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Abstract. The absence of up-to-date emissions has been a
major impediment to accurately simulating aspects of at-
mospheric chemistry and to precisely quantifying the im-
pact of changes in emissions on air pollution. Hence, a
nonlinear joint analytical inversion (Gauss–Newton method)
of both volatile organic compounds (VOCs) and nitrogen
oxide (NOx) emissions is made by exploiting the Smith-
sonian Astrophysical Observatory (SAO) Ozone Mapping
and Profiler Suite Nadir Mapper (OMPS-NM) formalde-
hyde (HCHO) and the National Aeronautics and Space Ad-
ministration (NASA) Ozone Monitoring Instrument (OMI)
tropospheric nitrogen dioxide (NO2) columns during the
Korea–United States Air Quality (KORUS-AQ) campaign
over East Asia in May–June 2016. Effects of the chemi-
cal feedback of NOx and VOCs on both NO2 and HCHO
are implicitly included by iteratively optimizing the inver-
sion. Emission uncertainties are greatly narrowed (averag-
ing kernels >0.8, which is the mathematical presentation of
the partition of information gained from the satellite obser-
vations with respect to the prior knowledge) over medium-

to high-emitting areas such as cities and dense vegeta-
tion. The prior amount of total NOx emissions is mainly
dictated by values reported in the MIX-Asia 2010 inven-
tory. After the inversion we conclude that there is a de-
cline in emissions (before, after, change) for China (87.94±
44.09 Gg d−1, 68.00± 15.94 Gg d−1, −23 %), North China
Plain (NCP) (27.96± 13.49 Gg d−1, 19.05± 2.50 Gg d−1,
−32 %), Pearl River Delta (PRD) (4.23±1.78 Gg d−1, 2.70±
0.32 Gg d−1, −36 %), Yangtze River Delta (YRD) (9.84±
4.68 Gg d−1, 5.77± 0.51 Gg d−1, −41 %), Taiwan (1.26±
0.57 Gg d−1, 0.97± 0.33 Gg d−1, −23 %), and Malaysia
(2.89± 2.77 Gg d−1, 2.25± 1.34 Gg d−1, −22 %), all of
which have effectively implemented various stringent regu-
lations. In contrast, South Korea (2.71±1.34 Gg d−1, 2.95±
0.58 Gg d−1, +9 %) and Japan (3.53± 1.71 Gg d−1, 3.96±
1.04 Gg d−1, +12 %) are experiencing an increase in NOx
emissions, potentially due to an increased number of diesel
vehicles and new thermal power plants. We revisit the well-
documented positive bias (by a factor of 2 to 3) of MEGAN
v2.1 (Model of Emissions of Gases and Aerosols from Na-
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ture) in terms of biogenic VOC emissions in the tropics.
The inversion, however, suggests a larger growth of VOCs
(mainly anthropogenic) over NCP (25 %) than previously re-
ported (6 %) relative to 2010. The spatial variation in both
the magnitude and sign of NOx and VOC emissions re-
sults in nonlinear responses of ozone production and loss.
Due to a simultaneous decrease and increase in NOx/VOC
over NCP and YRD, we observe a ∼ 53 % reduction in the
ratio of the chemical loss of NOx (LNOx) to the chemi-
cal loss of ROx (RO2+HO2) over the surface transition-
ing toward NOx-sensitive regimes, which in turn reduces
and increases the afternoon chemical loss and production
of ozone through NO2+OH (−0.42 ppbv h−1)/HO2 (and
RO2)+NO (+0.31 ppbv h−1). Conversely, a combined de-
crease in NOx and VOC emissions in Taiwan, Malaysia, and
southern China suppresses the formation of ozone. Simula-
tions using the updated emissions indicate increases in max-
imum daily 8 h average (MDA8) surface ozone over China
(0.62 ppbv), NCP (4.56 ppbv), and YRD (5.25 ppbv), sug-
gesting that emission control strategies on VOCs should be
prioritized to curb ozone production rates in these regions.
Taiwan, Malaysia, and PRD stand out as regions undergoing
lower MDA8 ozone levels resulting from the NOx reductions
occurring predominantly in NOx-sensitive regimes.

1 Introduction

The study of ozone (O3) formation within the troposphere
in East Asia is of global importance. This significant pollu-
tant is not confined to the source, as it spreads hemispher-
ically through the air, affecting background concentrations
as far away as the US. A study by Lin et al. (2017) pro-
vided modeling evidence of enhancements in springtime sur-
face ozone levels (+0.5 ppbv yr−1) in the western US in
1980–2014 solely due to the tripling of Asian anthropogenic
emissions over the period. As more studies have provided
information on the impact of ozone pollution on both hu-
man health and crop yields, Chinese governmental regula-
tory agencies have begun to take action on cutting the amount
of NOx (NO+NO2) emissions since 2011–2012 (Gu et al.,
2013; Reuter et al., 2014; Krotkov et al., 2016; de Foy et al.,
2016; Souri et al., 2017a); however, no effective policy on
volatile organic compound (VOC) emissions had been put
into effect prior to 2016 (Stavrakou et al., 2017; Souri et al.,
2017a; Shen et al., 2019; M. Li et al., 2019), with the ex-
ception of the Pearl River Delta (PRD) (Zhong et al., 2013).
In addition to China, a number of governments including
those of Malaysia and Taiwan have put a great deal of ef-
fort into shifting their energy pattern from consuming fossil
fuels to renewable sources (Trappey el al., 2012; Chua and
Oh, 2011). On the other hand, using satellite observations,
Irie et al. (2016) and Souri et al. (2017a) revealed a system-
atic hiatus in the reduction of NOx over South Korea and

Japan, potentially due to increases in the number of diesel ve-
hicles and new thermal power plants built to compensate for
the collapse of the Fukushima nuclear power plant in 2011.
Therefore, it is interesting to quantify to what extent these
policies have impacted ozone pollution.

Unraveling the origin of ozone is complicated by a number
of factors encompassing the nonlinearity of ozone formation
to its sources, primarily from NOx and VOCs. Therefore, to
be able to quantify the impact of recent emission changes,
we have developed a top-down estimate of relevant emission
inventories using well-characterized satellite observations.
There are a myriad of studies focusing on optimizing bottom-
up anthropogenic and biogenic emissions using satellites ob-
servations, which provide high spatial coverage, in conjunc-
tion with chemical transport models for VOCs (e.g., Palmer
et al., 2003; Shim et al., 2005; Curci et al., 2010; Stavrakou
et al., 2009, 2011), and NOx (e.g., Martin et al., 2003; Chai
et al., 2009; Miyazaki et al., 2017; Souri et al., 2016a, 2017a,
2018). Most inverse modeling studies do not consider both
NO2 and formaldehyde (HCHO) satellite-based observations
to perform a joint inversion. It has been shown that VOC and
NOx emissions can affect the production or loss of each other
(Marais et al., 2012; Wolfe et al. 2016; Valin et al., 2016;
Souri et al., 2020a). Consequently, a joint method that in-
corporates both species while minimizing the uncertainties
in their emissions is better suited to address this problem.
Dealing with this tangled relationship between VOC–NO2
and NOx–HCHO requires an iteratively nonlinear inversion
framework to incrementally consider the relationships de-
rived from a chemical transport model. Here we will pro-
vide an optimal estimate of NOx and VOC emissions during
the KORUS-AQ campaign using the Smithsonian Astrophys-
ical Observatory (SAO) Ozone Mapping and Profiler Suite
Nadir Mapper (OMPS-NM) HCHO and the National Aero-
nautics and Space Administration (NASA) Ozone Monitor-
ing Instrument (OMI) NO2 retrievals, whose accuracy and
precisions are characterized against rich observations col-
lected during the campaign. Having a top-down constraint on
both emissions permits a more precise quantification of the
impact of the recent emission changes on different chemical
pathways pertaining to ozone formation and loss.

2 Measurements, modeling, and method

2.1 Remote sensing measurements

2.1.1 OMPS HCHO

OMPS-NM onboard the Suomi National Polar-orbiting Part-
nership (Suomi NPP) is a UV-backscattered radiation spec-
trometer launched in October 2011 (Flynn et al., 2014). Its
revisit time is the same as other NASA A-Train satellites, in-
cluding Aura at approximately 13:30 local time at the Equa-
tor in ascending mode. OMPS-NM covers 300–380 nm with
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a resolution of 1 nm full-width at half-maximum (FWHM).
The sensor has a 340× 740 pixel charge-coupled device
(CCD) array measuring the UV spectra at a spatial resolu-
tion of 50× 50 km2 at nadir. The HCHO retrieval has been
fully described in González Abad et al. (2015, 2016). Briefly,
OMPS HCHO slant columns are fit using direct radiance fit-
ting (Chance, 1998) in the spectral range 327.7–356.5 nm.
The spectral fit requires a reference spectrum as a function
of the cross-track position as it attempts to determine the
number of molecules with respect to a reference (i.e., a dif-
ferential spectrum fitting). To account for this, we use earth-
shine radiances over a relatively pristine area in the remote
Pacific Ocean within−30 to+30 latitude. An upgrade to this
reference correction is the use of daily HCHO profiles over
monthly mean climatological ones from simulations done by
the GEOS-Chem chemical transport model. On average, this
leads to a 4 % difference in HCHO total columns with re-
spect to using the monthly mean climatological values (Sup-
plement Fig. S1). The scattering weights describing the sen-
sitivity of the light path through a simulated atmosphere are
calculated using VLIDORT (Spurr, 2006). The shape fac-
tors used for calculating air mass factors (AMFs) are de-
rived from a regional chemical transport model (discussed
later) that is used for carrying out the inversion in the present
study. We remove unqualified pixels based on cloud frac-
tion<40 %, solar zenith angle<65◦, and a main quality flag
provided in the data. We oversample the HCHO columns for
the period of May–June 2016 using a Cressman spatial inter-
polator with a 1◦ radius of influence.

2.1.2 OMI tropospheric NO2

We use NASA OMI tropospheric NO2 (version 3.1) level
2 data, whose retrieval is made in the violet–blue (402–
465 nm) due to strong absorption of the molecule in this
wavelength range (Levelt et al., 2018). The sensor has a
nadir spatial resolution of 13× 24 km2, which can extend to
40× 160 km2 at the edge of scan lines. A more comprehen-
sive description of the retrieval and the uncertainty associ-
ated with the data can be found in Krotkov et al. (2017) and
Choi et al. (2020). We remove bad pixels based on cloud
fraction <20 %, solar zenith angle <65◦ (without the row
anomaly), a vertical column density (VCD) quality flag of 0,
and terrain reflectivity <30 %. Similar to the OMPS HCHO,
we recalculate AMFs by using shape factors from the chem-
ical transport model used in this study. We oversample the
OMI granules using the Cressman interpolator with a 0.25◦

radius of influence.

2.2 Model simulation

To be able to simulate the atmospheric composition, and to
perform analytical inverse modeling, we set up a 27 km grid
resolution regional chemical transport model using the Com-
munity Multiscale Air Quality Modeling System (CMAQ)

Figure 1. The CMAQ 27 km domain covering the major propor-
tion of Asia. The background picture is retrieved from the publicly
available NASA Blue Marble (© NASA).

model (v5.2.1; https://doi.org/10.5281/zenodo.1212601)
(Byun and Schere, 2006) that consists of 328× 323 grids
covering China, Japan, South Korea, Taiwan, and some
portions of Russia, India, and South Asia (Fig. 1). The
time period covered by the simulation is from April to
June 2016. We use the month of April for spin-up. The an-
thropogenic emissions are based on the monthly MIX-Asia
2010 inventory (Li et al., 2017) in the CB05 mechanism.
The anthropogenic emissions are mainly grouped into three
different sectors, namely mobile, point, and residential
(area) sources. We apply a diurnal scale to the mobile
sectors used in the National Emission Inventory (NEI) 2011
emission platform to represent the first-order approximation
of traffic patterns. We include biomass burning emissions
from the Fire Inventory from NCAR (FINN) v1.6 inventory
(Wiedinmyer et al., 2011) and consider the plume rise
parametrization used in the GEOS-Chem model (i.e., 60 %
of emissions are distributed uniformly in the planetary
boundary layer – PBL). We use the offline Model of Emis-
sions of Gases and Aerosols from Nature (MEGAN) v2.1
model (Guenther et al., 2012) following the high-resolution
inputs described in Souri et al. (2017). The diurnally varying
lateral chemical conditions are simulated by GEOS-Chem
v10 (Bey et al., 2001) using the full chemistry mechanism
(NOx–Ox–HC–Aer–Br) spun up for a year. With regard
to weather modeling, we use the Weather Research and
Forecasting (WRF) model v3.9.1 (Skamarock et al., 2008)
at the same resolution as that of the CMAQ (∼ 27 km), but
with a wider grid (342×337) and 28 vertical pressure sigma
levels. The lateral boundary conditions and the grid nudging
inputs are from the global Final (FNL) 0.25◦ resolution
model. The major configurations for the WRF-CMAQ model
are summarized in Tables 1 and 2.
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Table 1. CMAQ major configurations.

CMAQ version V5.2.1

Chemical mechanism CB05 with chlorine chemistry

Lightning NOx emission Included using inline code
Photolysis Inline including aerosol impacts
Horizontal advection YAMO (hyamo)
Vertical advection WRF omega formula (vwrf)
Horizontal mixing and diffusion Multiscale (multiscale)
Vertical mixing and diffusion Asymmetric Convective Model

version 2 (acm2)
Aerosol AERO 6 for sea salt and

thermodynamics (aero6)
IC/BC source GEOS-Chem v10

Table 2. WRF physics options.

WRF version V3.9.1

Microphysics WSM-6
Longwave radiation RRTMG
Shortwave radiation RRTMG
Surface layer option Monin–Obukhov
Land surface option Noah LSM
Boundary layer ACM2
Cumulus cloud option Kain–Fritsch
IC/BC FNL 0.25◦

2.3 Inverse modeling

We attempt to improve our high-dimensional imperfect nu-
merical representation of atmospheric compounds using the
well-characterized NO2 and HCHO columns from satellites.
We perform an analytical inversion using the WRF-CMAQ
model to constrain the relevant bottom-up emission estima-
tion (Souri et al., 2016a, 2017a, 2018). The inversion seeks
to solve the following cost function under the assumptions
that (i) both observation and emission error covariances fol-
low Gaussian probability density functions with a zero bias,
(ii) the observation and emission error covariances are inde-
pendent, and (iii) the relationship between observations and
emissions is not grossly nonlinear:

J (x)=
1
2
(y−F (x))T S−1

o (y−F (x))+
1
2
(x− xa)

T

S−1
e (x− xa) , (1)

where x is the inversion estimate (a posteriori) given two
sources of data, a priori (xa) and observation (y). So and
Se are the error covariance matrices of the observation (in-
strument) and emission. F is the forward model (here WRF-
CMAQ) to project the emissions onto columns. The first term
of Eq. (1) attempts to reduce the distance between observa-
tions and the simulated columns. The second term incorpo-
rates some prior understanding and expectation of the true

state of the emissions. The weight of each term is dictated by
its covariance matrix. If Se is large compared to So, the a pos-
teriori will be independent of the prior knowledge and, con-
versely, if So dominates, the final solution will consist mostly
of the a priori.

Following the Gauss–Newton method described in
Rodgers (2000), we iteratively derive (i.e., i is the index of
iteration) the posterior emissions by

xi+1 = xa+G
[
y−F (xi)+Ki (xi − xa)

]
, (2)

where G is the Kalman gain,

G= SeK
T
i

(
KiSeK

T
i +So

)−1
, (3)

and Ki =K (xi) is the Jacobian matrix calculated explicitly
from the model (discussed later). The covariance matrix of
the a posteriori is calculated by

Ŝe =
(

I−GK̂T
)

Se, (4)

where K̂is the Jacobian from the ith iteration. Here we iterate
Eq. (2) three times. The averaging kernels (A) are given by

A= I− ŜeS−1
e . (5)

The inversion system is complicated by the commonly
overlooked fact that observations are biased. For instance,
Souri et al. (2018) found that airborne remote sensing obser-
vations were high relative to surface Pandora measurements.
The overestimation of the VCDs was problematic, since it
could have been propagated in the inversion, inducing a bias
in the top-down estimation. The authors partly mitigated it
by constraining the MODIS albedo, which was assumed to
be responsible for the bias. Attempts to reduce the bias re-
sulting from coarse profiles from a global model in calculat-
ing gas shape profiles were made by recalculating the shape
factors using those from higher-spatial-resolution regional
models in other studies (e.g., Souri et al., 2016a; Laughner
et al., 2018). For this study, we use abundant observations
from the KORUS-AQ campaign and follow the intercompar-
ison platform proposed by Zhu et al. (2016, 2020) using air-
craft observations to be able to mitigate the biases in HCHO
columns. Based on the corrected global model as a bench-
mark (Fig. S2), we scale up all OMPS HCHO columns by
20 %. To mitigate the potential biases in OMI NO2, we ex-
clusively followed the values reported over the KORUS-AQ
period in Choi et al. (2020). We increase the NO2 concentra-
tion uniformly by 33.9 % (see Table A3 in their paper).

We calculate the covariance matrix of observations us-
ing the column uncertainty variable provided in the satellite
datasets and consider them to be random errors associated
with spectrum fitting. We consider 25 % random errors for
the air mass factors. Therefore, these values (as random er-
rors) are significantly lowered by oversampling the data over
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Table 3. The uncertainty assumptions used for estimating the co-
variance matrix of the a priori.

Anthropogenic Biogenic Biomass burning

NOx 50 % 200 % 100 %
VOC 150 % 200 % 300 %

the course of 2 months. In addition to that, we consider a
fixed error for all pixels due to variability that exists in the ap-
plied bias correction (3.61× 1015 molec. cm−2 for NO2 and
4.62× 1015 molec. cm−2 for HCHO). This error is based on
the root mean square error (RMSE) obtained from the men-
tioned studies used for removing biases. Despite the fact that
we do not account for non-diagonal elements of the covari-
ance matrices, the incremental updates of G adjusted by both
NO2 and HCHO observations should better translate the co-
variance matrices into the emission space.

To increase the degree of freedom for the optimiza-
tion, we combine all sector emissions including anthro-
pogenic, biomass burning, and biogenic emissions for NOx
and VOCs. Therefore, we use the following formula to esti-
mate the variance of the a priori:

σ 2
total = f

2
anthro× σ

2
anthro+ f

2
BB× σ

2
BB+ f

2
bio× σ

2
bio, (6)

where f denotes the fraction of the emission sector with re-
spect to the total emissions, and σ is the standard deviation
of each sector category, which is calculated from the average
of each sector to a relative error listed in Table 3.

For the same purpose (enhancing the amount of infor-
mation gained from satellite observations) and to increase
computational speed, we reduce the dimension of the state
vectors (emissions) by aggregating them. However, group-
ing emissions into certain zones could also introduce an-
other type of uncertainty, known as the aggregation error.
We choose optimally aggregated zones by running the in-
version multiple times, each with a certain selection of state
vectors (Turner and Jacob, 2015). As in our previous study
in Souri et al. (2018), we use the Gaussian model mixture
(GMM) method to cluster emissions into certain zones that
share roughly similar features and investigate which combi-
nations will lead to a minimum of the sum of aggregation and
smoothing errors.

In order to create the K matrix, one must estimate the im-
pact of changes in emissions for each of the aggregated zones
on the concentrations of a target compound, which is cal-
culated using the CMAQ direct decoupled method (DDM)
(Dunker et al., 1989; Cohan et al., 2005). For instance, the
first row and column of K denoting the response of the first
grid cell to a zonal emission can be obtained by

K(1,1) =
S

NO2
(1,1)

ENOtotal, zone
x

, (7)

where SNO2
(1,1) is the DDM output in molecules per square cen-

timeter (molec. cm−2) for the first row and column. It ex-
plains the resultant change in the NO2 column by changing
one unit of total NOx emissions. The same concept will be
applied to HCHO and VOC emissions. We do not consider
the transport between zones due to computational burdens;
therefore, we assume that the HCHO and NO2 columns are
mostly confined to their sources in the 2-month averages. The
advantage of using CMAQ DDM to estimate the sensitivity
lies in the fact that it calculates the local gradient, which bet-
ter represents the nonlinear relationship between the emis-
sions and the columns (Souri et al., 2017a, 2018); this, in
turn, reduces the number of iterations.

3 Validation of the model in terms of meteorology

It is essential to first evaluate some key meteorological
variables because large errors in the weather can compli-
cate the inversion (e.g., Liu et al. 2017). In order to val-
idate the performance of the WRF model in terms of a
number of meteorological variables, including surface tem-
perature, relative humidity, and winds, we use more than
1100 surface measurements from integrated surface database
(ISD) stations (https://www.ncdc.noaa.gov/isd, last access:
12 September 2019) over the domain in May–June 2016.
Table 4 lists the comparison of the model and the observa-
tions for the mentioned variables. Our model demonstrates
a very low bias (0.6 ◦C) with regard to surface temperature.
We find a reasonable correspondence in terms of relative hu-
midity, indicating a fair water vapor budget in the model. The
largest discrepancy between the model and observations with
respect to temperature and humidity occurs in grid cells that
are in the proximity of the boundary conditions (not shown).
Concerning the wind components, the deviation of the model
from the observations is smaller than results obtained in a rel-
atively flat area like Houston in Souri et al. (2016a, b).

4 Comparison to satellites and providing top-down
emissions

Prior to updating the emissions, we find it necessary to shed
light on the spatial distribution of tropospheric NO2 and
HCHO columns from both observations and the model, as
well as their potential differences relative to their key pre-
cursors’ emissions. Subsequently, we report the results from
the inverse modeling and the uncertainty associated with the
top-down estimation; moreover, we wish to assess how much
information is gained from utilizing satellite observations via
the calculation of averaging kernels. Finally, observations are
used to verify, to some extent, the accuracy of our top-down
emission estimations.
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Table 4. Statistics for surface temperature, relative humidity, and wind. Corr – correlation; RMSE – root mean square error; MAE – mean
absolute error; MB – mean bias; O – observation; M – model; O_M – observed mean; M_M – model mean; SD – standard deviation. Units
for RMSE, MAE, MB/O_M, M_M, O_SD, and M_SD: degrees Celsius for temperature, percentage for relative humidity, and meters per
second for wind.

Variable Corr RMSE MAE MB O_M M_M O_SD M_SD

Temperature 0.74 7.0 2.8 0.6 22.2 22.8 9.5 8.7
Relative humidity 0.76 12.1 9.5 −1.1 67.8 66.6 14.3 18.6
U Wind 0.58 1.3 0.7 0.1 0.1 0.2 1.2 1.4
V Wind 0.49 1.6 0.7 0.3 0.2 0.5 1.6 1.2

4.1 NOx

The first row in Fig. 2 illustrates tropospheric NO2 columns
from the regional model, OMI (using adjusted AMF and
bias-corrected), and the natural logarithmic ratio of both
quantities in May–June 2016 at ∼ 13:30 LST over Asia. The
second row depicts daily mean values of dominant sources
of NOx , namely as biogenic, anthropogenic, and biomass
burning emissions (that are subject to change after the inver-
sion). A high degree of correlation between anthropogenic
NOx emissions and NO2 columns implies the predominant
production of NO2 from the anthropogenic sources (Logan,
1983). We find a reasonable two-dimensional Pearson cor-
relation (r = 0.73) between the modeled and the observed
columns. Generally, the WRF-CMAQ largely underesti-
mated (56 %, −7.72× 1014 molec. cm−2) tropospheric NO2
columns with respect to those of OMI over the entire do-
main. Intuitively segregating the domain into high-emission
areas (NOx >10 t d−1) and low ones (NOx <10 t d−1) al-
lows for a better understanding of the discrepancy between
the model and the observations. In the high NOx areas, the
model tends to overestimate tropospheric NO2 columns by
73 % (3.71× 1015 molec. cm−2), whereas for the low NOx
regions, the model shows a substantial underestimation by
68 % (−8.97× 1014 molec. cm−2). Such a conflicting bias is
confirmed by the contour map of the natural logarithm ra-
tio of OMI to the model in Fig. 2. The large overestima-
tion of the model in terms of NO2 over polluted areas is
explained by stringent regulations enacted in various coun-
tries in Asia; for instance, Chinese regulatory agencies have
recently taken aggressive actions to cut anthropogenic NOx
emissions by implementing selective catalytic reductions in
power plants, closing a number of coal power plants, and im-
plementing policies on transportation (Zhang et al., 2012;
Liu et al., 2016; Reuter et al., 2014; de Foy et al., 2016;
Krotkov et al., 2016; Souri et al., 2017a). The highest pos-
itive bias in the model is observed over Shanxi Province in
China, home to coal production, underscoring the effective-
ness of the emission standards at controlling NOx emissions.
Likewise, we observe a positive bias in the model over ma-
jor cities in Japan and South Korea, but the magnitude of the
reduction over these cities is substantially smaller than what
we observe in China.

The underestimation of the model in the low NOx re-
gions is related to a number of factors, such as the follow-
ing: (i) the widely reported underestimation of soil (biogenic)
NOx emissions due to a lack of precise knowledge of fer-
tilizer use, soil biota, and/or canopy interactions (Jaeglé, et
al., 2005; Hudman et al., 2010; Souri et al., 2016a); (ii) the
underestimation of the upper-troposphere NO2 due to non-
surface emissions (aviation, lightning) or errors in the ver-
tical mixing or moist convection (e.g., Souri et al., 2018);
and (iii) a possible overprediction of the lifetime of organic
nitrates diminishing background NO2 levels (Canty et al.,
2015). Addressing the second issue requires a very high-
resolution model with explicit resolving microphysics and
large eddy simulations, and the last problem requires more
experimental studies to improve organic nitrate chemistry
(Romer Present et al., 2020). In this study, we attempt to
mitigate the discrepancy between the model and the satel-
lite observations solely by adjusting the relevant emissions.
Accordingly, future improvements in physical–chemical pro-
cesses of models will inevitably offset top-down emission es-
timates.

The first row in Fig. 3 shows the a priori, the a posteri-
ori, and their ratios in terms of the total NOx emissions in
May–June 2016. We observe that the ratios are highly cor-
related with those of OMI /CMAQ shown in Fig. 2, sug-
gesting that the inversion attempts to reduce the distance
between the model and the observations. Major reductions
occur over China. The enhancements in NOx emissions are
commonly found in rural areas, especially over grasslands lo-
cated in western–central China and Mongolia. The changes
in NOx emissions over South Korea and Japan are posi-
tive (Irie et al., 2016; Souri et al., 2017a), mainly due to
rapid increases in the number of diesel cars in South Ko-
rea and thermal power plants built as a substitution for the
Fukushima nuclear plant in Japan. This is especially the case
for Japan for which we observe a larger enhancement in to-
tal NOx emissions (12 %). The second row in Fig. 3 depicts
the relative errors in the a priori, the a posteriori, and averag-
ing kernels (AKs). Relative errors in the a priori are mostly
confined to values close to 50 % in polluted areas. They in-
crease further, up to 100 %, in areas experiencing relatively
large contributions from biomass burning or biogenic (soil)
emissions. Encouragingly, OMI tropospheric NO2 columns
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Figure 2. (a) Tropospheric NO2 columns from the WRF-CMAQ model, OMI (using adjusted AMFs based on the shape factors derived from
the model and bias-corrected following Choi et al., 2020), and the natural logarithmic ratio of OMI /CMAQ during May–June 2016 at ∼
13:30 LST. (b) The major sources of NOx emissions in the region including biogenic (soil) emissions simulated by MEGAN, anthropogenic
emissions estimated by MIX-Asia (2010), and biomass burning emissions made by FINN. The emissions are the daily mean values based on
the emissions in May–June.

Figure 3. (a) Total NOx emissions (i.e., the a priori) constrained by the satellite observations (i.e., the a posteriori) in May–June 2016 and
the natural logarithmic ratio of the a posteriori to the a priori. (b) The errors in the a priori based on Table 3, the errors in the top-down
estimation, and the averaging kernels (AKs) obtained from the estimation.

in conjunction with the solid mathematical inversion method
(Rodgers, 2000) greatly reduce the uncertainties associated
with the emissions in polluted areas; we observe AKs close
to 1 over major cities or industrial areas. We see the low-
est values in AKs over rural areas due to weaker signal-to-
noise ratios from the sensor. Therefore, it is desirable but
very difficult to improve the model using the sensor with re-
spect to NOx chemistry and emissions in remote areas, evi-

dent in the low values of AKs. Table 5 lists the magnitude of
the total NOx emissions in several regions (refer to Fig. 1)
before and after carrying out the inversion. If we assume
that the dominant source of NOx emissions is anthropogenic,
the most successful countries at cutting emissions (before,
after) are China (87.94± 44.09 and 68.00± 15.94 Gg d−1),
Taiwan (1.26± 0.57 and 0.97± 0.33 Gg d−1), and Malaysia
(2.89± 2.77 and 2.25± 1.34 Gg d−1). All three countries
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have successfully implemented regulations to reduce anthro-
pogenic emissions since 2010–2011 (Zhang et al., 2012;
Trappey el al., 2012; Chua and Oh, 2011). The uncertainty
associated with the top-down estimate improves consider-
ably. The largest reduction in the uncertainty of the emis-
sions is observed over China, a response to a strong signal
from OMI.

An interesting observation lies in the discrepancy between
the natural logarithm ratio of OMI /CMAQ (Fig. 2) and
that of the a posteriori to the a priori over the North China
Plain (NCP), suggesting that using a bulk ratio (Martin et
al., 2003) cannot fully account for possible chemical feed-
back. The natural logarithm ratio of OMI /CMAQ is consis-
tently lower than the changes in the emission. Two reasons
contribute to this effect: (i) as NOx emissions decrease in
NOx-saturated areas (i.e., the dominant sink of radicals is
through NO2+OH), OH levels essentially increase, result-
ing in a shorter lifetime of NO2; therefore, to reduce NO2
concentrations, a substantial reduction in NOx (suggested by
OMI /CMAQ) is unnecessary, coinciding with results from
the inverse modeling. Also, (ii) the CMAQ DDM (Fig. S3)
suggests that NO2 columns decrease due to increasing VOC
emissions over the region; accordingly, the cross-relationship
between NO2 concentrations and VOC emissions partly adds
to the discrepancy. It is because of the chemical feedback that
recent studies have attempted to enhance the capability of
inverse modeling by iteratively adjusting relevant emissions
(e.g., Cooper et al., 2017; C. Li et al., 2019). Likewise, our
iterative nonlinear inversion shows a superior performance
over traditional bulk ratio methods, in part because it incre-
mentally considers the chemical feedback.

To assess the resulting changes in the tropospheric NO2
columns after the inversion, and to validate our results, we
compare the simulated values using the a priori and the a pos-
teriori with OMI in Fig. 4. We observe a 64 % reduction in
the tropospheric NO2 columns on average over NCP despite
only a 32 % reduction in the total NOx emissions over the re-
gion, a result of the chemical feedback. The two-dimensional
Pearson correlation between the simulation using the a pos-
teriori and OMI increases from 73 % (using the a priori) to
83 %. Both datasets now are in a better agreement as far as
the magnitude goes. However, we do not see a significant
change in the background values in the new simulation com-
pared to those of OMI due to less certain column observa-
tions.

To further validate the results, we compare the NO2 data
from the NCAR four-channel chemiluminescence instrument
onboard the DC-8 aircraft during the campaign (Fig. S4).
These data are not interfered with by the NOz family. The
aircraft collected the data over the Korean Peninsula on
around 23 d in May–June 2016, covering various altitudes
and hours (https://www-air.larc.nasa.gov/cgi-bin/ArcView/
korusaq, last access: 8 December 2019). We observe an un-
derestimation of NO2 at the near-surface levels (<900 hPa)
by 19 % (DC-8= 4.50 ppbv, CMAQ= 3.67 ppbv). The up-

dated emissions increase the near-surface levels over the
Korean Peninsula, which in turn reduces the bias to 11 %
(CMAQ= 4.02 ppbv).

4.2 VOC

A comparison between HCHO columns from the model and
OMPS along with the major sources of VOCs in May–
June 2016 is depicted in Fig. 5. Anthropogenic VOCs are
emitted from various sources such as solvent use and the
mobile and chemical industries (Liu et al., 2008a, b). A rea-
sonable correlation (r = 0.78) between the model and OMPS
suggests good confidence in the location of emissions. How-
ever, the magnitude of HCHO columns between the two
datasets strongly disagrees, especially over the tropics where
biogenic emissions are large. A myriad of studies have re-
ported a largely positive bias (by a factor of 2–3) associ-
ated with isoprene emissions estimated by MEGAN using
satellite measurements over the tropics (e.g., Millet et al.,
2008; Stavrakou et al., 2009; Marais et al., 2012; Bauwens
et al., 2016). To compound, Stavrakou et al. (2011) found a
large overestimation in methanol emissions from the same
model that can further preclude the accurate estimation of
the yield of HCHO. As a response to the overestimation of
the biogenic VOCs by MEGAN, we observe a largely posi-
tive bias in the simulated HCHO columns ranging from 50 %
over the south of China to ∼ 400 % over Malaysia and In-
donesia. As we move away from the hotspot of the biogenic
emissions in lower latitudes, the positive bias of the model
declines, ultimately turning into a negative bias at higher lat-
itudes. OMPS HCHO columns suggest that the concentra-
tion of HCHO over NCP and Yangtze River Delta (YRD)
is comparable to those over the tropics, suggesting that the
anthropogenic emissions over NCP are the dominant source
of HCHO (Souri et al., 2017a; Jin and Holloway, 2015). We
do not see a significant deviation in the model from the ob-
servations over this region, indicating that no noticeable ef-
forts to control VOC emissions in NCP and YRD have been
made, which is very likely due to the fact that the recent reg-
ulations over China have overlooked cutting emissions from
several industrial sectors (Liu et al., 2016) prior to 2016 (M.
Li et al., 2019). For instance, Stavrakou et al. (2017) reported
∼ 6 % increases in anthropogenic VOC emissions over China
from 2010 to 2014. The underestimation of the model with
respect to OMPS lines up with results reported by Souri et
al. (2017a) and Shen et al. (2019). We observe both under-
estimated and overestimated values in the simulated HCHO
columns over areas in South Korea and Japan. The underes-
timation of HCHO in the model over regions with low VOCs
(such as Mongolia and the Pacific Ocean) can be due to ei-
ther missing sources or the incapability of the WRF-CMAQ
to account for moist convective transport.

Figure 6 illustrates the total VOC emissions before and
after the inversion along with their errors. Immediately ap-
parent is the large reduction of VOC emissions in the tropics
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Table 5. NOx emissions before and after carrying out the inversion using OMI /OMPS for different countries in May–June 2016.

Countries The a priori The a posteriori Changes in Changes in
(Gg d−1) (Gg d−1) magnitudes errors

China 87.94± 44.09a 68.00± 15.94b
−23 % −63 %

North China Plain 27.96± 13.49 19.05± 2.50 −32 % −81 %
Pearl River Delta 4.23± 1.78 2.70± 0.32 −36 % −84 %
Yangtze River Delta 9.84± 4.68 5.77± 0.51 −41 % −89 %
Thailand 4.38± 3.24 4.20± 2.28 −4 % −29 %
Japan 3.53± 1.71 3.96± 1.04 +12 % −39 %
Malaysia 2.89± 2.77 2.25± 1.34 −22 % −49 %
Vietnam 2.87± 2.04 2.79± 1.57 −3 % −23 %
South Korea 2.71± 1.34 2.95± 0.58 +9 % −56 %
Bangladesh 1.72± 1.06 2.10± 0.87 +22 % −18 %
Philippines 1.30± 1.10 1.54± 0.98 +18 % −11 %
Taiwan 1.26± 0.57 0.97± 0.33 −23 % −42 %
Cambodia 0.54± 0.50 0.57± 0.45 +5 % −11 %
Mongolia 0.19± 0.13 0.28± 0.12 +44 % −8 %

a The errors in the a priori are estimated from Eq. (6). b The errors in the a posteriori are calculated by Eq. (4).

Figure 4. (a–c) Tropospheric NO2 columns from OMI, WRF-CMAQ simulated with the prior emissions, and the same model but with the
top-down emissions constrained by OMI /OMPS in May–June 2016.

and subtropics due to the overestimation of isoprene from
MEGAN v2.1. In contrast, enhancements of the emissions
are evident at higher latitudes. We observe that the dom-
inantly anthropogenic VOC emissions over NCP increase
(∼ 25 %) after the adjustment. Despite the presence of veg-
etation over Japan and South Korea, we do not see that the
emissions are severely overestimated. Hence, the overestima-
tion of isoprene emissions is more pronounced in the tropics,
possibly because of an overestimation in the emission factors
used for specific plants. Nevertheless, a nontrivial oversight
in models could be an insufficient representation of both HOx
chemistry and dry deposition in forest canopies (Millet et al.,
2008); as a result, the net amount of HCHO in the atmo-
sphere over forest areas is higher than it should be if removal
through either a chemical loss or faster dry deposition was
considered.

Owing to the fact that we assume anthropogenic VOC
emissions to be less uncertain relative to other sectors, the er-
rors in the a priori are smaller in populated areas. We observe
that OMPS HCHO columns are able to significantly reduce

the uncertainty associated with the total VOC emissions over
areas showing a strong HCHO signal (>1016 molec. cm−2).
Over clean areas, it is the other way around; we see less con-
fidence in our top-down estimate (AK<0.4) in areas such as
Tibet and Mongolia.

We then compare the simulated HCHO column using two
different emission inventories with those of OMPS in Fig. 7.
We observe a substantial improvement in both the spatial
structure and the magnitude of simulated HCHO columns
using the a posteriori with respect to OMPS. The two-
dimensional Pearson correlation increases from 0.78 to 0.91
after applying the adjustments to the emissions. In response
to the increases in the total VOC emissions over the NCP,
we observe ∼ 11 % enhancements in the simulated HCHO
total columns. The updated emissions lead to a reduction in
HCHO total columns as large as 70 % in the tropics.

Validation of the model in terms of VOCs is not a straight-
forward task because the chemical mechanism used for our
model has lumped several VOC species such as terminal or
internal olefin or paraffin, only a handful of which were mea-
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Figure 5. (a) HCHO total columns from the WRF-CMAQ model, OMPS (using adjusted AMFs based on the shape factors derived from the
model and bias-corrected following the method proposed in Zhu et al., 2020), and the natural logarithmic ratio of OMPS /CMAQ during
May–June 2016 at ∼ 13:30 LST. (b) The major sources of VOC emissions in the area including biogenic emissions simulated by MEGAN,
anthropogenic emissions estimated by MIX-Asia (2010), and biomass burning emissions made by FINN. The emissions are the daily mean
values based on the emissions in May–June. The VOC emissions only add up those compounds that are included in the CB05 mechanism.

Figure 6. (a) Total VOC emissions (i.e., the a priori) constrained by the satellite observations (i.e., the a posteriori) in May–June 2016 and
the natural logarithmic ratio of the a posteriori to the a priori. (b) The errors in the a priori based on Table 3, the errors in the top-down
estimation, and the averaging kernels (AKs) obtained from the estimation.

sured during the campaign. Also, the MIX-Asia inventory
estimates the anthropogenic emissions for a selected number
of VOCs in the CB05 mechanism. Here, we focus only on
six compounds including isoprene, HCHO, ethene, ethane,
acetaldehyde, and methanol, whose emissions are adjusted
(with the same factor) based on satellite measurements. The
comparison of the simulated values with the DC-8 measure-

ments showed a noticeable mitigation in the discrepancy be-
tween two datasets at lower boundaries (<900 hPa) in terms
of isoprene (Fig. S5), ethane (Fig. S6), ethene (Fig. S7), and
acetaldehyde (Fig. S8). Surprisingly, we observe a large un-
derestimation of methanol over the Korean Peninsula by a
factor of 10 (Fig. S9). The same tendency was observed in
other regions in Wells et al. (2014) (see Fig. 8 in the paper).
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Figure 7. (a–c) HCHO total columns from OMPS, the WRF-CMAQ simulated with the prior emissions, and the same model but with the
top-down emissions constrained by the satellites in May–June 2016.

Figure 8. (a–c) Ratio of LNOx/LROx simulated by the posterior emissions, the prior, and their relative differences at 12:00–18:00 CST,
averaged over May–June 2016 over the surface.

Our inversion obviously fails at mitigating the bias as there
is not much direct constraint from the satellite observations
on this compound. Wells et al. (2014) and Hu et al. (2011)
demonstrated that methanol can be a secondary source of
HCHO up to 10 %–20 % in midlatitudes in warm seasons.
We tend to underestimate HCHO concentrations (by 15 %)
in the lower atmosphere (<900 hPa) after using the a poste-
riori over the Korean Peninsula (Fig. S10).

5 Implications for surface ozone

The results we have generated can be further exploited to
elucidate changes in the ozone production rates, P(O3), due
to having the constrained NOx and VOC emissions. We cal-
culate P(O3) by subtracting the ozone loss driven by HOx
(HO+HO2), reaction with several VOCs (i.e., alkenes and
isoprene), the formation of HNO3, and O3 photolysis fol-
lowed by the reaction of O(1D) with water vapor from the
ozone formation via the removal of NO through HO2 or RO2:

P(O3)= kHO2+NO [HO2] [NO]+
∑

kRO2,i+NO
[
RO2,i

]
[NO]− kOH+NO2+M [OH][NO2] [M]− kHO2+O3 [HO2]

[O3]− kOH+O3 [OH][O3]− kO(1D)+H2O

[
O
(

1D
)]

[H2O]− loss(O3+VOCs) . (8)

Since P(O3) is a nonlinear function of NOx and VOC
emissions, it is advantageous to look at the ratio of the chem-

ical loss of NOx to that of ROx (RO2+HO2), a robust indica-
tor pinpointing underlying drivers for the ROx cycle. LROx
is defined through the sum of primarily radical–radical reac-
tions:

LROx = kHO2+HO2 [HO2]2
+

∑
kRO2,i+HO2

[
RO2,i

]
[HO2]+

∑
kRO2,i+RO2,i

[
RO2,i

]2
. (9)

LNOx mainly occurs via the NO2+OH reaction:

LNOx = kOH+NO2+M [OH][NO2] [M] . (10)

Typically, a value of LNOx/LROx ∼ 2.7 defines the
transition line between VOC-sensitive and NOx-sensitive
regimes (Schroeder et al., 2017; Souri et al., 2020a).

Figure 8 depicts a contour map of LNOx/ROx ratios over
the surface before and after the inversion. As expected, the
larger ratios are confined within major cities or industrial ar-
eas due to abundant NOx emissions. The hotspot of VOC-
sensitive regimes is located in NCP and YRD. Also of in-
terest in Fig. 8 is that advection renders a major fraction of
the Yellow Sea (the sea connecting China to Korea) VOC-
sensitive. Using the a posteriori leads to precipitous changes
in the chemical regimes. As a result of a large reduction in
the isoprene emissions in both the tropics and subtropics,
we observe a shift toward VOC-limited, though the values
of LNOx/ROx are still too far from the transition line (i.e.,
� 2.7). The substantial reduction in NOx emissions and an
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increase in VOC emissions over NCP and YRD go hand in
hand for transitioning towards an NOx-sensitive regime. The
ratios over South Korea and Japan are found to be variable
and somehow in sync with the changes in NOx emissions.

The resultant changes in the LNOx/LROx ratios shed
some light on ozone sensitivity with respect to its major pre-
cursors, but P(O3) is also dependent on the absolute values
of emissions, the degree of reactivity of VOCs, and the abun-
dance of radicals. Here we use the integrated reaction rates
(IRRs) to determine the most influential reactions pertain-
ing to ozone loss and production at the surface. We focus on
12:00 to 18:00 China standard time (CST). Figure 9 shows
the differences in the major pathways for the loss and for-
mation of ozone at the surface within the time window. The
differences are computed based on the subtraction of the sim-
ulation with the a posteriori from that with the a priori. In
Fig. 9 we see a strong degree of correlation between changes
in the magnitude of P(O3) through the HO2+NO reaction
with those of NOx emissions (Fig. 3), whereas changes in
the magnitude of P(O3) via the RO2+NO reaction are pri-
marily on par with those of VOC emissions (Fig. 6). We ob-
serve P(O3) increases through HO2+NO and RO2+NO re-
actions in Japan, South Korea, Myanmar, and the Philippines
because of increases in NOx emissions in NOx-sensitive re-
gions. The simultaneous decrease in NOx and VOC in PRD
and Taiwan causes the production of ozone via the same
pathways to reduce it.

Normally, in VOC-rich environments, a reduction in VOC
emissions boosts OH concentrations (Fig. S11). Conse-
quently, we observe an enhancement of NO2+OH reaction
in the tropics and subtopics. A substantial reduction in the
chemical loss of ozone through NO2+OH over NCP and
YRD arises from a considerable decrease in NOx emissions
and an increase in OH (due to chemical feedback of NOx).
In response to an increase in HOx concentrations over NCP
(Figs. S11–S12), we observe an enhancement of ozone loss
through O3+HOx . The ozone photolysis (O1D+H2O) is
majorly driven by photolysis and water vapor mixing ratios,
both of which are roughly constant in both simulations; ac-
cordingly, the difference map of O1D+H2O is mainly re-
flecting changes in ozone concentrations (shown later). In-
terestingly, we observe a large reduction in the loss of ozone
through reaction with VOCs at lower latitudes. This is es-
sentially because of the reduction in ISOP+O3, a VOC that
prevails in those latitudes. Despite a much slower reaction
rate for ISOP+O3 compared to ISOP+OH and ISOP+hv
(Karl et al. 2004), this specific chemical pathway can be im-
portant as a way to oxidize isoprene and form HOx in forests
(Paulson and Orlando, 1996).

Figure 10 sums the differences of all mentioned chemical
pathways involved in the formation and loss of surface ozone
at 12:00–16:00 CST. Because of a complex nonlinear rela-
tionship between P(O3) and its precursors, we observe large
variability in both the sign and the amplitude of P(O3). On
average, changes in O3 production dominate over changes

in O3 sinks except in Malaysia, which underwent a signifi-
cant reduction in isoprene emissions, thus slowing down the
ISOP+O3 reaction. In general, the differences in P(O3) fol-
low the changes in the NOx emissions depending on which
chemical regimes prevail.

Much of the above analysis is based on ozone produc-
tion rates; however, various parameters encompassing dry
deposition, vertical diffusion, and advection can also affect
ozone concentrations. Therefore, we further compute the dif-
ference between the simulated maximum daily 8 h average
(MDA8) surface ozone levels before and after the inversion
depicted in Fig. 11. For comparison, we also over-plot the
Chinese air quality monitoring network observations (https:
//quotsoft.net/air/, last access: 2 June 2020) to have a general
grasp of the performance of the model before and after ad-
justing the emissions. We see a striking correlation between
P(O3) (right panel in Fig. 10) and MDA8 surface ozone, in-
dicating that the selected chemical pathways in this study can
explain ozone changes. Nonetheless, the transport obviously
plays a vital role in the spatial variability associated with the
differences of surface ozone (e.g., Souri et al., 2016b). Fig-
ure 11 suggests a significant enhancement of ozone over NCP
(∼ 4.56 ppbv, +5.6 %) and YRD (5.2 ppbv, +6.8 %) due to
simultaneous decreases and increases in NOx/VOCs, which
is in agreement with K. Li et al. (2019). On the other hand, re-
ductions in NOx mitigate ozone pollution in PRD (−5.4 %),
Malaysia (−5.6 %), and Taiwan (−11.6 %). Table 6 lists the
simulated MDA8 surface ozone levels for several regions be-
fore and after updating the emissions. Increases in MDA8
ozone over NCP and YRD overshadow decreases in south-
ern China, resulting in a 1.1 % enhancement of ozone over
China. This provides strong evidence that regulations on cut-
ting VOC emissions should not be ignored. The largest re-
duction and increase in MDA8 ozone are found over Tai-
wan and YRD, respectively. Comparisons with surface ob-
servations show that the model generally captured the ozone
spatial distributions; however, it tends to largely overpredict
MDA8 surface ozone (∼ 7 ppbv). This tendency has been
well-documented in other studies (e.g., Travis et al., 2016;
Souri et al., 2017b; Lu et al., 2019). The updated simula-
tion with the top-down emission partly reduces this overes-
timation in southern regions of China, while it further ex-
acerbates the overestimation in the northern parts. No doubt
much of this stems from the fact that the preexisting biases
associated with the model (beyond emissions such as verti-
cal mixing and cloud optical thickness) mask any potential
improvement expected from the constrained emissions. Be-
cause of this, in addition to adjusting relevant emissions, a
direct assimilation of ozone concentrations should comple-
mentarily be exploited (e.g., Miyazaki et al., 2019) to bolster
the capability of the model to simulate ozone.
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Figure 9. Differences between the simulations with the updated emissions and the default ones of six major pathways of ozone production
and loss over the surface. The time period is May–June 2016, 12:00–18:00 CST.

Figure 10. Changes in the major chemical pathways of ozone production and loss over the surface, as well as the net ozone production P(O3)
after updating the emissions. The time period is May–June 2016, 12:00-18:00 CST.

6 Summary

In this paper we have focused on providing a top-down con-
straint on both volatile organic compound (VOC) and nitro-
gen oxide (NOx) emissions using a combination of the error-
characterized Smithsonian Astrophysical Observatory (SAO)
Ozone Mapping and Profile Suite Nadir Mapper (OMPS-
NM) formaldehyde (HCHO) and National Aeronautics and
Space Administration (NASA) Ozone Monitoring Instru-
ment (OMI) nitrogen dioxide (NO2) retrievals during the Ko-
rean and United States (KORUS) campaign over East Asia in
May–June 2016. Here, we include biogenic, biomass burn-
ing, and anthropogenic emissions from MEGAN, FINN, and
the MIX-Asia 2010 inventory, respectively. A key point is
that by considering the satellite observations together, we not
only implicitly take the chemical feedback between HCHO–
NOx and NO2–VOC into account by iteratively optimizing
analytical nonlinear inversion, but we also quantify the im-
pact of recent changes in emissions (since 2010) on surface
ozone pollution.

Concerning total NOx emissions, the inversion estimate
suggests a substantial reduction over China (−23 %), North
China Plain (NCP) (−32 %), Pearl River Delta (PRD)
(−36 %), Yangtze River Delta (YRD) (−41 %), Taiwan
(−23 %), and Malaysia (−22 %) with respect to the values
reported in the prior emissions mostly dictated by the MIX-
Asia 2010 inventory. In essence these values reflect recent
actions to lower emissions in those countries (Zhang et al.,
2012; Trappey el al., 2012; Chua and Oh, 2011). The analyt-
ical inversion also paves the way for estimating the averaging
kernels (AKs), thereby indicating the amount of information
acquired from satellites for the top-down estimation. We ob-
serve AKs>0.8 over major polluted areas, indicating that
OMI is able to improve the emission estimates over medium-
to high-emitting regions. Conversely, AKs are found to be
small over pristine areas, suggesting that little information
can be gained from the satellite over rural areas given re-
trieval errors. In line with the studies of Irie et al. (2016) and
Souri et al. (2017a), we observe a growth in the total NOx
emissions in Japan (+12 %) and South Korea (+9 %), which
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Figure 11. Simulated MDA8 surface ozone using the updated emissions constrained by OMI and OMPS observations (a), the default ones (b),
and their difference (c) in May–June 2016. We over-plot surface MDA8 ozone values (circles) from the Chinese air quality monitoring
network (https://quotsoft.net/air/, last access: 2 June 2020).

Table 6. MDA8 surface ozone levels before and after carrying out the inversion for different regions in May–June 2016.

Regions The a priori The a posteriori Changes in
(ppbv) (ppbv) magnitudes

China 56.10± 16.34 56.72± 16.71 +1.1 %
North China Plain 81.15± 9.57 85.71± 10.39 +5.6 %
Pearl River Delta 65.94± 9.39 62.37± 8.93 −5.4 %
Yangtze River Delta 76.79± 5.90 82.04± 5.21 +6.8 %
Thailand 50.86± 8.84 48.85± 7.94 −3.9 %
Japan 64.29± 7.98 65.52± 7.78 +1.9 %
Malaysia 46.87± 21.87 44.22± 12.90 −5.6 %
Vietnam 49.90± 9.20 48.88± 8.65 −2.0 %
South Korea 84.23± 3.57 84.90± 3.69 +0.8 %
Bangladesh 65.79± 12.08 65.21± 12.20 −0.9 %
Philippines 27.92± 9.11 28.69± 7.92 +2.8 %
Taiwan 61.55± 10.88 54.38± 8.00 −11.6 %
Cambodia 39.87± 3.62 40.20± 3.46 +0.8 %
Mongolia 40.11± 2.52 40.16± 2.40 +0.1 %

are partially explained by the new construction of thermal
power plants in Japan and an upward trend in the number of
diesel vehicles in South Korea.

MEGAN v2.1 estimates too much isoprene emission in the
tropics and subtropics, a picture that emerges from the lati-
tudinal dependence of the posterior VOC emissions on the
prior ones. It is readily apparent from the top-down con-
strained VOC emissions that the prevailing anthropogenic
VOC emissions in NCP are underestimated by 25 %, a direc-
tion that is in agreement with studies by Souri et al. (2017a)
and Shen et al. (2019). We find that OMPS HCHO columns
can greatly reduce the uncertainty associated with the total
VOC emissions (AKs>0.8) over regions having a moderate
to strong signal (>1016 molec. cm−2).

Large spatial variability associated with both NOx and
VOC results in great oscillation in chemical condition
regimes (i.e., NOx-sensitive or VOC-sensitive). Due to a con-
siderable reduction and increase in NOx/VOC emissions in
NCP and YRD, respectively, we observe a large increase
(53 %) in the ratio of the chemical loss of NOx (LNOx) to
the chemical loss of ROx (RO2+HO2), shifting the regions

towards NOx-sensitive. As a result, a substantial reduction in
the afternoon NO2+OH reaction rate (a major loss of O3)
and an increase in afternoon NO+HO2 and RO2+NO (a
major production pathway for O3) are observed, leading to
enhancements of the simulated maximum daily 8 h average
(MDA8) surface ozone concentrations by ∼ 5 ppbv. There-
fore, additional regulations on VOC emissions should be im-
plemented to battle ozone pollution in those areas. On the
other hand, being predominantly in NOx-sensitive regimes
favors regions including Taiwan, Malaysia, and PRD to ben-
efit from reductions in NOx , resulting in noticeable decreases
in simulated MDA8 surface ozone levels. The comparison
of simulated ozone before and after adjusting emissions and
Chinese surface air quality observations reveals a large sys-
tematic positive bias (∼ 7 ppbv), which hinders attaining
benefits from a more accurate ozone production rate due to
the observationally constrained NOx/VOC ratios. This high-
lights the need to explicitly deal with other underlying issues
in the model (e.g., Travis et al., 2016) to be able to properly
simulate surface ozone.
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It has taken many years to develop satellite-based gas re-
trievals and weather and chemical transport models accurate
enough to enable observationally based estimates of emis-
sions with reasonable confidence and quantified uncertainty,
as well as to produce credible top-down emission invento-
ries over certain areas. However, it is essential to improve
certain aspects to be able to narrow the range of uncertainty
associated with the estimation, such as the following: (i) pa-
rameterizing the spatiotemporally varying bias of satellite
gas retrievals; (ii) improving the knowledge of prior errors
in bottom-up emissions; (iii) propagating model parameter
errors such as PBL, radiation, and winds to the final out-
put (e.g., Rodgers, 2000); and (iv) due to intertwined chem-
ical feedback between various chemical compounds, inverse
modeling needs to properly incorporate all available infor-
mation (beyond HCHO and NO2) considering the cross-
relationship either explicitly or implicitly. Despite these lim-
itations, this research demonstrated that a joint inversion
of NOx and VOC emissions using well-characterized ob-
servations significantly improved the simulation of HCHO
and NO2 columns, permitting an observationally constrained
quantification of the response of ozone production rates to
emission changes.

Data availability. The top-down emission invento-
ries estimated from this study can be found at:
https://doi.org/10.17632/8s4jscy93m.1 (Souri et al., 2020b).
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