease notably over
the entire study period plausibly due to the efficient control
of pollution sources in both regional and local contexts. By
integrating OC, EC and VOC (e.g., n-butane, i-pentane, ben-
zene and xylene) datasets into PMF analysis, we successfully
differentiate between PMvehicle contributions from diesel and
gasoline vehicles, and for the first time report their individ-
ual long-term trends. The overall PMvehicle is also estimated
by the EC-tracer method, which shows good agreement with
that from the PMF analysis, supporting the PMvehicle esti-
mate from the PMF. Our work identifies diesel vehicles as
the dominant vehicle type in contributing PMvehicle (∼ 70 %–
80 %) over the entire study period. Thus, further VE control
efforts for mitigating roadside PMvehicle in HK should fo-
cus on diesel vehicles. The technique developed in this work
could be extrapolated to other roadside environments with
mixed vehicular contributions, considering that both contin-
uous OC and EC analyzers and online VOC instruments are
increasingly incorporated in governments’ air quality moni-
toring programs. We note that the OCvehicle estimated by this
approach serves as a lower limit for the vehicle-contributed
OC since the fitting species considered here are all tracers
for primary emissions. The primary emissions from on-road
vehicles also have great potential to form secondary organic
aerosols (Gentner et al., 2017), and this secondary PM de-
rived from vehicles is not captured in PMvehicle estimates
by our method. Future work should attempt to quantify this
missing fraction of vehicular PM2.5 for more insightful pol-
icy implications.
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