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Abstract. To improve the operational air quality forecast-
ing over China, a new aerosol or gas-phase pollutants as-
similation capability is developed within the WRFDA sys-
tem using the three-dimensional variational (3DVAR) algo-
rithm. In this first application, the interface for the MOSAIC
(Model for Simulating Aerosol Interactions and Chemistry)
aerosol scheme is built with the potential for flexible exten-
sion. Based on the new WRFDA-Chem system, five experi-
ments assimilating different surface observations, including
PM2.5, PM10, SO2, NO2, O3, and CO, are conducted for Jan-
uary 2017 along with a control experiment without data as-
similation (DA). Results show that the WRFDA-Chem sys-
tem evidently improves the air quality forecasting. From the
analysis aspect, the assimilation of surface observations re-
duces the bias and RMSE in the initial condition (IC) remark-
ably; from the forecast aspect, better forecast performances
are acquired up to 24 h, in which the experiment assimilating
the six pollutants simultaneously displays the best forecast
skill overall. With respect to the impact of the DA cycling
frequency, the responses toward IC updating are found to be
different among the pollutants. For PM2.5, PM10, SO2, and
CO, the forecast skills increase with the DA frequency. For
O3, although improvements are acquired at the 6 h cycling
frequency, the advantage of more frequent DA could be con-
sumed by the disadvantages of the unbalanced photochem-
istry (due to inaccurate precursor NOx /VOC (volatile or-
ganic compound) ratios) or the changed titration process (due
to changed NO2 concentrations but not NO) from assimilat-
ing the existing observations (only O3 and NO2, but no VOC

and NO). As yet the finding is based on the 00:00 UTC fore-
cast for this winter season only, and O3 has strong diurnal
and seasonal variations. More experiments should be con-
ducted to draw further conclusions. In addition, considering
one aspect (IC) in the model is corrected by DA, the deficien-
cies of other aspects (e.g., chemical reactions) could be more
evident. This study explores the model deficiencies by inves-
tigating the effects of assimilating gaseous precursors on the
forecast of related aerosols. Results show that the parame-
terization (uptake coefficients) in the newly added sulfate–
nitrate–ammonium (SNA)-relevant heterogeneous reactions
in the model is not fully appropriate although it best sim-
ulates observed SNA aerosols without DA; since the up-
take coefficients were originally tuned under the inaccurate
gaseous precursor scenarios without DA, the biases from the
two aspects (SNA reactions and IC DA) were just compen-
sated. In future chemistry development, parameterizations
(such as uptake coefficients) for different gaseous precursor
scenarios should be adjusted and verified with the help of the
DA technique. According to these results, DA ameliorates
certain aspects by using observations as constraints and thus
provides an opportunity to identify and diagnose the model
deficiencies; it is useful especially when the uncertainties of
various aspects are mixed up and the reaction paths are not
clearly revealed. In the future, besides being used to improve
the forecast through updating IC, DA could be treated as
another approach to explore necessary developments in the
model.
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1 Introduction

Air pollution is almost inevitable for all developed (histor-
ically) and developing (in the present day) countries. From
acid rain to haze and smog, etc., air pollution significantly
impacts atmospheric visibility, human health, and climate.
As one of the fastest-growing countries, China has been suf-
fering from the extreme haze with high particulate matter
(PM) national-wide and increasing tropospheric ozone (O3)
pollution in city clusters (Fu et al., 2019; Lu et al., 2019).
To control the pollution as well as to improve the air qual-
ity forecast, Chinese government enforced stricter air quality
standards from 2012 and have deployed a monitoring net-
work for six “criteria” air pollutants since 2013, which in-
cludes PM2.5 and PM10 (aerosols or fine particulate matter
with aerodynamic diameters of less than 2.5 or 10 µm), SO2
(sulfur dioxide), NO2 (nitrogen dioxide), O3 (ozone), and CO
(carbon monoxide). Among the six pollutants, the forecast
for aerosols (especially PM2.5) is of the greatest research in-
terest because of the severity of aerosol pollution and its neg-
ative effects on both health and climate. However, it is still
challenging to accurately simulate and forecast aerosols by
pure air quality models due to some issues, such as the large
uncertainties in primary and precursor emissions processes,
the incomplete understanding and parameterization of sec-
ondary inorganic or organic reactions from precursors, and
the accumulation of meteorology simulation errors. In addi-
tion to aerosol forecast, the elevated O3 levels in city clusters
over eastern China has attracted more and more attention re-
cently. Under these circumstances, in the urban regions in
China, which suffer from complex air pollution with both
haze and smog, the accurate forecast of air quality has been
not only a challenge for operational centers, but also a com-
mon concern for the scientific community.

To improve the forecast skill, data assimilation (DA), a
combination of observations and numerical model output,
has been widely used in meteorology forecasting since the
last century, and it was recently extended to air pollutant
forecasts. Based upon various techniques, DA is proven
to be skillful at improving the meteorology and aerosol
forecasts (Bannister, 2017; McHenry et al., 2015; Peng et
al., 2018; Sandu and Chai, 2011; Schutgens et al., 2010;
Sekiyama et al., 2010; Tang et al., 2011, 2013). Focusing
on aerosol assimilation, the NCAR group conducted a series
of work. Using the three-dimensional variational (3DVAR)
algorithm, Liu et al. (2011) implemented DA on aerosol
optical depth estimates within the Grid-point Statistical In-
terpolation (GSI) system. Schwartz et al. (2012), Jiang et
al. (2013), and Chen et al. (2019) further extended this sys-
tem to assimilate surface PM2.5 and PM10. It should be
noted that the aerosols are complicated not merely by pri-
mary emissions but also by secondary reactions with gaseous
precursors in the atmosphere (Huang et al., 2014; Nie et
al., 2014; Xie et al., 2015). However, the assimilation of
aerosols along with gas-phase pollutants is seldom investi-

gated. Recently, it has been encouraging that an ensemble
Kalman filter (EnKF) DA system has been developed to as-
similate multi-species surface chemical observations (Peng
et al., 2017), while the EnKF system may not be the favorite
choice in operational applications due to its massive com-
putational cost. In addition, at the Institute of Urban Mete-
orology (IUM), the regional numerical weather prediction
(NWP) system RMAPS-ST (adapted from WRF; RMAPS:
Rapid-refresh Multi-Scale Analysis and Prediction System)
and the regional air quality model RMAPS-Chem (adapted
from WRF-Chem) are applied operationally for the weather
and air quality forecast over northern China. RMAPS-ST
provides the meteorology drivers for RMAPS-Chem, and
WRFDA is utilized for the meteorology DA in RMAPS-ST
(Fan et al., 2016; Yu et al., 2018). As a result, to imple-
ment the assimilations of aerosols along with gas-phase pol-
lutants in the future air quality forecast operational system
(e.g., the RMPAS-Chem) and to design an efficient and uni-
fied DA platform that satisfies the operational needs in both
meteorology and air quality forecasting, this study works on
the WRFDA system with the 3DVAR algorithm. To the au-
thors’ knowledge, this is the first attempt to assimilate hourly
ground-based aerosols simultaneously with gas-phase pollu-
tants in the WRFDA system.

With regard to the aerosol data assimilation, the first and
foremost challenge comes from the complex components re-
lated to the aerosol scheme. With different emphasis and ap-
plications, the aerosol scheme chosen in the model could
be different, which will lead to various choices and treat-
ments for the analysis variables in the DA system. For
example, in the existing DA developments, many studies
used the GOCART aerosol scheme to address the dust- or
the natural-source-related events. However, the GOCART
aerosol scheme is well known to underestimate the PM con-
centrations due to lack of secondary organic aerosol (SOA)
formation, as well as aerosol species related to the anthro-
pogenic emission, such as nitrate and ammonium (McKeen
et al., 2009; Pang et al., 2018). Different from the GOCART
scheme, the MOSAIC (Model for Simulating Aerosol Inter-
actions and Chemistry) aerosol scheme uses a sectional ap-
proach to represent the aerosol size distribution with differ-
ent size bins, and it takes black carbon, organic carbon, sul-
fate, nitrate, ammonium, sodium, chloride, and other inor-
ganic compounds that are related to anthropogenic emissions
into consideration. As a result, the MOSAIC scheme shows
a better performance in representing the complex PM2.5 pol-
lution over China (Chen et al., 2016, 2019). Therefore, to
make the DA system suitable for different emphasis and ap-
plications, a flexible aerosol assimilation capability is built
within the WRFDA system in this study, which will facilitate
developments and applications for more chemistry schemes
in the future. Focusing on the air quality forecast over China,
this study mainly analyses the results of the MOSAIC aerosol
scheme.
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It should be mentioned that the forecast performance with
DA also relies on the air quality model itself. Due to the
limited observational information as a constraint, the DA
system uses large parts of the model mechanism and pro-
cesses to derive the full analysis information (e.g., it uses
total PM mass observations to analyze all PM components).
However, there are still potential deficiencies in the model.
For example, some reaction paths are missing in the heavily
polluted events in China (e.g., Y. Wang et al., 2014), since
the chemistry schemes are originally developed for relatively
clean areas and recently observed pathways have not been
reflected in time in the model. Moreover, the large uncer-
tainties of precursor and primary emissions could bring er-
rors to the aerosol species partitioning and size distribution
in the model. Nevertheless, when it comes to DA, as one as-
pect (initial conditions of aerosols and some precursors) in
the model is corrected by using observations as constraints,
the deficiencies of other aspects, such as the abovementioned
chemical reactions, could be more evident. From this point of
view, after investigating to what extent the DA technique can
help to improve the forecast of air quality, this study further
explores the model deficiencies with the help of DA, aiming
to provide helpful indications for future model development.

In the rest of the paper, an overview of the model descrip-
tion, observations, and methodology is presented in Sect. 2,
followed by evaluations of the new WRFDA-Chem system
in Sect. 3. Section 4 analyzes the DA experiments in con-
sideration of potential issues in the model, aiming to provide
beneficial references on further model development. Conclu-
sions and discussions are given in Sect. 5.

2 Model description, observations, and methodology

In this study, the interfaced air quality model is WRF-Chem.
The WRF-Chem settings are very similar to those of Chen et
al. (2016). Here, only a summary of the model configuration
and observations is provided below. Descriptions of the most
important development of this study, the WRFDA-Chem sys-
tem, are presented in Sect. 2.3.

2.1 The WRF-Chem model and emissions

As in Chen et al. (2016), version 3.6.1 of the WRF-Chem
model is used in this study to simulate the aerosols and gas-
phase chemistry processes. A summary of the physical pa-
rameterizations used is given in Table 1. Details of the WRF-
Chem model have been described by Grell et al. (2005) and
Fast et al. (2006). The Carbon Bond Mechanism version Z
(CBMZ) and MOSAIC schemes are used as the gas-phase
and aerosol chemical mechanisms, respectively. The relative-
humidity (RH)-dependent heterogeneous reactions added by
Chen et al. (2016) are also applied in the simulations. The
model computational domain covers most of China and its
surrounding regions. Figure 1 presents the horizontal range

Figure 1. Computation domain. Dots depict surface observations
with 531 stations spreading over China. The red dots indicate the
observations around Beijing. The green dot indicates the IUM sta-
tion.

of the domain, which contains 121× 121 horizontal grids at
a 40.5 km resolution. Vertically, there are 57 levels extending
from the surface to 10 hPa.

As in Chen et al. (2019), the emission input is based on the
2010 Multi-resolution Emission Inventory for China (MEIC)
(He, 2012; Lei et al., 2011; Li et al., 2014; Zhang et al.,
2009), which has already been applied in many recent studies
over China (Wang et al., 2016; L. Wang et al. 2014; Zheng et
al., 2015). The emission inventory has also been processed to
match the model grid spacing (40.5 km) from an original grid
spacing of 0.25◦×0.25◦ (Chen et al., 2016). Admittedly, the
difference between the emission base year and our simulation
year and the spatiotemporal allocations may cause uncertain-
ties in our simulation, this emission is the only publicly avail-
able emission inventory once the study is conducted. Mean-
while, the inhomogeneous spatial changes and large uncer-
tainties in seasonal allocations of the emissions made it dif-
ficult to simply scale the original emission inventory for our
study period (Chen et al., 2019).

The dust emission is the GOCART dust emission, and
the biogenic emission is calculated online by the Gunther
scheme within the WRF-Chem model. Given that the time
period of this study (January) is not the period with large
fires (crop or biomass burning), fire emission is not used in
this study.

2.2 Observations

For the future application in the RMAPS-Chem operational
air quality forecast system, the WRFDA-Chem system is de-
signed to assimilate the hourly surface observations of six
major pollutants (PM2.5, PM10, SO2, NO2, O3, and CO)
from the China National Environmental Monitoring Center
(CNEMC). To verify the capability of the system, we use
the data for the whole month of January 2017. As in Chen
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Table 1. WRF-Chem model configurations.

Aerosol scheme MOSAIC (four bins; Zaveri et al., 2008)
Photolysis scheme Fast-J (Wild et al.. 2000)
Gas-phase chemistry CBM-Z (Zaveri and Peters, 1999)
Cumulus parameterization Grell 3-D scheme
Shortwave radiation Goddard Space Flight Center shortwave radiation

scheme (Chou and Suarez, 1994)
Long-wave radiation RRTM (Mlawer et al., 1997)
Microphysics Single-moment 6-class scheme (Grell and Dévényi, 2002)
Land-surface model (LSM) NOAH LSM (Chen and Dudhia, 2001)
Boundary-layer scheme YSU (Hong et al., 2006)
Meteorology initial and boundary conditions GFS analysis and forecast every 6 h
Initial condition for chemical species 11 d spinup
Boundary conditions for chemical species Averages of midlatitude aircraft profiles
Dust and sea salt emissions GOCART

et al. (2019), to perform statistical calculations, an obser-
vation dataset at 531 locations (Fig. 1) is acquired by av-
eraging all the original observations (more than 1600 sites)
that fall into the same model grid. Meanwhile, two steps of
data quality control are conducted before DA. Firstly, ob-
servations larger than a threshold are treated as unrealistic
and are not assimilated. Secondly, observations leading to in-
novations (observations minus the model-simulated values)
higher than a maximum deviation are omitted. For PM2.5,
PM10, SO2, NO2, O3, and CO, the threshold in the first step
is 500, 700, 200, 200, 200, and 20 mg m−3, respectively; the
maximum deviation in the second step is 120, 120, 60, 60,
60, and 6 mg m−3, respectively.

To verify sulfate–nitrate–ammonium partitioning, a site
observation of different chemical species is used in
Sect. 4. The measurements were performed over 14–20 Jan-
uary 2017, and carried out on the roof of IUM in Beijing
(green dot in Fig. 1). A detailed description of the features of
the observation, including the quality assurance and quality
control, has been given by Su et al. (2018). This study mainly
uses the sulfate (SO2−

4 ) and nitrate (NO−3 ) in this dataset.

2.3 WRFDA-Chem system

In this study, an aerosol or chemical assimilation capability is
built within the version 4.0.3 of the WRFDA system with the
3DVAR algorithm. The WRFDA 3DVAR produces the anal-
ysis through the minimization of a scalar objective function
J (x) given by

J (x)=
1
2
(x− xb)

TB−1 (x− xb)

+
1
2
[H(x)− y]TR−1

[H(x)− y], (1)

where xb denotes the background vector, y is a vector of the
observations, and B and R represent the background and ob-
servation error covariance matrices, respectively. The covari-
ance matrices determine how closely the analysis is weighted

toward the background and observations. H is the obser-
vation operator that interpolates model grid point values to
observation space and converts model-predicted variables to
observed quantities.

Generally, the implementation of WRFDA-Chem 3DVAR
includes several parts: the WRF-Chem model and surface air
pollutant observation interface to WRFDA, the addition of
aerosol or chemical analysis variables, the surface air pollu-
tant observation operators, the update of observation errors,
and the statistics of background error covariances for chemi-
cal analysis variables. Detailed descriptions will be presented
in the following parts. It is worth mentioning that the new
WRFDA-Chem system is designed with a flexible aerosol
assimilation capability that can switch between different
aerosol schemes. Given the fact that the WRF-Chem model
predicts the PM concentrations in the forms of different prog-
nostic variables depending on the aerosol scheme chosen, the
aerosol or chemical prognostic variables are given in the reg-
istry file of the WRFDA-Chem instead of being specifically
defined in the code. With the help of the registry mechanism
of the WRF model, the prognostic variables in the entire DA
process can be easily adjusted by modifying the registry file.
The WRFDA-Chem system has been tested with GOCART
and the MOSAIC aerosol scheme, while this study focuses
on the MOSAIC scheme.

2.3.1 Observation operators

The WRFDA-Chem is designed to assimilate six types of
surface aerosol or chemical observations, including PM2.5,
PM10, SO2, NO2, O3, and CO. For aerosol assimilation, the
aerosol species in the MOSAIC scheme are defined as black
carbon (BC), organic compounds (OCs), sulfate (SO2−

4 ),
nitrate (NO−3 ), ammonium (NH+4 ), sodium (Na), chloride
(Cl), and other inorganic compounds (OINs). To represent
the aerosol size distribution, MOSAIC uses a sectional ap-
proach with different bins. This study uses four size bins with
aerosol diameters ranging from 0.039 to 0.1, 0.1 to 1.0, 1.0
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to 2.5, and 2.5 to 10 µm. The PM2.5 total is controlled by
the 24 variables in the first three bins (eight species multi-
plied by three bins), and the PM10 total is controlled by the
32 variables in the four bins (eight species multiplied by four
bins). As a result, the model-simulated PM2.5 is computed by
summing the 24 variables as

y
f
PM2.5
= ρd

3∑
i=1

[
BCi +OCi +SO4i +NO3i

+NH4i +CLi +NAi +OINi
]
. (2)

The model-simulated PM10 observations are computed by
summing the 32 variables as

y
f
PM10
= ρd

4∑
i=1

[
BCi +OCi +SO4i +NO3i

+NH4i +CLi +NAi +OINi
]
. (3)

Correspondingly,

y
f
PM10–2.5

= ρd

4∑
i=4

[
BCi +OCi +SO4i +NO3i

+NH4i +CLi +NAi +OINi
]
, (4)

where ρd is the dry-air density, which is used to convert
the unit of the analysis variable (µg kg−1) to the observa-
tions (µg m−3); i denotes the bin number in the MOSAIC
aerosol scheme. In the experiment assimilating PM2.5 alone,
the PM2.5 observations are used to analyze the species in the
first three bins (Eq. 2). In the experiment assimilating PM2.5
and PM10 simultaneously, the PM2.5 observations are used
to analyze the species in the first three bins (Eq. 2), and the
PM10–2.5 (PMcoarse, hereafter) in the observations is used to
analyze the species in the fourth bin (Eq. 4). A similar ap-
proach has been adopted by Peng et al. (2018).

In the assimilation of the gas-phase pollutants, the model-
simulated values are computed by

y
f
x = ρd ·

Mx

Mdair
·Rx × 103, (5)

where x denotes the four gas-phase pollutants SO2, NO2, O3,
and CO, ρd is the dry-air density, Mx is the relative molecu-
lar mass for the four gas-phase pollutants,Mdair is the relative
molecular mass for dry-air, and Rx is the mixing ratio for the
four gas-phase pollutants. Since the gas-phase pollutant ob-
servations are mass concentrations in micrograms per cubic
meter and the analysis variables are mixing ratios in parts per
million by volume, Eq. (5) is used for the unit conversion.

2.3.2 Observation errors

Following Chen et al. (2019) and Peng et al. (2018), the ob-
servation error covariance matrix R in Eq. (1) is estimated

from measurement error ε0 and the representativeness er-
ror εr in this study. The measurement error ε0 is defined
as ε0 = 1.0+0.0075 ·Mi , where Mi denotes the observation
of the six major pollutants in micrograms per cubic meter;

the representativeness error εr is defined as εr = γ ε0

√
1x
L

,
where γ is an adjustable parameter scaling (set as 0.5), 1x
is the grid spacing (40.5 km in our case), and L is the ra-
dius of influence of the observation (set to 2 km). These pa-
rameter settings are based on the sensitivity tests by Chen et
al. (2019). The total observation error (εx) is computed as

εx =

√
ε2

0x + ε
2
rx

, where x denotes the six major pollutants
PM2.5, PM10, SO2, NO2, O3, and CO.

2.3.3 Background error covariance

To implement the aerosol or chemical DA with the MOSAIC
four-bin scheme, this study expands GEN_BE v2.0 (De-
scombes et al., 2015) to compute the B matrix in Eq. (1) for
the 32 chemical variables as in Eq. (3) (BC, OC, SO2−

4 , NO−3 ,
NH+4 , Na, Cl, and OIN in four bins), as well as the four gas-
phase variables as in Eq. (5) (SO2, NO2, O3, and CO). Since
it is both technically and scientifically challenging to model
the cross-correlations between different aerosol or chemical
variables in a 3DVAR framework, they are not considered
in this study. We plan to introduce the cross-variable corre-
lations with the ensemble-variational approach in the future
extension of the system. With the updated GEN_BE v2.0,
the statistics for background error covariance, such as stan-
dard deviation, vertical and horizontal length scales, and ver-
tical correlations, are computed for each of the aerosol or
chemical variables. In this study, the background error co-
variance is estimated using the National Meteorological Cen-
ter (NMC) method (Parrish and Derber, 1992) from 1-month
WRF-Chem forecasts over January 2017.

Following the analyses based on GEN_BE v2.0 (De-
scombes et al., 2015), Fig. 2 presents the background error
standard deviations of each species at different vertical lev-
els. For the aerosols in the first three size bins (Fig. 2a–c), al-
though the standard deviation errors vary across the species,
the errors of NO−3 , SO2−

4 , NH+4 , OC, and OIN are gener-
ally larger than those of the others (BC, Cl, and Na) in the
three size bins. These results are consistent with the find-
ing in Chen et al. (2019), which allows inorganic compounds
(NO−3 , SO2−

4 , NH+4 ), OC, and OIN to be adjusted more corre-
sponding to their larger background errors. For the aerosols
in the fourth size bin (Fig. 2d), the errors are unreasonably
much smaller than in the first three bins due to model de-
ficiency. Under these circumstances, to obtain a reasonably
larger adjustment for the aerosols in the fourth size bin, it
might be necessary to enlarge their background errors in the
DA procedure. As for the gaseous pollutants (Fig. 2e), CO
has the largest background errors in the middle and lower
layers, followed by O3, SO2, and NO2.

https://doi.org/10.5194/acp-20-9311-2020 Atmos. Chem. Phys., 20, 9311–9329, 2020
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Figure 2. Background error standard deviations of aerosol species of the (a) first size bin, (b) second size bin, (c) third size bin, (d) fourth
size bin, and (e) gas pollutants. The units for the x axis are micrograms per cubic meter for (a–d) and parts per million for (e). The left y axis
denotes the model level, and the right y axis denotes the vertical height (units: km).

For the background error horizontal correlation length
scales, the results are similar to those in Liu et al. (2011) (fig-
ure omitted). The length scales of aerosols are comparable in
most of the species, which generally span from 1.5 to 2.5
times the grid spacing, while the aerosol species Na shows a
smaller horizontal length scale than all the other species. For
the background error vertical correlations (figure omitted),
the results are similar to those in Descombes et al. (2015), in
which the vertical correlations are larger in the lower levels
(where they are emitted) in most of the species. According to
Descombes et al. (2015), the reactions with species emitted
near the surface might create these strong correlations in the
lower model levels.

2.3.4 Experimental design

To seek for the best forecast performance, six experiments
were conducted for January 2017 in this study: NODA, PM1,
PM2, ALL, ALL_3h, and ALL_1h (detailed in Table 2).
NODA is the control experiment without any data assimi-
lation. The design of PM1, PM2, and ALL is to investigate
the assimilation impacts of PM2.5, PMcoarse, and gas-phase
pollutants (SO2, NO2, O3, CO) step by step.

The NODA experiment initialized a new WRF-Chem fore-
cast every 6 h between 00:00 UTC, 20 December 2016, and
18:00 UTC, 31 January 2017, in which the aerosol or chem-
ical fields were simply carried over from cycle to cycle, and
the meteorological initial condition or boundary conditions

were updated from GFS (Global Forecast System) data ev-
ery 6 h. The first 10 d were treated as the spinup period,
and only simulations in January were used in the following
analyses. The PM1, PM2, and ALL experiments updated the
chemical initial condition (IC) using the WRFDA-Chem sys-
tem every 6 h starting from 00:00 UTC, 1 January. The back-
ground of the first cycle was obtained from the NODA exper-
iment, and all subsequent cycles were derived from the 6 h
forecast of the previous cycle. The only difference between
PM1, PM2, and ALL experiments is that PM1 only assimi-
lated PM2.5 observations; PM2 assimilated PM2.5 and PM-
coarse (PM10–2.5) simultaneously; ALL assimilated PM2.5,
PM10–2.5, SO2, NO2, O3, and CO together.

In view of the cycling frequency being an important as-
pect in the DA strategy, especially for 3DVAR, two more
experiments that assimilate all the six major pollutants with
a 3 and 1 h cycling frequency were conducted (experiments
ALL_3h and ALL_1h). To investigate the forecast improve-
ments, a 24 h forecast was initialized for all the experiments
at 00:00 UTC of each day.

3 Performance of the WRFDA-Chem system

3.1 Impact on analyses

To evaluate the performance of the WRFDA-Chem sys-
tem, the impact on analyses is firstly investigated. Figure 3
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Table 2. Detailed setting of six experiments and their purposes.

PM2.5 PM10–2.5 Gas-phase (SO2, NO2, Assimilated Purposes for
Experiments assimilation assimilation O3, CO) assimilation time (UTC) forecast performances

NODA No No No – Control simulation
PM1 Yes No No 00:00, 06:00, 12:00, 18:00 Basic PM2.5 assimilation
PM2 Yes Yes No 00:00, 06:00, 12:00, 18:00 PM2.5 and PM10–2.5 assimilation
ALL Yes Yes Yes 00:00, 06:00, 12:00, 18:00 Aerosol and precursor

simultaneous assimilation
ALL_3h Yes Yes Yes 00:00, 03:00, 06:00, 09:00, Different assimilation frequencies

12:00, 15:00, 18:00, 21:00 on forecast performances
ALL_1h Yes Yes Yes 00:00–23:00, every hour

Figure 3. Averaged bias (colored bar, left y axis) and RMSE (hollow bar, right y axis) of the analysis at 00:00 UTC over 1–31 January 2017
for (a) PM2.5, (b) PM10, (c) SO2, (d) NO2, (e) O3, and (f) CO in different experiments, verified against the surface observations of 531
stations in China. The blue, red, green, and gray shaded bars denote the bias of the experiments NODA, PM1, PM2, and ALL, respectively;
the corresponding hollow bars denote the RMSE of these experiments. Units of the y axis are micrograms per cubic meter in (a–e) and
milligrams per cubic meter in (f).

presents the domain-averaged bias and root-mean-square-
error (RMSE) of the analysis at 00:00 UTC over 1–31 Jan-
uary 2017. For PM2.5 (Fig. 3a), the NODA experiment dis-
plays a general overestimation of 36.60 µg m−3, along with a
large RMSE of 70.41 µg m−3. After DA, in the PM1, PM2,
and ALL experiments, the bias of PM2.5 drops to 5.62, 5.19,
and 5.98 µg m−3, respectively; the RMSE drops to 22.10,
22.84, and 23.15 µg m−3, respectively.

In the analyses of PM10, it is noted that the PM1 ex-
periment has a larger bias than the NODA run (Fig. 3b).
To explain this phenomenon, Fig. 4 presents the monthly
mean difference between PM10 and PM2.5 (PM10 minus
PM2.5, PMcoarse) in the analysis. In the observation, PM-
coarse generally increases from south to north, reaching
above 50 µg m−3 over northern China (Fig. 4a). However,
PMcoarse in the NODA experiment (with an average of
5.47 µg m−3) is much smaller than that in the observation
(with an average of 39.13 µg m−3). This result suggests that

the WRF-Chem model failed to reasonably represent PM-
coarse, which is actually the fourth bin of the aerosol species
in the MOSAIC scheme. Under these circumstances, when
the assimilation of PM2.5 tries to reduce its evident overesti-
mation (Fig. 3a), components in the first three bins (within
2.5 µm) of PM10 decrease dramatically. Meanwhile, since
the simulated PMcoarse is too small, the PM10 variates are
eventually dominated by the adjustment of PM2.5. As a re-
sult, the assimilation of PM2.5 causes a large negative bias
in the PM10 analysis (Fig. 3b). Correspondingly, compared
to the NODA run, PMcoarse in the PM1 experiment shows
no significant changes (only a slight decrease) in the analysis
(Fig. 4b and c) and also in the forecast (Fig. 4f).

To overcome this issue, several adjustments have been
adapted in the PM10 assimilation: instead of using the
PM10 observations directly, PMcoarse is used to analyze the
species in the fourth bin (Eq. 4); to reflect the large uncer-
tainty of the simulated PMcoarse and to appropriately weight
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Figure 4. Averaged PMcoarse (PM10–2.5; units: µg m−3) at
00:00 UTC over 1–31 January 2017 in (a) observation and the four
experiments (b) NODA, (c) PM1, (d) PM2, (e) ALL, and (f) av-
eraged bias (units: µg m−3) for PMcoarse in different experiments
as a function of forecast range (the blue, red, green, and gray lines
denote the results of experiment NODA, PM1, PM2, and ALL, re-
spectively), verified against the surface observations of 531 stations
in China. The numbers at the top of each panel denote the average
PMcoarse concentrations over 531 stations (units: µg m−3).

the model and observation errors, the background error co-
variance of PMcoarse (species in the fourth bin) is arbitrarily
inflated (inflation factor 1 is normally used and 90 is selected
after tuning). By these means, after assimilating the PM10 ob-
servations, the PM2 and ALL experiments show similar dis-
tributions in PMcoarse (Fig. 4d–e, with an average of 34.58
and 34.68 µg m−3) as in the observation (with an average of
39.13 µg m−3). Correspondingly, compared to the NODA ex-
periment, evident improvements for PM10 analysis appear
in the PM2 and ALL experiments, in which the bias and
RMSE drops noticeably (Fig. 3b). Overall, the DA exper-
iments show strong contributions to the analyses of PM2.5
and PM10, suggesting that the WRFDA-Chem system works
effectively in updating the initial conditions.

As for the analyses of gaseous pollutants (Fig. 3c–f),
large improvements can be seen in the ALL experiment
by further assimilating SO2, NO2, O3, and CO. Compared
to the PM2 experiment, although the bias and RMSE for
PM2.5 and PM10 in the ALL experiment are slightly larger,
the bias for the four gaseous pollutants decreases from
4.74, −4.59, 4.92, and −8.31 mg m−3 (PM2 experiment)

to −1.68, −1.25, −0.31, and −0.18 mg m−3 (ALL experi-
ment), respectively, and the corresponding RMSE drops from
37.87, 15.39, 21.04, and 1.11 mg m−3 (PM2 experiment) to
23.85, 9.70, 8.62, and 0.43 mg m−3 (ALL experiment). In
general, by assimilating all the six major pollutants, the ALL
experiment displays the largest improvement in the analyses
of gaseous pollutants among all the experiments, along with
a comparable improvement in the analyses of the aerosols.

Due to the lack of vertical information within the obser-
vations, the common mathematical solution to use the sur-
face total mass observations to analyze multiple 3-D fields
variables is to utilize prior information in the background.
As shown in Fig. 5, based on vertical correlations specified
in the background error covariance, the observation impact
spreads to a certain height, even though the analysis vari-
ables used in the observation operator (Eqs. 2–5) are only
at the lowest model level. It is also noted that observations
contribute differently to the analysis variables. Correspond-
ing to the strong overestimation of PM2.5 (Fig. 3a), all the
three DA experiments (PM1, PM2, and ALL) tend to reduce
the PM2.5 below 6 km; corresponding to the distinct under-
estimation for CO (Fig. 3f), the experiment assimilating CO
(ALL experiment) increases the value below 9 km. Relatively
small analysis increments are shown in the other three gas
pollutants (SO2, NO2, and O3).

3.2 Forecast improvements

After illustrating the effect of WRFDA-Chem on the anal-
yses, this section further investigates the forecast perfor-
mances based on the new analyses. A 24 h forecast is per-
formed at each 00:00 UTC from 1 to 31 January 2017. The
forecast error statistics, including bias, RMSE, and correla-
tion, are computed by verifying them against the surface ob-
servations at 531 stations over China.

As shown in Fig. 6, the model performs relatively poorly in
the forecast of aerosols without DA. For PM2.5, the average
bias, RMSE, and correlation over 0–24 h are 31.17, 88.99,
and 0.41 µg m−3, respectively (Table 3). As expected, all the
DA experiments evidently improve the forecasts. Along with
the forecast range, distinct improvements in bias, RMSE, and
correlation last from 0 to 24 h. For example, in the PM1
experiment, the average improvement percentages (over 0–
24 h) for bias, RMSE, and correlation reach up to 71.8 %,
39.4 %, and 43.9 %, respectively. It is also noted that the
PM2.5 observation is the dominant data source in improv-
ing PM2.5 forecast. As for PM10, distinct improvements in
RMSE and correlation can be seen from 0 to 24 h. Especially
after assimilating PMcoarse (PM10–2.5 in PM2 and ALL ex-
periments), the averaged improvement percentage for RMSE
and correlation reach up to about 27.0 % and 55.5 %. For
bias, since the statistics are averaged over the 531 stations,
the offset of large positive and negative bias at different sta-
tions leads to the small averaged bias in the NODA run
(see the spatial distribution of bias at the individual site in
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Figure 5. Vertical profile of the analysis at 00:00 UTC over 1–31 January 2017 for (a) PM2.5, (b) PM10, (c) SO2, (d) NO2, (e) O3, and
(f) CO in different experiments, averaged over the 531 surface stations in China. The blue, red, green, and gray lines denote the results of
experiment NODA, PM1, PM2, and ALL, respectively. Units of the y axis are micrograms per cubic meter in (a–e) and milligrams per cubic
meter in (f).

Figure 6. Averaged bias (units: µg m−3), RMSE (units: µg m−3), and correlation for (a) PM2.5 and (b) PM10 in different experiments as a
function of forecast range, verified against the surface observations of 531 stations in China. The blue, red, green, and gray lines denote the
results of experiment NODA, PM1, PM2, and ALL, respectively.

Sect. S1 of the Supplement). Considering that the DA experi-
ments show distinct improvements in RMSE and correlation,
WRFDA-Chem still provides a generally positive contribu-
tion to the PM10 forecast.

Figure 7 presents the averaged forecast error statistics for
SO2, NO2, O3, and CO with respect to the forecast range.

In PM1 and PM2 experiments that do not assimilate the gas-
phase observations, no significant changes appear in the fore-
casts of the gaseous pollutants compared to the NODA run;
after assimilating the gas-phase observations, the ALL ex-
periment shows evident improvements in all the four gaseous
pollutants, in which the improvements for SO2, NO2, and O3
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Figure 7. Same as Fig. 6, but for the forecast of (a) SO2, (b) NO2, (c) O3 (units: µg m−3), and (d) CO (units: mg m−3).

are more significant in 0–10 h, and the improvements for CO
last up to 24 h. According to the numbers shown in Table 3,
for SO2, NO2, O3, and CO, the average bias (RMSE) in the
ALL experiment decreases by 43.3 %, 42.2 %, 73.9 %, and
74.0 % (13.4 %, 5.3 %, 11.3 %, and 33.7 %), compared to the
NODA run, and the average correlation increases by 37.9 %,
8.3 %, 41.4 %, and 103.5 %, respectively. It is worth noting
that the WRFDA-Chem system has a positive impact on the
forecast of NO2 and O3 by merely analyzing the IC. Since
NO2 and O3 are related to complex photochemical reaction
processes, the assimilation of NO2 and O3 usually does not
work as well as other gas-phase pollutants for the forecast
aspect, even with both emission and IC analyzed (Peng et
al., 2018). As a result, the aerosol or chemical assimilation
based on WRFDA-Chem could not only contribute to the
conventional aerosol forecasts in operational applications but
also provide valuable help in the emerging study demands for
gaseous pollutants, especially O3.

The Air Quality Index (AQI), which is used for report-
ing daily air quality and issuing alarms, is one of the service
products of RMAPS-Chem operational air quality model

over northern China. Generally, AQI is classified into six
level ratings from good to hazardous: 0–50 (level 1), 51–
100 (level 2), 101–150 (level 3), 151–200 (level 4), 201–
300 (level 5), and 300+ (Level 6). Similar to previous stud-
ies (Kumar and Goyal, 2011; Tao et al., 2015; Zheng et al.,
2014), AQI is calculated for the six major pollutants. The pol-
lutant with the highest AQI level is deemed to be the “main
pollutant” and its AQI determines the overall AQI level. Ac-
cordingly, the accurate forecast of AQI requires the overall
good performances of the six pollutants. To reflect the in-
tegrated DA effect of aerosols and gas-phase pollutants, the
threat score (TS), one of the most commonly used criteria in
the verification of meteorology forecasting, is used for AQI
at each AQI level. The TS for the AQI is calculated by

TSi =
Hi

Hi +Mi +Fi
, (6)

where H , M , and F denote the times of the hits, the misses,
and the false alarms in the forecast of AQI and i denotes the
AQI levels from 1 to 6. As a result, the TS is acquired at
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Figure 8. Averaged threat score (TS) for the Air Quality Index (AQI) from AQI level 1 to level 6 (a–f) in different experiments as a function
of forecast range, verified against the surface observations of 531 stations in China. The blue, red, green, and gray lines denote the results
of experiment NODA, PM1, PM2, and ALL, respectively. The numbers to the right of each panel denote the averaged TS from 0 to 24 h for
different experiments.

Table 3. Averaged bias (units: µg m−3), RMSE (units: µg m−3), and
correlation over forecast hours 0–24 h for different variables and
different experiments. The statistics for gas-phase pollutants in PM1
and PM2 experiments are very close to the results in the NODA
experiment and thus are left blank in the table.

NODA PM1 PM2 ALL

PM2.5 Bias 31.17 8.78 8.39 9.36
RMSE 88.99 53.93 54.35 54.49
Correlation 0.41 0.59 0.58 0.59

PM10 Bias −1.13 −22.73 −15.43 −14.41
RMSE 98.5 74.41 71.9 71.6
Correlation 0.36 0.54 0.56 0.56

SO2 Bias 6.67 – – 3.78
RMSE 44.11 – – 38.18
Correlation 0.29 – – 0.4

NO2 Bias −2.87 – – −1.66
RMSE 25.61 – – 24.26
Correlation 0.48 – – 0.52

O3 Bias −3.22 – – −0.84
RMSE 31.96 – – 28.36
Correlation 0.29 – – 0.41

CO Bias −0.73 – – −0.19
RMSE 1.13 – – 0.75
Correlation 0.28 – – 0.57

each AQI level ranging from 0 to 1, and the higher (lower)
TS represents the better (worse) forecast performance.

As shown in Fig. 8, in the beginning of the forecast,
DA experiments (PM1, PM2, and ALL) increase the TS re-
markably at all AQI levels, and it then gradually decreases
(quickly drops) with the forecast range at AQI levels 2–6
(AQI level 1). Nevertheless, for the polluted situations with
AQI levels 3–6, evident improvements can be seen from 0 to
24 h in all the DA experiments, in which the average TS in-
creases from 0.19, 0.09, 0.16, and 0.19 (NODA experiment)
to about 0.27, 0.16, 0.27, and 0.26 (DA experiments), re-
spectively. For heavily polluted situations with AQI levels
5–6 (Fig. 8e–f), compared to the PM1 case, TS experiences
a further increase in the PM2 and ALL experiments after as-
similating PMcoarse (PM10–2.5). This result indicates that for
heavily polluted events during this period (January 2017),
PM2.5 and PM10 could be the main pollutant that contributes
the most to the AQI.

In general, the new WRFDA-Chem evidently improves the
aerosol or chemical forecasting. Based on the assimilation of
the six major pollutants, the chemical ICs are improved dis-
tinctly and a better forecast performance is acquired up to
24 h. Among the different experiments, the ALL experiment
displays the best forecast error statistics for most of the major
pollutants along with the highest TS for AQI. In the follow-
ing operational applications, it is recommended to assimilate
the six major pollutants simultaneously, which will help to
obtain better analyses and forecast skills on the whole.
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Figure 9. Same as Fig. 3, but for the experiments of NODA, ALL_6h, ALL-3h, and ALL_1h, respectively. Units of the y axis are micrograms
per cubic meter in (a–e) and milligram per cubic meter in (f).

Figure 10. Averaged bias (units: µg m−3), RMSE (units: µg m−3), and correlation for (a) PM2.5 and (b) PM10 in different experiments as a
function of forecast range, verified against the surface observations of 531 stations in China. The blue, red, green, and gray lines denote the
results of experiment NODA, ALL_6h, ALL_3h, and ALL_1h, respectively.

3.3 Response to DA cycling frequency

Cycling frequency is an important aspect in the DA strat-
egy. However, the responses toward IC updating could be
different among the pollutants. To work out this issue and
to provide helpful references for future applications, DA ex-
periments with different cycling frequencies were analyzed
in this section.

Figure 9 shows the domain-averaged bias and RMSE of
the analysis as in Fig. 3, but for experiments with differ-
ent DA frequencies (ALL_6h, ALL_3h, and ALL_1h; the
ALL_6h is the ALL experiment in Table 2). Except for O3,
most of the variables display a gradual improvement with the

increase in cycling frequency. For example, from the NODA
run to the 6 h cycling experiment and then to the 3 and 1 h
cycling experiment, the bias (RMSE) for PM2.5 gradually
decreases from 36.60 µg m−3 (70.41 µg m−3) to 5.98 µg m−3

(23.15 µg m−3) and then to 5.41 µg m−3 (21.32 µg m−3) and
4.30 µg m−3 (18.54 µg m−3). Similar results also exist for the
bias for SO2, NO2, and CO, as well as for the RMSE for
PM10, SO2, and CO. In accordance with the gradual im-
provements in the analyses, the forecast skills increase with
the cycling frequency in most of the variables except for
O3 (Figs. 10–11). Especially for the forecasts of aerosols,
evident gradual improvements can be seen from 0 to 24 h.
From the 6 h cycling experiment to the 3 and 1 h cycling
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Figure 11. Same as Fig. 10, but for the forecast of (a) SO2, (b) NO2, (c) O3 (units: µg m−3), and (d) CO (units: mg m−3).

experiment, the averaged decrease percentage of RMSE for
PM2.5 (PM10) enlarges from 38.76 % to 41.27 % and 44.21 %
(27.31 % to 30.17 % and 32.97 %); the average increased
percentage of correlation for PM2.5 (PM10) enlarges from
42.82 % to 49.51 % and 55.58 % (57.71 % to 66.39 % and
74.89 %). To further investigate the integrated DA effect of
aerosols and gas-phase pollutants under a different cycling
frequency, the TS for AQI is shown in Fig. 12. The forecast
of air quality is improved step by step with the increase in cy-
cling frequency. On AQI levels 2–6, the TS for the ALL_1h
experiment is situated above the ALL_3h experiment most of
the time and is followed by the ALL_6h experiment. These
results indicate that frequent IC updating is helpful to further
improve the forecast for most of the pollutants.

However, the analysis and 24 h forecast of O3 become
worse under higher cycling frequencies for this winter season
(Figs. 9e and 11c). Given that the analysis is at 00:00 UTC,
the worsening of the analysis in the experiments with higher
DA frequencies (1 h, 3 h) could be mainly due to the unfa-
vorable changes in the 1 h and 3 h forecasts period (starting
from 23:00 and 21:00 UTC), which is different from the sit-

uation in the 6 h cycling experiment. As for the forecasts, the
24 h performances starting from 00:00 UTC show complex
changes along with the forecast range: compared to the 6 h
cycling experiment, the biases in the experiments with higher
DA frequencies decrease at 09:00–14:00 UTC but increase
for other hours. The RMSE and correlations in the experi-
ments with higher DA frequencies become worse at most of
the hours (Fig. 11c). It should be mentioned that O3 is a rela-
tively short-lived chemical reactive species and takes part in
highly complex and photochemical reactions in association
with NOx and volatile organic compounds (VOCs) (Peng et
al., 2018; Lu et al., 2019). From this perspective, the per-
formances of O3 could also rely on the photochemistry and
the NOx titration, in addition to the IC. Although the winter
month (January 2017) is investigated here when ozone photo-
chemistry is relatively weak compared to other seasons, the
photochemistry and the NOx titration still play their roles.
Accordingly, when the assimilation of NO2 changes the NO2
concentration and leaves the NO and VOC unadjusted due
to the absence of NO and VOC measurements, two results
might occur: firstly, the NO2 /VOC ratio, which determines
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Figure 12. Same as Fig. 8, but for the experiments NODA, ALL_6h, ALL-3h, and ALL_1h, respectively.

the photochemical reactions, and even the regime might be
changed (O3 production or loss direction might change); sec-
ondly, the NOx titration process might be changed due to the
NO2 concentration updates (but no change in NO). Consid-
ering that the relevant NOx–VOC–O3 reactions take place
quickly, changing the O3 concentration in a short period, the
advantage of IC DA could compete with the disadvantages
of the disordered photochemistry (inaccurate NO2 /VOC ra-
tios) or the changed titration (adjusted NO2 concentrations
but not NO) resulting from the DA. Under these circum-
stances, the more frequently the O3 and NO2 were assimi-
lated, the more incompatibilities could be brought into the
related photochemical or titration reactions, resulting in the
model performing worse in the O3 forecasts under higher cy-
cling frequencies. It is noted that these statistics were only
for the analysis at 00:00 UTC and the 24 h forecast starting
from 00:00 UTC for winter season. Since O3 has strong diur-
nal and seasonal variations, more experiments and statistics
at different times of the day and different seasons of the year
should be conducted in the future.

According to the results above, it is better to assimilate
PM2.5, PM10, SO2, and CO every 1 h and assimilate O3 and
NO2 every 6 h in future applications, given the fact that the
6 h cycling experiment performs the best in the O3 forecast-
ing (Fig. 11c) and displays no significant differences in the
NO2 forecasting with experiments under higher cycling fre-
quencies (Fig. 11b). It could also be helpful to assimilate the
VOC along with O3 and NO2 after there are corresponding
observations.

3.4 Indications on further model development

A higher forecast skill relies not only on a better working of
DA but also on a better performance of the forecast model.
To further improve the forecast skill, a crucial task is to un-
derstand the deficiencies in the model, while the challenge in
chemistry model diagnostic is that uncertainties from various
aspects are mixed up in the model simulations, and the situ-
ation becomes even more complex when the reaction path is
not yet revealed by the laboratory. However, with the help
of DA, as one aspect (IC) in the model is corrected by using
observations as constraints, the deficiencies of other aspects
(e.g., chemical reactions) could be more evident, and thus
there could be a better chance of diagnosing the deficiencies
in the model. Specifically, sulfate–nitrate–ammonium (SNA)
are the predominant inorganic aerosol species that contribute
up to 50 % of total PM2.5 in heavily polluted events in north-
ern China (Y. Wang et al., 2014). In addition to the normal
pathways in the MOSAIC scheme, we added SO2–NO2–
NO3-related heterogeneous reactions for the high relative-
humidity case in WRF-Chem (Chen et al., 2016), which
greatly improved the underestimated SNA simulations. Since
the newly added reactions are calculated on both the concen-
tration of precursors (SO2, NO2−NO3) and the uptake coef-
ficients in the model, after DA corrected the concentrations
of the precursors (one aspect), the impacts of the uptake co-
efficients could be more evident (the other aspect, not cor-
rected). Ideally, if the newly added reactions depict the het-
erogeneous reaction processes properly, a forecast improve-
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Figure 13. Time series of (a) sulfate and (b) nitrate over 14–20 Jan-
uary, verified against the size-resolved particle observation at IUM
station (units: µg m−3). The gray, blue, and red lines denote the
observation and the results of experiments PM2 and ALL, respec-
tively. The numbers to the right of each panel denote the averaged
RMSE over 14–20 January for different experiments.

ment for the aerosols could be expected by assimilating their
gaseous precursors. Based on this notion, this section verifies
the forecast of two specific aerosol species – sulfate (SO2−

4 )
and nitrate (NO−3 ) – against a size-resolved particle obser-
vation over Beijing IUM station (in view of the assimilated
SO2 and NO2 being the corresponding gaseous precursors of
these aerosol species), aiming to explore the deficiencies in
the uptake coefficients in the newly added heterogeneous re-
actions and to provide beneficial indications for future model
development.

Figure 13 presents the time series of sulfate and nitrate
over Beijing IUM station. In the ALL experiment, after as-
similating both the PM concentrations and the gaseous pre-
cursors (SO2, NO2), the forecasts of sulfate and nitrate be-
come even worse than the PM2 experiment, which only as-
similates the PM concentrations. In the ALL experiment,
sulfate experiences a decrease, accompanied by the average
RMSE grows from 4.32 to 4.88 µg m−3; nitrate shows an in-
crease, accompanied by the average RMSE grows from 8.74
to 10.12 µg m−3. However, compared to the PM2 experiment,
the precursors (SO2 and NO2) are indeed improved. Fig-
ure 14 displays the analysis statistics of SO2 and NO2 in the
ALL experiment around the Beijing area (red dots in Fig. 1)
on 16 January, the period with the largest changes of sulfate
and nitrate (Fig. 13). To correct the overestimated SO2 (un-
derestimated NO2) in the background, the DA reduces (en-
hances) the model value in the ALL experiment, making it
closer to the observations.

It should be mentioned that the heterogeneous reactions
are added by using the sulfate–nitrate–ammonium observa-
tions as constraints to tune the “observation-best-matched”
uptake coefficients under the scenario without DA, in which
the precursor concentrations are from a pure model and
thus not very accurate. To best match the observation, when
gaseous precursors are overestimated (underestimated) in the
model, the uptake coefficient is tuned to a low-biased (high-
biased) value. As a result, such a coefficient may no longer
be suited for the cases with DA. For instance, after DA re-
duces the overestimated SO2, the uptake coefficient is still
relatively low and thus the reaction from SO2 to sulfate will
stay at a low rate (with both a low value of SO2 and a low re-
action coefficient). A similar result also exists for the reaction
from NO2 to nitrate. From this perspective, the negative ef-
fects on sulfate and nitrate in the ALL experiment may not be
hard to understand (Fig. 13). Therefore, in future chemistry
development, it is necessary to develop more appropriate co-
efficients for different gaseous precursor scenarios, in which
more constraints, such as precursor and species concentra-
tions, should be provided with the help of the DA technique.
Accordingly, further improvements for aerosol forecast could
be expected by assimilating their gaseous precursors.

According to the results above, the DA technique provides
an opportunity to identify and diagnose the deficiencies in the
model. By correcting the precursor concentrations through
DA (one aspect), the deficiency of the uptake coefficients for
the SNA heterogeneous reactions (the other aspect, not cor-
rected) is revealed. In the future, besides being used to im-
prove the forecast skill through updating the IC, DA could
be used as another approach to reveal the necessary develop-
ments in the model.

4 Conclusions and discussions

To improve the operational air quality forecasting over
China, a flexible aerosol and gas-phase pollutants assimi-
lation capability that can switch between different aerosol
schemes is developed based on the WRFDA system with the
3DVAR algorithm. This flexibility is designed to address the
complexity of current aerosol schemes and to facilitate future
chemistry developments. In this first application, the assim-
ilation capability of surface observations of six major pollu-
tants, including PM2.5, PM10, SO2, NO2, O3, and CO, is built
with the MOSAIC aerosol scheme.

Before application in the operational air quality model, ca-
pability of the WRFDA-Chem system is verified in terms of
analysis and forecast performances. Using the updated sys-
tem, five DA experiments (assimilating different combina-
tions of pollutants in various frequencies) were conducted
for January 2017, along with a control experiment without
DA. Results show that the WRFDA-Chem system evidently
improves the forecast of aerosols and gas-phase pollutants.
From the aspect of analysis, the assimilation of different
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Figure 14. Averaged scatterplot of (a, c) observation versus background and (b, d) observation versus analysis for (a, b) SO2 and (c, d) NO2
around the Beijing area (red dots in Fig. 1) on 16 January. The numbers above the panels denote the accumulated numbers of the observations
used around the Beijing area on 16 January (16:00, 16:06, 16:12, and 16:18 UTC).

atmospheric-composition observation reduces the bias and
RMSE in the IC remarkably (i.e., by about 68 %, 61 %, and
30 %–60 % in the RMSE for PM2.5, PM10, and gas-phase
pollutants); from the aspect of forecast skill, better perfor-
mances are acquired up to 24 h with about 10 %–40 % (30 %–
50 %) improvements in the RMSE (correlation) for different
pollutants. Among the different experiments, the one assim-
ilating all the six pollutants displays the best forecast error
statistics for most of the pollutants, along with the highest
TS for AQI. In future applications, to obtain a better analysis
and forecast skill in general, it is recommended to assimilate
the six major pollutants simultaneously.

As the cycling frequency is an important aspect in the DA
strategy, DA experiments with various cycling frequencies
are also analyzed. Results show that the responses toward
IC updating are different among the pollutants. For PM2.5,
PM10, SO2, and CO, the forecast skills increase with the DA
frequency; for O3, compared to a better performance at the
6 h cycling frequency, its analysis at 00:00 UTC and the fol-

lowing 24 h forecast become generally worse under higher
cycling frequencies for this winter season, although the bi-
ases did decrease at 09:00–14:00 UTC in the 24 h forecast.
Considering that the relevant NOx–VOC–O3 reaction system
changes the NO2 /O3 concentration in a short period, the
advantage of IC DA could compete with the disadvantages
of the disordered photochemistry (inaccurate NO2 /VOC ra-
tios) or the changed titration (adjusted NO2 concentrations
but not NO) resulting from the DA. In future applications,
it is better to assimilate PM2.5, PM10, SO2, and CO every
1 h. For the frequency of O3 and NO2 assimilation, every 6 h
is the best in this winter season in our study. Since O3 has
strong diurnal and seasonal variations, more experiments and
statistics at different times of the day and different seasons of
the year should be conducted in the future. Also, it might be
helpful to assimilate NO /VOC simultaneously with O3 and
NO2 after there are corresponding measurements.

By investigating the effect of assimilating gaseous precur-
sors on the forecast of related aerosols, the deficiencies in
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the WRF-Chem model are further revealed. The uptake co-
efficients for sulfate–nitrate–ammonium heterogeneous reac-
tions in the model are found to be not appropriate in the appli-
cations with gaseous precursor (SO2 and NO2) assimilations,
since they were originally tuned under the gaseous precursor
scenarios without DA and the biases from the two aspects
(SNA reactions and IC DA) were just compensated. In future
chemistry development, it is necessary to develop appropri-
ate coefficients for different gaseous precursor scenarios, in
which more constraints, such as precursor and species con-
centrations, should be provided with the help of the DA tech-
nique.

As for the significantly underestimated PMcoarse in the
model, the results might relate to the missing emissions under
current situations. Different from the United States or Euro-
pean countries, where national emission inventories are pro-
vided and updated frequently by the government (e.g., the
US National Emission Inventory NEI 05-08-11-14-17), the
publicly available emission inventories for China are mainly
established by several scientific research groups. As a result,
the uncertainties of the publicly available emission invento-
ries in China are relatively large compared with others (US,
European countries), and it is a known problem that the fugi-
tive dust emissions over the whole of China is still lacking,
which might cause the underestimated PMcoarse simulation
in the model.

Due to the flexible aerosol assimilation capability of the
WRFDA-Chem system, the development of other aerosol
schemes targeting different regions in Asia is underway. In
the next step, a study will focus on assimilating chemical ob-
servations from different observing platforms, such as satel-
lite aerosol optical depth (AOD) observations, which contain
more information over the areas with sparse surface obser-
vations. In addition, more advanced DA techniques, such as
4DVAR and Hybrid DA, could be taken into consideration in
further developing the aerosol or chemical DA system.
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