
Atmos. Chem. Phys., 20, 931–967, 2020
https://doi.org/10.5194/acp-20-931-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Evaluation of a multi-model, multi-constituent assimilation
framework for tropospheric chemical reanalysis
Kazuyuki Miyazaki1,2, Kevin W. Bowman1, Keiya Yumimoto3, Thomas Walker4, and Kengo Sudo5,2

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
2Earth Surface System Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC),
Yokohama, 236-0001, Japan
3Research Institute for Applied Mechanics, Kyushu University, Kasuga Park 6-1, Fukuoka, 816-8580, Japan
4Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada
5Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

Correspondence: Kazuyuki Miyazaki (kazuyuki.miyazaki@jpl.nasa.gov)

Received: 14 July 2019 – Discussion started: 7 August 2019
Revised: 5 November 2019 – Accepted: 19 December 2019 – Published: 24 January 2020

Abstract. We introduce a Multi-mOdel Multi-cOnstituent
Chemical data assimilation (MOMO-Chem) framework that
directly accounts for model error in transport and chemistry,
and we integrate a portfolio of data assimilation analyses ob-
tained using multiple forward chemical transport models in
a state-of-the-art ensemble Kalman filter data assimilation
system. The data assimilation simultaneously optimizes both
concentrations and emissions of multiple species through in-
gestion of a suite of measurements (ozone, NO2, CO, HNO3)
from multiple satellite sensors. In spite of substantial model
differences, the observational density and accuracy was suffi-
cient for the assimilation to reduce the multi-model spread by
20 %–85 % for ozone and annual mean bias by 39 %–97 %
for ozone in the middle troposphere, while simultaneously
reducing the tropospheric NO2 column biases by more than
40 % and the negative biases of surface CO in the North-
ern Hemisphere by 41 %–94 %. For tropospheric mean OH,
the multi-model mean meridional hemispheric gradient was
reduced from 1.32± 0.03 to 1.19± 0.03, while the multi-
model spread was reduced by 24 %–58 % over polluted ar-
eas. The uncertainty ranges in the a posteriori emissions due
to model errors were quantified in 4 %–31 % for NOx and
13 %–35 % for CO regional emissions. Harnessing assimila-
tion increments in both NOx and ozone, we show that the
sensitivity of ozone and NO2 surface concentrations to NOx
emissions varied by a factor of 2 for end-member models,
revealing fundamental differences in the representation of
fast chemical and dynamical processes. A systematic inves-

tigation of model ozone response and analysis increment in
MOMO-Chem could benefit evaluation of future prediction
of the chemistry–climate system as a hierarchical emergent
constraint.

1 Introduction

Data assimilation is a technique for combining different ob-
servational data sets with a model, taking into considera-
tion of the characteristics of individual measurements and
model dynamics (e.g., Kalnay, 2003; Lahoz and Schneider,
2014). Atmospheric composition and chemical data assim-
ilation using advanced data assimilation techniques such as
four-dimensional variational data assimilation (4D-Var) and
ensemble Kalman filter (EnKF) allows the propagation of
observational information in time and space from a limited
number of observed species to a wide range of chemical com-
ponents (e.g., Lahoz et al., 2007; Sandu and Chai, 2011; Boc-
quet et al., 2015). Data assimilation provides global fields
that are statistically consistent with individual observations.
Various studies have demonstrated the capabilities of chem-
ical data assimilation systems in the analysis of chemical
species in the troposphere and stratosphere (e.g., Parring-
ton et al., 2009; Kiesewetter et al., 2010; Flemming et al.,
2011; Coman et al., 2012; Emili et al., 2014; Miyazaki et
al., 2012a, b, 2015, 2019; van der A et al., 2015), emissions
optimization (e.g., Miyazaki et al., 2012a; 2014; Miyazaki
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and Eskes, 2013; Stavrakou et al., 2013; Streets et al., 2013;
Inness et al., 2015; Jiang et al., 2018), and chemical reanaly-
ses to provide long-term data assimilation products (Inness et
al., 2013; Gaubert et al., 2016; Miyazaki et al., 2015; Flem-
ming et al., 2017). Chemical data assimilation frameworks
have also been used to evaluate observing system impacts
through observation system simulation experiments (OSSEs)
(Yumimoto, 2013; Lahoz and Schneider, 2014; Bocquet et
al., 2015; Abida et al., 2017; Liu et al., 2017) and evaluate
chemistry–climate model simulations (Miyazaki and Bow-
man, 2017; Kuai et al., 2020).

Developments of advanced data assimilation techniques
and satellite retrievals have contributed to improving data as-
similation analysis and prediction of atmospheric composi-
tion (e.g., Skachko et al., 2016; Boersma et al., 2018a). How-
ever, a limiting factor in the accuracy of these systems is the
performance of forecast models, which have limited fidelity
in the representation of atmospheric dynamics and chemistry.
For example, intercomparison studies of the Atmospheric
Chemistry and Climate Model Intercomparison Project (AC-
CMIP) (Bowman et al., 2013; Young et al., 2013; Steven-
son et al., 2013) and the Chemistry-Climate Model Initiative
(CCMI) (Morgenstern et al., 2017; Kuai et al., 2020) revealed
a large diversity in simulations of tropospheric composition
owing to differences in model processes and input data. The
choice of forecast model, thus, largely influences the a priori
uncertainty in chemical data assimilation and the a posteriori
data assimilation analysis.

As opposed to 4D-variational techniques that require a
model adjoint, EnKF systems are independent from fore-
cast model code and therefore can readily integrate multi-
ple models into a multi-model data assimilation framework
(Houtekamer and Zhang, 2016). EnKF techniques have been
successfully applied to multiple different chemical transport
models (CTMs) in our previous studies (e.g., Miyazaki et al.,
2012b, 2015, 2017, 2019), which have been used to assimi-
late multi-constituent composition measurements from mul-
tiple sensors where both the chemical states and emissions
of various species were simultaneously optimized. However,
the sensitivity of concentrations to emissions, such as ozone
response to NOx emissions, is strongly model dependent
and therefore has a first-order impact on the performance
in a multi-constituent data assimilation framework. Conse-
quently, quantification of this impact is important not only
for analysis but also for Observing System Simulation Ex-
periments (OSSEs) used to assess and design new observing
systems. Nevertheless, the importance of forecast model per-
formance on chemical data assimilation has not been demon-
strated using a common data assimilation framework for
tropospheric chemistry analysis. A multi-model framework
can also be used to provide multi-model integrated analysis
fields, which are less dependent on individual model perfor-
mance.

Data assimilation that relies on a single model may lead
to biased estimation and underestimate model uncertainty

by under-sampling the relevant model space. The limita-
tions with a single model could be overcome by integrat-
ing multi-model information in data assimilation in various
ways. First, ensembles of models can be used to construct
a flow-dependent analysis system. For instance, Xue and
Zhang (2014) extended data assimilation to the multi-model
Bayesian model averaging analysis framework, in which the
posterior model weight for each model is determined through
Bayes’ theorem reflecting the prior probability of each model
and the analysis consistency with the observations. This ap-
proach requires a framework to execute and update multiple-
model states continuously, which is difficult with multiple
state-of-the-art CTMs that have been optimized using differ-
ent platforms. Another way to integrate multiple-model in-
formation is to apply a common data assimilation framework
with multiple models. By assimilating the same sets of ob-
servations, this framework can be used to demonstrate the
importance of forecast model performance on data assimi-
lation analysis, while uncertainty information of individual
analyses can be evaluated consistently by using a same data
assimilation framework. Uncertainty-weighed multi-model
integrated analysis fields would provide unique information
that is less dependent on individual model performance and is
fundamentally different from averages of individual data as-
similation analyses. Quantifying model performance with a
multi-model integration is difficult when using different data
assimilation frameworks.

This study demonstrates, for the first time, the importance
of forecast model performance on data assimilation analysis
of tropospheric composition and emissions, by utilizing four
different CTM frameworks and applying a common EnKF
approach. As illustrated in Fig. 1, an EnKF data assimila-
tion system based on the GEOS-Chem model is newly de-
veloped in this study. Using the same data assimilation set-
tings and assimilating almost the same multi-constituent ob-
servations from multiple satellite sensors, we examine how
model bias affects tropospheric chemistry data assimilation
performance, including emission estimation, and provide in-
tegrated data assimilation analysis fields from an ensemble of
analyses that ingested multiple models and multi-constituent
measurements.

2 Methodology

2.1 Data assimilation module

The data assimilation technique is based on a local ensem-
ble transform Kalman filter (LETKF) approach developed by
Hunt et al. (2007). The LETKF uses an ensemble forecast to
estimate the background error covariance matrix and gener-
ates an analysis ensemble mean and covariance that satisfy
the Kalman filter equations for linear models. In the forecast
step, a background ensemble, xb

i (i = 1, . . .,k), is obtained
from the evolution of an ensemble model forecast. Here, x
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Figure 1. Schematic diagram of the MOMO-Chem framework. The
MOMO-Chem utilizes four different CTMs and applies a common
EnKF approach to investigate the importance of forecast model per-
formance and model sensitivities for data assimilation analysis. This
framework also provides multi-model integrated analysis fields and
its uncertainty ranges.

represents the model variable, b indicates the background
state, and k is the ensemble size (32 in this study). The back-
ground ensemble mean xb and its perturbation Xb are then
estimated as follows:

xb =
1
k

k∑
i=1

xb
i , (1)

Xb
i = x

b
i − x

b. (2)

The background error covariance is then estimated at each
time step at each grid point as follows:

Pb
= Xb

(
Xb
)T
. (3)

The background ensemble is converted into the observation
space, yb

i =H
(
xb
i

)
, using the observation operatorH , which

is the composite of a spatial interpolation operator and a
satellite retrieval operator (see Sect. 2.3). An ensemble of
background perturbation is defined as Yb

i = y
b
i − y

b.
Using the covariance matrices of observation and back-

ground error, the data assimilation determines the relative
weights of the observation and background and subsequently
transforms a background ensemble into an analysis ensem-
ble, xa

i (i = 1, . . .,k). The analysis ensemble mean xa is ob-
tained by updating the background ensemble mean as fol-
lows:

xa = xb+XbP̃ a
(

Yb
)T

R−1
(
yo
− yb

)
, (4)

P̃ a
=

[
(k− 1)
1+1

I+
(

Yb
)T

R−1Yb
]−1

, (5)

where P̃ a is the k× k local analysis error covariance in the
ensemble space, yo is the observation vector, and R is the
observation error covariance. A covariance inflation factor
(1, 6 % in this study for all the models, following the setting
in Miyazaki et al., 2015) is applied to inflate the forecast error
covariance.

The observation-minus-forecast (OmF), that is known as
the observational increment, is defined as

yo
− yb. (6)

The analysis increment is defined as the correction made by
data assimilation as follows:

xa− xb. (7)

The analysis ensemble perturbation matrix in the model
space (Xa) is obtained by transforming the background en-
semble as follows and is used in the subsequent forecast step
as the initial condition:

Xa
= Xb

[
(k− 1) P̃ a

]1/2
. (8)

In the data assimilation analysis, covariance localization is
applied so that the covariance among unrelated or weakly re-
lated variables is neglected. This removes the influence of
spurious correlations resulting from the limited size of the
ensemble. Further, it removes the influence of remote obser-
vations that may cause sampling errors. The data assimila-
tion settings such as localization length used in this study
are given in Sect. 2.6. Estimation of emissions is based on a
state augmentation technique that uses the background error
correlations for each grid point to determine the relationship
between the concentrations and emissions of various species
(Miyazaki et al., 2012a). A more detailed description of the
basic data assimilation framework is available in Miyazaki et
al. (2017).

2.2 Forecast models

We applied the same data assimilation system to four CTM
frameworks: GEOS-Chem, AGCM-CHASER, MIROC-
Chem, and MIROC-Chem-H. The specifications of these
systems are summarized in Table 1. The major differences
among the models are the meteorological input data, the
complexity of the chemical mechanisms (simplest in AGCM-
CHASER for the troposphere), emission inventories (old-
est in GEOS-Chem), vertical coordinate (sigma in AGCM-
CHASER only), and spatial resolution (highest in MIROC-
Chem-H).

2.2.1 GEOS-Chem

The GEOS-Chem model is driven by assimilated meteo-
rological data from the Goddard Earth Observing System
(GEOS-5) of the NASA Global Modeling and Assimilation
Office (GMAO). The adjoint model version 35 (Henze et al.,
2007), which corresponds to version 9 of the forward model,
with a horizontal resolution of 2◦× 2.5◦ and 47 vertical lev-
els extending from the surface to 0.1 hPa, was used as a for-
ward forecast model (i.e., without adjoint calculations) in this
study. Although newer and improved versions of the forward
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Table 1. Summary of the forecast models used in this study.

GEOS-Chem AGCM-CHASER
(TRC-1)

MIROC-Chem MIROC-Chem-H
(TCR-2)

Horizontal resolution 2◦× 2.5◦ 2.8◦× 2.8◦ 2.8◦× 2.8◦ 1.1◦× 1.1◦

Vertical resolution 47 layers to 0.1 hPa
(hybrid)

32 layers to 4 hPa
(sigma)

32 layers to 4 hPa
(hybrid)

32 layers to 4 hPa
(hybrid)

Forecast model GEOS-Chem v9
(adjoint v35)

CCSR/NIES/FRCGC
AGCM-CHASER

MIROC-Chem MIROC-Chem

Chemistry 43 species, 318 reactions 47 species, 88 reactions 92 species, 262 reactions 92 species, 262 reactions

Meteorological data GEOS-5 Nudged to
NCEP-DOE/AMIP-2

Nudged to ERA-Interim Nudged to ERA-Interim

Assimilated data OMI NO2 (DOMINO2),
SCIAMACHY NO2
(DOMINO2),
TES ozone (v5)
MOPITT CO (v6 NIR)
MLS ozone & HNO3 (v3.3)

OMI NO2 (DOMINO2),
SCIAMACHY NO2
(DOMINO2),
TES ozone (v5)
MOPITT CO (v6 NIR)
MLS ozone & HNO3 (v3.3)

OMI NO2 (DOMINO2),
SCIAMACHY NO2
(DOMINO2),
TES ozone (v5)
MOPITT CO (v6 NIR)
MLS ozone & HNO3 (v3.3)

OMI NO2 (QA4ECV),
SCIAMACHY NO2
(QA4ECV),
TES ozone (v6)
MOPITT CO (v7J)
MLS ozone & HNO3 (v3.3)

A priori emissions EDGAR 3, NEI2008,
RETRO, GFED2

EDGAR 4.2, GFED 3.1,
GEIA

EDGAR 4.2, GFED 3.1,
GEIA

HTAP v2, GFED 4, GEIA

State vector Concentrations of 43
species+ emissions (NOx ,
CO, LNOx )

Concentrations of 35
species+ emissions (NOx ,
diurnal variability, CO,
LNOx )

Concentrations of 35
species+ emissions (NOx ,
diurnal variability, CO,
LNOx )

Concentrations of 35
species+ emissions (NOx ,
diurnal variability, CO,
SO2, LNOx )

Reference (forecast model) Henze et al. (2007) Sudo et al. (2002) Watanabe et al. (2011) Sekiya et al. (2018)

Reference (data assimilation) This study Miyazaki et al. (2012a, b,
2014, 2015)

Miyazaki et al. (2017) Miyazaki et al. (2019)

model are available, we chose this version (the latest version
of the adjoint model) so that an intercomparison study of 4D-
Var and EnKF using the same modeling system can be con-
ducted in a separate study. The core of GEOS-Chem com-
putes the local changes in atmospheric concentrations due
to emissions, chemical reactions, and deposition. Further, it
can simulate coupled aerosol–oxidant chemistry in the tro-
posphere and stratosphere. This model uses the advection al-
gorithm developed by Lin and Rood (1996) on the rectilin-
ear grid. Convective transport is computed from the convec-
tive mass fluxes available in the meteorological archive. The
application of the EnKF chemical data assimilation system
based on the GEOS-Chem model is newly developed in this
manuscript.

The a priori emission data for NOx and CO were
obtained from the Emission Database for Global Atmo-
spheric Research (EDGAR) version 3 inventory (Olivier
and Berdowski, 2001) for global anthropogenic emissions
and from the monthly the Global Fire Emissions Database
(GFED) version 2 inventory (van der Werf, 2006) for
biomass burning emissions. Volatile organic compound
(VOC) emission data were obtained from the RETRO inven-
tory (Schultz et al., 2008). Emission data for North America
were replaced with the 2008 National Emissions Inventory
(NEI).

2.2.2 AGCM-CHASER

The chemical atmospheric general circulation model for
the study of atmospheric environment and radiative forcing
(CHASER; Sudo et al., 2002) simulates tracer transport, wet
and dry deposition, and emissions. It has a horizontal res-
olution of T42 (2.8◦× 2.8◦) and 32σ levels from the sur-
face to 4 hPa. This model is coupled to the Center for Cli-
mate System Research/National Institute for Environmen-
tal Studies (CCSR/NIES) atmospheric general circulation
model (AGCM) version 5.7b. The AGCM fields in this model
are nudged towards the National Centers for Environmen-
tal Prediction Department of Energy Atmospheric Model In-
tercomparison Project II (NCEP-DOE/AMIP-II) reanalyses
(Kanamitsu et al., 2002) at each time step of the AGCM (i.e.,
every 20 min) to reproduce past meteorological conditions.
The data assimilation system based on the AGCM-CHASER
model (Miyazaki et al., 2012a, b; Miyazaki and Eskes, 2013)
was used to conduct our first chemical reanalysis calculation
for 2005–2012 (TCR-1; Miyazaki et al., 2015) and elucidate
the 3-D structures of lightning-induced NOx (LNOx) sources
(Miyazaki et al., 2014).

The anthropogenic NOx and CO emissions were obtained
from EDGAR version 4.2. Emissions from biomass burn-
ing are based on the GFED version 3.1 (van der Werf et
al., 2010), while those from soils are based on the monthly
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Global Emissions Inventory Activity (GEIA) (Graedel et
al., 1993). Using the settings reported by LOTOS-EUROS
(Schaap et al., 2008) and Boersma et al. (2008), a diur-
nal variability scheme developed by Miyazaki et al. (2012a)
was applied for surface NOx emissions depending on the
dominant category for each area (anthropogenic, biogenic,
and soil emissions). LNOx sources were determined based
on the relationship between lightning activity and cloud-
top height (Price and Rind, 1992) and using the convec-
tion scheme of the AGCM. Biogenic emissions from vegeta-
tion are considered for non-methane hydrocarbons (NMHCs)
based on Guenther et al. (2006). Oxidations of ethane,
propane, ethene, propene, isoprene, and terpenes were in-
cluded explicitly.

2.2.3 MIROC-Chem

MIROC-Chem is the chemistry component of the MIROC
Earth system model (ESM) and is coupled to the MIROC-
AGCM version 4 (Watanabe et al., 2011). It has a horizon-
tal resolution of T42 (2.8◦× 2.8◦) and 32 hybrid vertical
levels from the surface to 4.4 hPa. Its tropospheric chem-
istry was developed based on the CHASER model with up-
dates related to chemical reactions and emissions. MIROC-
Chem considers the fundamental chemical cycle of Ox–
NOx–HOx–CH4–CO along with oxidation of non-methane
VOCs (NMVOCs) to accurately represent ozone chemistry
in the troposphere. Its stratospheric chemistry simulates
chlorine- and bromine-containing compounds, chlorofluoro-
carbons (CFCs), hydrofluorocarbons (HFCs), carbonyl sul-
fide (OCS) and N2O. Further, it simulates the formation of
polar stratospheric clouds (PSCs) and the associated hetero-
geneous reactions on their surfaces. The simulated meteoro-
logical fields were nudged towards the 6-hourly ERA-Interim
reanalysis (Dee et al., 2011). An EnKF system that is based
on MIROC-Chem has been used to study decadal changes
in NOx emissions (Miyazaki et al., 2017; Jiang et al., 2018).
The emission data and LNOx scheme for this model are the
same as in the AGCM-CHASER.

2.2.4 MIROC-Chem-H

A high-resolution (1.1◦×1.1◦) version of the MIROC-Chem
model, MIROC-Chem-H (Sekiya et al., 2018), was also used.
This model utilizes the same chemical and transport mod-
ule as MIROC-Chem (see Sect. 2.2.3) and has been used to
study processes controlling air quality in east Asia during
the KORUS-AQ aircraft campaign (Miyazaki et al., 2019;
Thompson et al., 2019) and conduct the second Tropospheric
Chemistry Reanalysis (TCR-2; Jet Propulsion Laboratory,
2019) for 2005–2018. Kanaya et al. (2019) demonstrated the
overall good performance of the ozone and CO analyses in
TCR-2 over remote oceans using observations from research
vessels.

Data for anthropogenic emissions of NOx and CO were
obtained from the HTAP version 2 inventory for 2010
(Janssens-Maenhout et al., 2015). This inventory com-
bines nationally reported emissions data with data from re-
gional scientific inventories of the European Monitoring and
Evaluation Programme (EMEP), Environmental Protection
Agency (EPA), Greenhouse Gas-Air Pollution Interactions
and Synergies (GAINS), and Regional Emission Inventory in
Asia (REAS). Emissions from biomass burning were based
on the monthly GFED version 4.2 inventory (Randerson et
al., 2018) for NOx and CO, while those from soils were based
on the monthly GEIA inventory (Graedel et al., 1993) for
NOx . Emission data for other compounds were taken from
the HTAP version 2 and GFED version 4 inventories.

As summarized in Table 1 and described in Sect. 2.3, the
satellite products used in MIROC-Chem-H were more recent
than those used in the other three models. Diversity among
the data assimilation systems was enhanced by the use of
different assimilated data. Although the effects of varying as-
similated measurements need careful evaluation, the recently
developed retrieval products reveal rather similar characteris-
tics in general. We thus expect that the forecast model perfor-
mance has a greater influence on data assimilation analysis.

2.3 Assimilated measurements

To assimilate satellite measurements, we have developed an
observation operator (H ) for individual assimilated measure-
ments. This operator includes the spatial interpolation oper-
ator (S), a priori profile for the satellite retrievals (xapriori),
and averaging kernel (A), which maps the model fields (xb

i )
into the retrieval space (yb), as follows:

yb
i =H

(
xb
i

)
= xapriori+A

(
S
(
xb
i

)
− xapriori

)
. (9)

The averaging kernel captures the vertical sensitivity profiles
of the retrievals (e.g., Eskes and Boersam, 2003; Jones et al.,
2003; Migliorini et al., 2008). Even though the retrieval yo

and the model equivalent yb
i depend on the a priori profile,

using the averaging kernel removes the dependence of the
analysis on model–retrieval comparison.

Biases in the assimilated satellite retrievals can degrade
data assimilation performance. The ozone analysis bias is not
solely determined by bias in the assimilated ozone measure-
ments in the multi-constituent data assimilation approach.
Miyazaki et al. (2015) demonstrated that the assimilation
of measurements other than TES measurements led to cor-
rections in the lower and middle tropospheric ozone. Appli-
cation of a bias correction procedure for multiple measure-
ments could improve the data assimilation analysis quality.
However, we did not apply any bias correction because of
the difficulty in estimating the bias structure that could vary
temporally and spatially. Meanwhile, since the data are the
same for all comparisons with different models, the differ-
ences with respect to independent observations are relatively
independent of those biases.
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2.3.1 OMI and SCIAMACHY NO2

The tropospheric NO2 column retrievals from the DOMINO
version 2 for Ozone Monitoring Instrument (OMI) and
Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY) (Boersma et al., 2011), ob-
tained from the Tropospheric Emission Monitoring Inter-
net Service (TEMIS) website (http://www.temis.nl, last ac-
cess: 1 June 2019) were used for the GEOS-Chem, AGCM-
CHASER, and MIROC-Chem systems. For MIROC-Chem-
H, retrievals from the QA4ECV version 1.1 level 2 (L2)
product for OMI (Boersma et al., 2017a) and SCIA-
MACHY (Boersma et al., 2017b) were used. Low-quality
data were excluded following the published recommenda-
tions (Boersma et al., 2011, 2018b).

We employed a super-observation approach to produce
representative data with the horizontal resolution of each
forecast model, following the approach of Miyazaki et
al. (2012a). Super-observation error was estimated using the
provided retrieval uncertainty and considering an error cor-
relation of 15 % among the individual satellite observations
within a model grid cell and representativeness errors in all
the systems.

2.3.2 TES ozone

The Tropospheric Emission Spectrometer (TES) ozone re-
trievals used are the version 5 level 2 nadir data obtained
from the global survey mode (Bowman et al., 2006; Herman
and Kulawik, 2013) for the GEOS-Chem, AGCM-CHASER,
and MIROC-Chem systems. The version 6 level 2 nadir data
were used for the MIROC-Chem-H system. This data set
consists of 16 daily orbits with a spatial resolution of 5–8 km
along the orbit track. The standard quality flags were used to
exclude low-quality data. The data assimilation of the TES
ozone retrievals was performed based on the logarithm of
the mixing ratio following the retrieval product specification
(Bowman et al., 2006).

2.3.3 MLS ozone and HNO3

The Microwave Limb Sounder (MLS) data used were the
version 3.3 ozone and HNO3 L2 products (Livesey et al.,
2011) for all models except MIROC-Chem-H, which used
the version 4.2 data. We used MLS data for pressures of less
than 215 hPa for ozone and less than 150 hPa for HNO3,
while tropical-cloud-induced outliers were excluded. The
provided accuracy and precision of the measurement error
were included as the diagonal element of the observation er-
ror covariance matrix.

2.3.4 MOPITT CO

The version 6 level 2 thermal infrared (TIR) products (Deeter
et al., 2013) of the Measurement of Pollution in the Tro-
posphere (MOPITT) were used for all models except the

MIROC-Chem-H, for which the version 7 level 2 TIR–near-
infrared (NIR) total column CO data were used (Deeter et
al., 2017). The version 7 products have been improved from
the version 6 products with respect to overall retrieval bi-
ases, bias variability and bias drift uncertainty (Deeter et al.,
2017). Owing to data quality problems, we excluded data
poleward of 65◦ and nighttime data. For the version 6 TIR
products, data at 700 hPa were used for constraining surface
CO emissions. For the version 7 TIR–NIR products, the to-
tal column averaging kernel was used in the observation op-
erator to estimate simulated total columns. The uncertainty
information provided in the retrievals was used in the ob-
servation error. Like in the case of NO2 measurements, the
super-observation approach was applied for MOPITT mea-
surements as well.

2.4 Validation data

2.4.1 WOUDC ozonesonde data

All available ozonesonde observations taken from the World
Ozone and Ultraviolet Radiation Data Center (WOUDC)
database (available at http://www.woudc.org, last access:
1 June 2019) were used as validation data. All ozonesonde
profiles have been interpolated to a common vertical pressure
grid, with a bin of 25 hPa. The ozone fields from the control
and data assimilation calculations were linearly interpolated
to the time and location of each measurement, with a bin of
25 hPa, and then compared with the measurements at 4◦×4◦

grid points. The observation error is 5 %–10 % between the
surface and 30 km (Smit et al., 2007).

2.4.2 WDCGG surface carbon monoxide

Surface CO concentration observations were obtained from
the World Data Centre for Greenhouse Gases (WDCGG) op-
erated by the World Meteorological Organization (WMO)
Global Atmospheric Watch program (http://ds.data.jma.go.
jp/gmd/wdcgg/, last access: 1 June 2019). Hourly and event
observations from 59 stations were used to validate surface
CO concentrations from the control and data assimilation
runs at 5◦× 5◦ grid points.

2.5 Multi-model analysis

We construct integrated data assimilation analysis using mul-
tiple models combined with multiple-species measurements
(Fig. 1). The multi-model integrated analysis xm(xmultimodel)

is obtained by combining data assimilation analyses (xa
j )

weighted by analysis uncertainties (σ 2
j ) of individual mod-

els (j = 1–4) as follows:

xm =

∑(
xa
j/σ

2
j

)
∑(

1/σ 2
j

) . (10)
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The analysis uncertainties (σ 2
j ) are estimated from the root

mean square of the analysis ensemble perturbation matrix
(Xa; see Eq. 8) that is obtained by transforming the back-
ground ensemble using the local analysis error covariance
(see Eq. 5). The integrated analysis (xm) provides unique in-
formation on atmospheric states, which are less dependent
on the characteristics of individual models used for data as-
similation, and considers the uncertainty of individual data
assimilation analyses. The uncertainty of the integrated anal-
ysis (σ 2

m) is defined as follows:

σ 2
m =

1∑(
1/σ 2

j

) . (11)

We apply this approach for estimating multi-model mean
ozone fields in this study. Because of the predefined min-
imum values of the standard deviations applied to surface
emissions of CO and NO2 to prevent covariance underesti-
mation during data assimilation (see Sect. 2.6), the analysis
spreads of near-surface NOx and CO concentrations tend to
be similar among the models due to the artificial adjustments
and are not fully meaningful. Therefore, for the concentra-
tions and emissions of CO and NOx their multi-model mean
and uncertainty were estimated as a standard ensemble mean
and spread, without using the analysis uncertainty of individ-
ual models. The multi-model integrated analysis fields were
produced at the highest horizontal resolution of the mod-
els (1.1◦× 1.1◦) after linearly interpolation. Given the small
number of models (j = 1–4) used in this study, the multi-
model integration would suffer from sampling biases. With
an increase in the number of models in future studies, this
approach would provide more robust statistics.

2.6 Experimental setting

We conducted 1 year of data assimilation calculations and
forward model simulations (i.e., control run) from 1 Jan-
uary 2007, with a 2-month spin up from 1 November 2006,
using the four systems. This assimilation period was chosen
to provide comprehensive constraints by OMI measurements
while avoiding the influences of OMI row anomalies (De-
cember 2009 onwards) (Schenkeveld et al., 2017) and re-
duced numbers of the TES measurements (2010 onwards).
A control run was performed in each system using the same
model settings as the data assimilation run but without per-
forming data assimilation. The validation results for the con-
trol and data assimilation runs were compared to measure
the improvements achieved through data assimilation in each
system.

Almost the same data assimilation settings were used for
the four systems as follows. The state vector includes the
chemical concentrations of various species as well as the
surface sources of NOx and CO and LNOx sources. The
LNOx source optimization is based on the scheme developed
by Miyazaki et al. (2014). For the MIROC-Chem-H system,

the state vector also includes surface SO2 emissions, as im-
plemented in Miyazaki et al. (2019). The state vectors for
the MIROC-Chem and MIROC-Chem-H systems include a
correction factor for emission diurnal variability to improve
the representation of diurnal emission variability using the
OMI and SCIAMACHY retrievals obtained at different over-
pass times, based on the scheme developed by Miyazaki et
al. (2017).

Covariance inflation was applied to analyses of both con-
centrations and emissions to prevent underestimation of
background error covariance and filter divergence caused by
sampling errors associated with the limited ensemble size
and by model errors, following the settings used by Miyazaki
et al. (2015). Further, localization was applied to avoid the in-
fluence of remote observations that may cause sampling er-
rors, with a cutoff radius of approximately 1650 km for NOx
emissions and 2000 km for CO emissions, LNOx sources,
and chemical concentrations, as in Miyazaki et al. (2015).
We also applied covariance localization for different vari-
ables in the state vector (Kang et al., 2011), by setting the
covariance among unrelated or weakly related variables to
zero. The analysis of surface emissions of NOx and CO al-
lowed for error correlations with NO2 and CO concentrations
only, respectively. For LNOx sources, covariances with CO
data were neglected. Assimilation of MOPITT CO data was
used to constrain surface CO emissions only. Concentrations
of NOy species and ozone were optimized from TES ozone,
OMI and SCIAMACHY NO2, and MLS ozone and HNO3
observations.

The a priori error was set to 40 % for surface emissions of
NOx and CO and 60 % for LNOx sources, which are com-
parable to the reported emission uncertainty (e.g., Schumann
and Huntrieser, 2007; Kaiser et al., 2012; Li et al., 2017). To
prevent covariance underestimation and maintain emission
variability during the long-term assimilation calculation, we
applied covariance inflation to the emission source factors
in the analysis step. The standard deviation of the emission
source factors was artificially inflated to a minimum prede-
fined value (30 % of the initial standard deviation) at each
analysis step.

The data assimilation cycle was set to be 6 h for the
AGCM-CHASER, MIROC-Chem, and MIROC-Chem-H
systems and 6 h for the GEOS-Chem system because of
the limitation associated with meteorological data input in
GEOS-Chem. The emission and concentration fields were
analyzed and updated at each analysis step in all the sys-
tems. We have confirmed that the results of data assimila-
tion can differ when the data assimilation cycle is changed
from 2 h to 6 h using the AGCM-CHASER system. This oc-
curs, in particular, for the analysis of short-lived species with
strong diurnal variability and NOx emission estimates. The
performance of the GEOS-Chem data assimilation can thus
be expected to differ with the use of a 2 h data assimilation
cycle and meteorological data inputs with higher temporal
frequency for short-lived species.
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In summary, there are differences in the assimilated mea-
surements (updated retrievals were used in MIROC-Chem-
H), diurnal emission variability (data assimilation correc-
tions were made in the MIROC-Chem and MIROC-Chem-
H systems only) and data assimilation cycle (6 h in GEOS-
Chem) of the four systems. These differences will lead to dis-
crepancies in the data assimilation analyses of the four sys-
tems attributable to assimilation system configuration rather
than the forward models themselves. While impact of these
configurations can be further refined in future studies, the
major discrepancies in the data assimilation analyses are still
primarily attributable to the models themselves.

3 Data assimilation statistics

3.1 Analysis increment

The analysis increment (Eq. 7) information is a measure of
the adjustment made in the analysis step, which is estimated
from the differences between the forecast and the analysis
after each analysis step. As shown in Fig. 2a, the annual mean
analysis increments are largely different among the models,
reflecting different systematic model biases. For individual
systems, the analysis increments are in good agreement with
the OmF (Eq. 6). This confirms that the model errors were
effectively reduced using data assimilation.

In the ozone concentration field at 500 hPa, the AGCM-
CHASER system gives large positive increments in the ex-
tratropics of both hemispheres, with annual mean values in
the range of 1–3 ppb d−1, whereas the increments are neg-
ative at low latitudes (up to −1.5 ppbv d−1). The standard
deviations of the analysis increment are 0.8–1.7 ppb d−1 in
the extratropics and 0.2–0.4 ppb d−1 at low latitudes. The
analysis increments are relatively low in GEOS-Chem (up
to −1.8 ppbv d−1) and MIROC-Chem (up to 1.4 ppbv d−1)
in the Northern Hemisphere (NH) extratropics; in GEOS-
Chem (−0.5–1.5 ppbv d−1) and MIROC-Chem-H (up to
−1.0 ppbv d−1) in the tropics; and in MIROC-Chem (up to
1.4 ppbv d−1) in the Southern Hemisphere (SH) extratrop-
ics. GEOS-Chem exhibits negative increments except over
central Africa and northern South America, with large nega-
tive increments (up to 2 ppbv d−1) over the Southern Ocean
and the US west coast in the strong westerlies and Aleutian
Low regions. The positive increments over central Africa and
northern South America could imply underestimated ozone
productions due to biomass burning or VOC emissions.

The analysis increments differed significantly between
the lower and upper troposphere as well as among sea-
sons in all the systems (figure not shown). GEOS-Chem
shows large positive increments (0.5–2.2 ppbv d−1) in the
extratropics at 700 hPa, in contrast to negative increments
(up to −2.0 ppbv d−1) at low latitudes and midlatitudes at
350 hPa. In AGCM-CHASER and MIROC-Chem, the incre-
ments changed from positive at 700 hPa (up to 2.2 ppb d−1

in AGCM-CHASER and 0.5 ppb d−1 in MIROC-Chem) to
negative at 350 hPa (up to −2.5 and −1.2 ppb d−1) in the ex-
tratropics of both hemispheres. The positive increments in
MIROC-Chem-H decreased with height in the extratropical
troposphere. As the increments in the troposphere are mainly
introduced by the TES assimilation, the vertical structures
suggest that the assimilated TES ozone measurements have
independent information regarding the lower- and upper-
tropospheric ozone. Using observing system experiments
(OSEs), our previous studies (Miyazaki et al., 2012b, 2015,
2019) revealed that the TES ozone data assimilation dom-
inates the corrections in the tropospheric ozone analysis,
whereas the use of measurements other than TES measure-
ments (mainly NO2 measurements) led to corrections in the
lower- and middle-tropospheric ozone during the forecast.
Jourdain et al. (2007) showed that the TES retrievals have
1–2 DOFs (degrees of freedom) in the troposphere, with the
highest number of DOFs for the clear-sky tropics and sub-
tropics. The seasonal changes in the analysis increment re-
flect variations in the short-term systematic model errors and
observational constraints, which also differed significantly
among the models.

3.2 Analysis uncertainty

The analysis uncertainty, which is estimated as the standard
deviation of the analyzed concentrations across the ensemble
(Eq. 8) in individual systems, can be used as a measure of the
uncertainty of each data assimilation analysis. The analysis
uncertainty is due to errors in the model input data, model
processes, and assimilated measurements and is reduced as
the analyses converge to the true state. Because the model in-
put data and assimilated measurements are almost the same
among the models, differences in model processes such as
response of ozone to perturbed emissions and chemical life-
times should be primarily responsible for the analysis spreads
among the models through the forecast step. Detailed investi-
gation on the impact of different model processes for each re-
gion and season would be helpful to interpret the results but is
beyond the scope of this paper. The simultaneous emissions
and concentration optimization were important in producing
appropriate ensemble perturbations in ozone, especially in
the lower and middle troposphere.

The ozone analysis uncertainty at 500 hPa shown in
Fig. 2b is generally smaller in the tropics than in the extrat-
ropics, likely a consequence of the higher sensitivities in the
TES ozone retrievals in the tropics. Because common set-
tings were applied to the ensemble size and covariance infla-
tion, the obtained inter-model differences in the spread reflect
different systematic model errors related to the assimilation
window size. The annual mean analysis uncertainty is gen-
erally larger in AGCM-CHASER and MIROC-Chem than in
GEOS-Chem and MIROC-Chem-H. In the tropics, the analy-
sis uncertainty is approximately 2–5 ppb in GEOS-Chem and
MIROC-Chem-H and approximately 5–11 ppb in AGCM-
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Figure 2. Spatial distributions of (a) analysis increment (ppbv d−1) and (b) analysis uncertainty (ppb) of ozone at 500 hPa averaged over
2007 from the four systems.

CHASER and MIROC-Chem. In the extratropics, the anal-
ysis spread is approximately 6–10 ppb in GEOS-Chem and
MIROC-Chem-H and 10–16 ppb in AGCM-CHASER and
MIROC-Chem. The analysis increments are generally sim-
ilar among the models (see Fig. 2a). These results suggest
that the model forecasts tended to diverge more quickly in
AGCM-CHASER and MIROC-Chem, likely as a result of
larger differences in the equilibrium state between the model
and assimilation. In the upper troposphere–lower strato-
sphere (UTLS) region, the analysis uncertainty is relatively
smaller in the extratropics than in the tropics because of the
high accuracy of the MLS measurements. The spatial pat-
terns in GEOS-Chem and MIROC-Chem-H are remarkably
similar, but the CHASER and MIROC patterns are much
more similar.

The multi-model standard deviation of the ozone analy-
ses (typically < 5 ppb for the globe, Fig. 3c) is significantly
lower than the analysis uncertainty in AGCM-CHASER and
MIROC-Chem (Fig. 2b). As will be discussed in Sect. 4.1,
mean errors against independent observations are also signif-
icantly smaller than the analysis uncertainty in these models.
These results indicate that the analysis uncertainty depends
on the choice of forward model and was possibly overesti-
mated in AGCM-CHASER and MIROC-Chem because of
a large diversity in forecast trajectories. The overestimated
analysis error covariance was also confirmed by smaller chi
squares (e.g., Ménard and Chang, 2000) in these models (not
shown). To measure the analysis spread corresponding to the
actual analysis uncertainties, additional observational infor-
mation and optimizing the covariance inflation to the forecast
error covariance would be required.

3.3 Multi-model integrations

Figure 3a shows the integrated ozone analysis fields, xm de-
fined in Eq. (10), that were created using MOMO-Chem.
The annual and multi-model mean ozone concentrations at
500 hPa are high in the NH extratropics (55–70 ppbv) and
low over the Maritime Continent and the tropical western
Pacific (22–35 ppbv). Because the analyses from the GEOS-
Chem and MIROC-Chem-H systems exhibit smaller anal-
ysis spreads (see Sect. 3.2), they exert a strong control on
the integrated fields. At 500 hPa, the estimated uncertainty of
the integrated fields, σ 2

m defined in Eq. (11), is 2–4.5 ppbv in
the NH, 0.5–2 ppbv in the tropics and 3–5.5 ppbv in the SH
(Fig. 3b). These values are smaller than the uncertainties of
the individual model analyses (Fig. 2b), demonstrating that
the integrated fields can provide more reliable and unique in-
formation. The multi-model spread of individual data assim-
ilation analysis (Fig. 3c) is typically smaller than the multi-
model mean integrated uncertainty (Fig. 3b). Again, with
the multi-model spread (Fig. 3c) and the differences with
the ozonesonde measurements (Sect. 4.1) being smaller than
the multi-model mean uncertainty (Fig. 3b), the comparisons
suggest that the analysis uncertainty might be overestimated
in some of the analyses.

Over northern South America, the larger multi-model
spread compared to the multi-model mean uncertainty sug-
gests that the background errors might have been underes-
timated, as rapid error growths due to deep convection and
biomass burning might not have been accounted for properly.
Differences in isoprene emissions and chemistry could also
enhance the multi-model spread over the region (Archibald
et al., 2010). Techniques such as adaptive inflation for back-
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Figure 3. Spatial distributions of the multi-model mean values of (a) data assimilation analysis and (b) its uncertainty of annual mean ozone
at 500 hPa estimated using Eqs. (10) and (11), respectively. Panel (c) shows the standard deviation (i.e., multi-model spread) of the annual
mean ozone analysis among the four models.

ground error covariance (e.g., Anderson, 2007) would be
helpful to represent rapid changes in background errors in
the individual models.

4 Validation results

4.1 Ozone profiles

4.1.1 Comparisons against TES observations

Figure 4 compares the annual zonal mean ozone from the
lower to upper troposphere. In comparison with the TES
measurements, at 750 hPa, all the control runs underesti-
mate the mean ozone in the NH extratropics (by −4.4 to
−3.2 ppb at 50◦ N). At low latitudes, the mean ozone in
MIROC-Chem-H is underestimated by −6 to −3 ppbv. In
the SH extratropics, all the models reproduced the lower tro-
pospheric ozone well. At 510 hPa, the zonal mean biases
differ obviously among the models, with multi-model stan-
dard deviations of 1.5–4 ppv in the SH, 3.2–5 ppb in the
tropics, and 3–6.6 ppb in the NH. The biases are largely
negative in GEOS-Chem (−7.4 ppb at 50◦ N) and AGCM-
CHASER (−5.3 ppb) in the NH extratropics; they are nega-
tive in MIROC-Chem-H (−11 to−6 ppb) at low latitudes and
positive in the models except GEOS-Chem (3.2 to 5.1 ppb
at 50◦ S) in the SH extratropics. Similarly, at 316 hPa, the
biases obtained using the models are quite different, with
large positive biases in MIROC-Chem and MIROC-Chem-
H in the extratropics of both hemispheres and large negative
biases in MIROC-Chem-H in the tropics. Global total bud-
gets and the production rates of tropospheric ozone can also
differ, as suggested by multi-model intercomparison stud-
ies including GEOS-Chem and MIROC-Chem (Young et al.,
2013, 2018; Hu et al., 2017). Sekiya et al. (2018) demon-
strated that the ozone chemical productions are smaller in
MIROC-Chem-H (4647 Tg yr−1 for 2008) than in MIROC-
Chem (4809 Tg yr−1).

After the data assimilation, all the models are in good
agreement with the assimilated TES measurements as ex-
pected and demonstrate improved inter-model consistency.

In the NH, the mean bias at 750 hPa is reduced by 19 %–73 %
to between −4.1 and −0.4 ppb (at 50◦ N) in all the mod-
els. At 510 hPa, the large negative model biases in GEOS-
Chem and AGCM-CHASER are reduced by 76 % and 92 %
at 50◦ N, respectively. In the SH, most of the large model
biases in MIROC-Chem-H are removed throughout the tro-
posphere.

Figure 5 shows the spatial distributions of the annual mean
ozone concentrations at 510 hPa. The general structure of tro-
pospheric ozone is well reproduced by the control runs, such
as the low ozone concentrations over the tropical western Pa-
cific and the high over the Middle East. The annual and zonal
mean model biases are negative in the tropics in all the mod-
els, with large negative biases over the southern Atlantic; the
bias is largest in MIROC-Chem-H (by up to 20 ppbv). Af-
ter data assimilation, most of the model biases are removed
for the globe. In the extratropical UTLS (figure not shown),
the remaining mean bias was close to the mean observational
error of the MLS ozone measurements in all the systems.

As shown in Fig. 6a, the multi-model standard deviation
of the annual mean ozone at 510 hPa obtained from the con-
trol runs, with applying the TES averaging kernels (AKs), is
typically 5–10 ppb from the tropics to the NH high latitudes
and 1–5 ppb in the SH extratropics. After the data assimila-
tion, the standard deviation mostly becomes smaller than 5
and 3 ppb for these regions, respectively, with reductions for
the zonal mean values by 20 %–60 % in the NH and 30 %–
85 % in the SH. The results demonstrate that the assimilation
framework provides highly consistent analysis fields among
the systems, less dependent on the performance of the indi-
vidual models. The obtained multi-model standard deviation
after data assimilation (Fig. 6b) is comparable to the mean
model errors relative to the TES measurements for most re-
gions, which could thus be used as an estimate of the mean
data assimilation uncertainty. The mean retrieval uncertainty
of the TES measurements is typically between 5 and 10 ppb
in the SH and between 10 and 15 ppb in the NH, which is
larger than the multi-model spread and the mean model er-
rors after data assimilation.
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Figure 4. Comparisons of latitudinal distributions of annual and zonal mean ozone concentrations between the TES measurements (black
line), control runs (blue line), and data assimilation analyses (red line) at 316 hPa (upper panels), 510 hPa (middle panels), and 750 hPa (lower
panels) in 2007 for the four systems.

Figure 5. Comparisons of the spatial distributions of annual mean ozone concentrations between the TES measurements, control runs, and
data assimilation analyses at 510 hPa in 2007. Unit is parts per billion by volume.
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Figure 6. (a) Standard deviation among the models for the data assimilation analysis with application of the TES AK at 510 hPa. (b) Spa-
tial distributions of multi-model mean (root mean square) values of error against TES measurements for the control runs (left) and data
assimilation analyses (right) at 510 hPa.

4.1.2 Comparisons against ozonesonde observations

The current ozonesonde network is heterogeneously dis-
tributed globally with a sampling intervals of typically a
week or longer. Model errors are also expected to vary
greatly in time and space at various scales. As a consequence,
the ozonesonde measurements suffer from significant sam-
pling bias. Miyazaki and Bowman (2017) demonstrated that
this ozonesonde sampling bias in the evaluated model bias
for the seasonal mean concentration relative to global cov-
erage reaches 80 % for the global tropics. Nevertheless, the
ozonesonde network provides a critical independent valida-
tion of the data assimilation products, while the data assim-
ilation products are advantageous for evaluating actual re-
gionally and seasonally representative model performance,
which are required for model improvements. The synergy of
the two provides a mechanism to characterize chemical re-
analysis evaluation of chemistry–climate models (Miyazaki
and Bowman, 2017).

Figure 7 compares the seasonal variation in ozone with the
WOUDC global ozonesonde measurements from the lower
troposphere to the lower stratosphere. In the lower tropo-
sphere (850–500 hPa), all the models mostly underestimate
ozone at NH midlatitudes and high latitudes, except for
GEOS-Chem at NH midlatitudes in boreal summer. The neg-
ative model biases are large at NH high latitudes in boreal

spring, with an annual mean bias of −4.7 to −2.6 ppbv (as
summarized in Table 2) and large multi-model spreads. In the
tropical lower troposphere, the models, other than MIROC-
Chem-H, mostly overestimate ozone except in September–
October, whereas MIROC-Chem-H underestimates the an-
nual mean ozone by 5.8 ppbv. In the SH, all the models
underestimate ozone throughout the year, with an annual
mean bias of −6.2 to −0.7 ppbv at midlatitudes and −4.6 to
−2.2 ppbv at high latitudes. The negative model biases in the
SH have been found in most of the chemistry–climate mod-
els in the ACCMIP project (Bowman et al., 2013; Young et
al., 2013).

In the middle and upper troposphere (500–200 hPa), the
model biases reveal a large diversity at NH high latitudes.
The enhanced multi-model spread in spring could be asso-
ciated with the different representations of the stratosphere–
troposphere exchange (STE) processes. At NH midlatitudes,
MIROC-Chem and MIROC-Chem-H overestimate annual
mean ozone by 16.1 and 4.1 ppbv, respectively. In the tropics,
the models, other than MIROC-Chem-H, overestimate ozone
in boreal winter and underestimate it in boreal autumn, thus
underestimating the seasonal amplitudes. In the SH, all the
models overestimate ozone with an annual mean bias of 2.8–
20.5 ppbv at midlatitudes and 8.7–29.9 ppbv at high latitudes.
In the upper troposphere and lower stratosphere (UTLS, 200–
80 hPa), the large multi-model spread can primarily be due to
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Figure 7. Comparison of seasonal variation in ozone concentration between the ozonesonde observations (black solid line), model simula-
tions (colored dotted lines), and data assimilation (colored solid lines) averaged between 90–55◦ S, 55–15◦ S, 15◦ S–15◦ N, 15–55◦ N, and
55–90◦ N for 2007. From top to bottom, results are shown for concentrations averaged over 80–200, 200–500, and 500–850 hPa. The ±1σ
deviation among the four models (i.e., model spread) is shown in gray for the control runs and in light blue for the data assimilation results.

Table 2. Annual mean bias of the mean ozone concentrations (ppbv) between the data assimilation or control run (in brackets) and the
ozonesonde observations from the WOUDC network for 850–500 and 500–200 hPa in parts per billion for five latitudinal bands, SH high
latitudes (55–90◦ S), SH midlatitudes (15–55◦ S), tropics (15◦ S–15◦ N), NH midlatitudes (15–55◦ N), and NH high latitudes (55–90◦ N).
The results are shown for individual models, multi-model mean (mean±1σ ), and integrated analysis (xm± σ

2
m).

90–55◦ S 55–15◦ S 15◦ S–15◦ N 15–55◦ N 55–90◦ N

850–500 hPa GEOS-Chem (−2.3) (−0.7) (−1.2) (1.4) (−2.6)
7.4 2.2 0.0 3.4 2.3

AGCM-CHASER (−2.2) (−2.0) (−1.0) (−2.0) (−4.7)
2.4 2.7 3.6 5.2 4.3

MIROC-Chem (−4.6) (−1.5) (2.2) (−1.3) (−4.7)
0.9 1.9 4.6 2.6 1.7

MIROC-Chem-H (−4.5) (−6.2) (−5.8) (−5.1) (−3.6)
3.6 1.0 2.3 1.9 3.2

Multi-model mean (−3.4± 2.0) (−2.5± 2.5) (−1.4± 3.1) (1.8± 2.7) (−3.9± 1.4)
3.6± 2.5 1.9± 1.1 2.7± 1.8 3.3± 1.6 2.9± 1.7

Integrated analysis 4.0± 3.7 1.6± 2.6 1.6± 1.1 2.8± 2.7 2.2± 3.0

500–200 hPa GEOS-Chem (8.7) (10.5) (1.3) (−4.0) (−29.9)
4.7 3.0 −0.3 −0.9 −9.2

AGCM-CHASER (29.9) (8.6) (−3.2) (0.3) (−13.5)
1.6 −1.9 0.3 −1.9 −6.2

MIROC-Chem (28.7) (20.5) (0.4) (16.1) (12.9)
1.0 −1.3 −0.2 −0.2 −6.1

MIROC-Chem-H (24.8) (2.8) (−11.8) (4.1) (29.7)
1.4 0.3 3.0 −2.5 −5.5

Multi-model mean (23.0± 10.7) (10.6± 7.2) (−3.3± 5.3) (4.1± 8.6) (−0.2± 24.0)
2.2± 2.6 0.3± 2.4 0.7± 1.5 −1.4± 2.1 −6.7± 3.0

Integrated analysis 3.4± 6.7 1.1± 4.0 1.7± 1.7 −1.5± 4.8 −8.4± 8.0

www.atmos-chem-phys.net/20/931/2020/ Atmos. Chem. Phys., 20, 931–967, 2020



944 K. Miyazaki et al.: Multi-model multi-constituent assimilation

the different representations of the stratospheric chemistry,
STE, and convective transport in the tropics. Large positive
model biases exist in MIROC-Chem and MIROC-Chem-H
in the NH extratropics, MIROC-Chem and GEOS-Chem in
the tropics, and all the models in the SH extratropics.

Because of data assimilation, the large negative model bi-
ases in the lower troposphere are largely reduced in the NH
lower troposphere in boreal spring. Nevertheless, the annual
mean concentrations in all the systems become too high in
the NH lower troposphere, with an annual mean bias from
1.7 to 4.3 ppb at high latitudes and from 1.9 to 5.2 ppb at
midlatitudes, while the underestimation in the seasonal am-
plitude is reduced in all the models. The weak sensitivity of
the assimilated measurements and the changes made to the
precursor emissions (see Sect. 6) could be responsible for the
overestimations. In the tropics, the negative model bias in bo-
real autumn is reduced via data assimilation, thus enhancing
the seasonal amplitudes in the whole system, whereas the an-
alyzed concentrations become too high in AGCM-CHASER
and MIROC-Chem-H in boreal summer. In the SH, the data
assimilation reduced the negative model biases of MIROC-
Chem-H at midlatitudes (from −6.2 ppb to 1.0 ppbv annual
mean bias) and MIROC-Chem and MIROC-Chem-H at high
latitudes (from −4.6 to −4.5 ppbv to 0.9 to 3.6 ppbv). The
observed rapid increases during August–October at SH mid-
latitudes are reproduced well after data assimilation in all
the systems. At high latitudes of both hemispheres, some of
the models exhibit too high concentrations after data assim-
ilation. An inaccurate balance between the midlatitudes and
high latitudes in model transport and the lack of direct ob-
servational constraints could limit the effectiveness of data
assimilation at high latitudes. Conducting observational im-
pact analysis would help suggesting a framework to obtain a
better global tropospheric ozone analysis.

Both the agreements against the observation and the multi-
model consistency are greatly improved via data assimilation
from the middle troposphere to the lower stratosphere for
the globe, with annual mean bias reductions from −29.9 to
29.7 ppbv to −9.2 to −6.2 ppbv (i.e., by 53 %–81 %) at NH
high latitudes, from −4.0 to 16.1 ppbv to −2.5 to −0.2 ppbv
(by 39 %–76 % except for AGCM-CHASER) at NH mid-
latitudes, from −11.8 to 1.3 ppbv to −0.3 to 3.0 ppbv (by
50 %–91 %) in the tropics, from 2.8 to 20.5 ppbv to −1.9 to
3.0 ppbv (by 71 %–94 %) at SH midlatitudes, and from 8.7 to
29.9 ppbv to 1.0 to 4.7 ppbv (by 46 %–97 %) at SH high lati-
tudes for 500–200 hPa. The estimated RMSEs (2.5–9.0 ppbv
at the SH high latitudes, 3.0–4.3 ppbv at the SH midlati-
tudes, 2.5–5.3 ppbv in the tropics, 0.7–3.8 ppbv at the NH
midlatitudes, and 2.6–6.3 ppbv at the NH high latitudes for
850–500 hPa) are significantly smaller than the analysis un-
certainty (Fig. 2b) in AGCM-CHASER and MIROC-Chem
(10–16 ppb) and are comparable to that in GEOS-Chem and
MIROC-Chem-H. These results suggest overestimated anal-
ysis uncertainty in AGCM-CHASER and MIROC-Chem.

The uncertainty-weighted multi-model integrated fields
(Eq. 10) show a closer agreement with the ozonesonde ob-
servations than the (non-weighted) multi-model means for
the lower troposphere, except at SH high latitudes, as sum-
marized in Table 2. The annual and regional mean bias
is smaller by 15 %–40 % in the uncertainty-weighted fields
from the SH midlatitudes to NH high latitudes, reflect-
ing the larger analysis biases and larger analysis uncer-
tainties in AGCM-CHASER and MIROC-Chem for most
cases. The closer agreements suggest improved estimates of
ozone in the multi-model integrated fields. In the extratrop-
ical middle and upper troposphere, GEOS-Chem revealed
the smallest analysis uncertainty and largest analysis er-
rors against the ozonesonde observations and dominated the
uncertainty-weighted integrated fields, likely associated with
the less complex stratospheric chemistry (i.e., smaller spread
growth). This model dominated the uncertainty-weighted in-
tegrated fields and led to a degradation of the integrated
fields. These results suggest a requirement to optimize the
analysis uncertainty in some of the systems, considering the
fundamental differences in the model framework such as
model complexity and resolution, as discussed above. In-
creasing the number of models would also help to provide
more robust statistics.

Figure 8 shows that the data assimilation introduces sim-
ilar changes to the seasonal amplitudes of ozone (defined as
the difference between the maximum and minimum concen-
trations) in the four models, such as the increases in the lower
and middle troposphere and the decreases in the extratropical
upper troposphere and lower stratosphere. Between 850 and
500 hPa, the control runs underestimated the seasonal ampli-
tude in the extratropics of both hemispheres compared with
the ozonesonde measurements (e.g., by up to −29 % at the
NH midlatitudes). The model underestimates are largely re-
duced by data assimilation in all the models. Between 500
and 200 hPa, data assimilation mostly removed the negative
bias in GEOS-Chem (−8 %) and AGCM-CHASER (−5 %)
and the positive bias of the seasonal amplitude in MIROC-
Chem-H (47 %) against the ozonesonde measurements in the
NH and the large positive bias in MIROC-Chem (22 %) in
the SH. Between 200 and 90 hPa, positive biases are reduced
in all the models globally. In the NH, the range in the bias
from 13 % to 40 % is reduced to a range from −12 % to
3 %, with the largest reduction observed in MIROC-Chem-
H (from 40 % to 2 %). In the tropics, the range in the bias
is reduced from 20 % to 148 % to 10 % to 25 %, with the
largest reduction observed in GEOS-Chem (from 148 % to
10 %). In the SH, the range in bias is reduced from 15 % to
92 % to−1 % to 19 %, with the largest reduction observed in
MIROC-Chem (from 92 % to 10 %).

4.2 Tropospheric NO2 columns

For the comparisons with the OMI NO2 retrievals, the
OMI NO2 AKs from the DOMINO2 products were applied
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Figure 8. Latitude–pressure cross section of changes in seasonal amplitude of zonal mean ozone concentrations (ppbv) due to data as-
similation (data assimilation minus control runs), as estimated from the maximum minus minimum values of the monthly mean ozone
concentrations.

to GEOS-Chem, AGCM-CHASER, and MIROC-Chem,
whereas those from QA4ECV were applied to MIROC-
Chem-H, corresponding to the assimilated measurements
for each system. In Fig. 9, the converted tropospheric NO2
columns from the control and assimilation runs are then com-
pared with the assimilated OMI retrievals: the DOMINO2
product for GEOS-Chem, AGCM-CHASER, and MIROC-
Chem (black line vs. blue, red, and green lines in Fig. 9)
and the QA4ECV product for MIROC-Chem-H (gray line
vs. yellow line).

As summarized in Table 3, the model bias in tropo-
spheric NO2 column differed largely among the models
because of the different model configurations (e.g., chem-
ical lifetime of NOx) and input data (e.g., NOx emis-
sions). The models, other than GEOS-Chem, mostly un-
derestimate tropospheric NO2 columns over polluted ar-
eas, same as in most other CTMs (van Noije et al.,
2006), with an annual mean bias ranging from −2.07 to
−0.37× 1015 molecules cm−2 over eastern China, −0.51 to
−0.26× 1015 molecules cm−2 over the United States, and
−0.82 to−0.32×1015 molecules cm−2 over Europe. GEOS-
Chem overestimates tropospheric NO2 columns over some
parts of China (with annual and regional mean bias of
0.13× 1015 molecules cm−2 over eastern China), Europe
(0.60×1015 molecules cm−2), and the United States (0.29×
1015 molecules cm−2). The model biases in tropospheric
NO2 columns can vary with changing the model configu-
rations. For instance, important NOx sink pathways deter-
mining NO2 simulation uncertainties include the NO2+OH
reaction and the formation of HNO3 in the NO+HO2 reac-
tion (Lin et al., 2012; Stavrakou et al., 2013), which are rep-
resented differently in the models. The columns simulated
from MIROC-Chem-H are higher than those from MIROC-
Chem, with the same AKs applied over some parts of the
polluted areas such as eastern China; these differences are
attributable to the increased model resolution, which sup-
presses the dilution effects (Sekiya et al., 2018).

Figure 9 compares the seasonal variation in tropospheric
NO2. The models, other than GEOS-Chem, underestimate
tropospheric NO2 columns throughout the year over eastern
China, the United States, and Europe, with the largest nega-

tive biases in boreal winter. Over India, GEOS-Chem repro-
duced the peak observed in April and the rapid decrease from
May to July, whereas the other models underpredicted the
seasonal variations. The retrieved tropospheric NO2 columns
are generally lower in the QA4ECV products than in the
DOMINO-2 products over most of major polluted areas. The
different retrieved columns can largely be attributed to dif-
ferences in the a priori profiles and do not directly influence
the model–observation differences after applying the AKs
(Boersma et al., 2018a). Over Southeast Asia, the models,
except for GEOS-Chem, underestimate the peak observed in
March, which is associated with biomass burning, by 11 %–
55 %, whereas the models overestimate the peak over South
America in September by 18 %–31 %.

Over northern, central, and southern Africa, all the mod-
els underestimate tropospheric NO2 columns throughout the
year, with an annual mean bias ranging from −0.32 to
−0.11×1015,−0.39 to−0.11×1015, and−1.05 to−0.89×
1015 molecules cm−2, respectively. Over southern Africa, the
negative model bias is maximized in austral winter (by 43 %–
63 %), with MIROC-Chem-H giving the smallest bias. The
higher spatial resolution of MIROC-Chem-H is considered
essential in resolving individual polluted areas in the High-
veld region and in accurately simulating the nonlinear effects
on NO2 loss rate.

The tropospheric NO2 column retrievals from OMI and
SCIAMACHY were assimilated to optimize NOx emissions,
and the assimilation of non-NO2 measurements influence the
chemical lifetime of NOx through changes made to OH. Data
assimilation reduced the negative model biases in the models,
other than GEOS-Chem, over eastern China (from −2.07–
0.37× 1015 to −0.69–0.39× 1015 molecules cm−2), the
United States (from −0.51 to −0.26× 1015 molecules cm−2

to −0.18 to −0.13×1015 molecules cm−2), and western Eu-
rope (from −0.82 to −0.32×1015 molecules cm−2 to −0.41
to −0.24× 1015 molecules cm−2). The annual mean positive
model biases in GEOS-Chem are reduced by 72 % over the
United States and by 65 % over Europe. The temporal corre-
lations are also improved in all the models.

Over India, the data assimilation increases tropospheric
NO2 columns in boreal winter–spring and reproduced the
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Figure 9. Time series of regional monthly mean tropospheric NO2 columns (1015 molecules cm−2) from the satellite retrievals (black for
OMI QA4ECV and gray for OMI DOMINO v2), control runs (colored dotted lines), and data assimilation analysis (colored solid lines) for
2007. The model simulation and data assimilation results are obtained at the local overpass time of the retrievals by applying the averaging
kernel of OMI DOMINO v2 for GEOS-Chem, CHASER, and MIROC, and of OMI QA4ECV for MIROC-H, respectively, corresponding to
the assimilated measurements. The multi-model standard deviations are not shown because of the use of different assimilated measurements
in the individual systems.

observed local maximum in May and minimum in July in
all the models. Consequently, the seasonal amplitude is en-
hanced, leading to improved temporal correlations (from
0.20–0.87 to 0.94–0.99) while reducing the annual mean
bias (from−0.27 to−0.14×1015 molecules cm−2 to 0.12 to
−0.02× 1015 molecules cm−2, by 40 %–86 %). Over South-
east Asia, the persistent model negative biases are reduced
(from −0.56 to −0.15× 1015 molecules cm−2 to −0.18 to
0.05× 1015 molecules cm−2, by 40 %–77 %) with improved
temporal correlations (from 0.86–0.96 to 0.97–1.00) in all
the models. Over South America, data assimilation decreases
tropospheric NO2 columns by up to 25 % in the biomass
burning season in all the models, while the negative model
biases in the biomass burning off-season are mostly removed.
The OMI NO2 super-observation error is typically about
20 %–50 % of the tropospheric NO2 columns over polluted
areas, which are comparable to or larger than the analysis
error.

Over Africa, the annual mean negative model biases are re-
duced from−0.32 to−0.11×1015 molecules cm−2 to−0.08
to 0.03× 1015 molecules cm−2 (by 75 %–100 %) over north-

ern Africa, from −0.20 to −0.02× 1015 molecules cm−2

to −0.03 to 0.02× 1015 molecules cm−2 (by 77 %–
100 %) over central Africa, and from −1.05
to −0.89× 1015 molecules cm−2 to −0.47 to
0.45× 1015 molecules cm−2 (by 48 %–63 %) over southern
Africa. The bias reductions over central and southern Africa
are large in austral winter–spring. Some of the model
negative biases (14 %–50 %, with a standard deviation of
12 %) remain over southern Africa in austral winter. The
inadequate corrections of tropospheric NO2 columns could
be attributed to the insufficient model resolution, short
chemical lifetime of NOx , and biases in the simulated
chemical equilibrium state. Spatial resolutions higher than
the MIROC-Chem-H resolution (1.1◦× 1.1◦) would be
useful to represent emissions and pollutants over individual
sources.

4.3 CO

Figure 10 compares the latitudinal variations in surface CO
concentration against the WDCGG observations from 59 sta-
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tions. All the models underestimate the zonal and annual
mean CO concentrations by 25–70 ppb in the NH extrat-
ropics and by 10–60 ppb in the tropics (expect for MIROC-
Chem and MIROC-Chem-H), as in most other CTMs (Shin-
dell et al., 2006). In the SH extratropics, GEOS-Chem under-
estimates surface CO by 8–15 ppb, whereas MIROC-Chem
and MIROC-Chem-H overestimate it by 5–20 ppb. Data as-
similation reduced most of the model biases for the globe,
except for the remaining negative model biases in the tropics
in GEOS-Chem and AGCM-CHASER. The different analy-
sis results of CO at high latitudes could mainly reflect differ-
ences in atmospheric transport from midlatitudes among the
model. The effect of data assimilation is limited because of
the lack of measurements at high latitudes.

Figure 11 compares the seasonal variation in surface CO
for the selected stations. All the models captured the ob-
served seasonal variations well, except for relatively low
temporal correlations (Table 4) over Barbados (r = 0.58–
0.85) and Ascension Island (r = 0.72–0.94). In the NH ex-
tratropics, for most stations, all the models reveal too low
CO throughout the year, with larger biases in boreal winter
than in summer in the models. The summertime negative bi-
ases are largest in GEOS-Chem. In the tropics, the rapid in-
creases in CO associated with biomass burning, e.g., in Octo-
ber over Barbados and in September over Ascension Island,
are underestimated by all the models. In the SH extratropics,
a large multi-model spread in the simulated CO exists in aus-
tral winter–spring, likely due to the different representation
of poleward transport.

The reductions in the model negative bias in the NH owing
to data assimilation can be found throughout the year, with
annual mean bias reductions of 65 %–76 % for Utqiaġvik,
41 %–74 % for Cold Bay, and 57 %–94 % for Iceland, with
MIROC-Chem-H exhibiting smaller reductions. The insuf-
ficient corrections in MIROC-Chem-H suggest the need to
optimize the settings for the assimilation of total column re-
trievals for the higher-resolution system. Further efforts are
clearly needed for improving the CO analyses in MIROC-
Chem-H. The negative model biases are also reduced at NH
low latitudes, i.e., by 68 %–94 % for Bermuda, 48 %–97 %
for Midway, and 22 %–63 % for Mauna Loa. Over Barba-
dos, data assimilation corrects the timing of the maximum
(in March) and minimum (in August) concentrations and im-
proved the temporal correlation from 0.58–0.85 to 0.75–0.85
in all the models, whereas the observed peak in October is
not represented by all the systems. In the SH, the multi-
model spread is greatly reduced by data assimilation, while
showing improved agreements with the observations except
for excessively high concentrations over Ascension Island in
June–July in MIROC-Chem-H.

The vertical gradients of CO differ largely among the mod-
els (Fig. 12a), with the largest decrease in the annual tropi-
cal mean concentrations with height in GEOS-Chem from
the lower to upper troposphere. The sharp decrease could
be associated with weaker deep convection. In addition, the

larger OH concentrations in GEOS-Chem (Fig. 12b) suggest
stronger chemical destruction in the middle and upper tro-
posphere. In models other than GEOS-Chem, the tropical
mean concentrations of CO show a clear maximum around
200 hPa. After data assimilation, the CO gradient became
even larger in GEOS-Chem, in association with a large in-
crease in OH in the upper troposphere. In other models, the
data assimilation introduced sharper decreases in CO from
about 850 to 600 hPa, as a consequence of the enhanced
chemical destructions (i.e., the increased OH) at those levels.
The increase in OH by data assimilation is larger in MIROC-
Chem-H than in other models in the middle and upper tro-
posphere, which have influenced the vertical profile of CO
substantially.

In summary, the tropical annual mean CO gradient be-
tween the surface and 400 hPa is decreased by 1 %–7 %,
whereas the annual mean OH concentration is increased by
7 %–20 % in the lower troposphere and 15 %–120 % in the
middle and upper troposphere in all the models. Therefore,
the multi-constituent data assimilation provides strong con-
straints on the vertical profiles of CO and other species
mainly through substantial changes in OH. Changes in OH
are further discussed in Sect. 4.4. It is also suggested that,
even after the multi-constituent data assimilation, the repre-
sentations of the vertical profiles can differ among the mod-
els, reflecting both the different model configurations, e.g., in
terms of deep convection and chemical reaction rates, and the
lack of direct observational constraints on the vertical pro-
files.

4.4 OH

Because of the simultaneous assimilation of multiple-species
data, the global distribution of various species, including
OH, is modified considerably in the assimilation systems.
The concentration of OH is directly related to the concentra-
tions of species determining the primary production (ozone
and H2O), removal (CO and CH4), and regeneration of OH
(NOx). Figure 13 compares the global distributions of an-
nual and tropospheric mean OH concentrations (averaged
between the surface and 300 hPa). The multi-model com-
parisons reveal common characteristics such as higher con-
centrations in the tropics than in the extratropics and en-
hanced concentrations over central Africa, Indian Ocean,
south and Southeast Asia, and tropical Atlantic. As summa-
rized in Table 5, the simulated OH is higher in GEOS-Chem
and AGCM-CHASER than other models over most of the
major polluted areas such as eastern China, India, western
Europe, India, Southeast Asia, and Africa. The multi-model
standard deviation of OH is large over central Africa, north-
ern India, and around the Himalayas, Malay peninsula, west-
ern United States, Brazil, and over the southern tropics such
as the eastern Pacific and northern Australia (right-top figure
in Fig. 13). The zonal mean OH from the tropics to subtropics
is lower in MIROC-Chem-H than in other models by approx-
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Figure 10. Latitudinal distributions of zonal mean surface CO concentrations (ppbv) averaged over the WDCGG surface measurement sites
from the observations (black), control runs (blue), and data assimilation analyses (red).

Figure 11. Time series of monthly mean surface CO concentrations (ppbv) from the WDCGG observations (black solid line), control runs
(colored dotted lines), and data assimilation analyses (colored solid lines). The ±1σ deviation among the four models (i.e., model spread) is
shown in gray for the control runs and in light blue for the data assimilation results.

Figure 12. Vertical profiles of (a) annual mean CO concentrations
and (b) annual mean OH concentrations averaged between 15◦ S
and 15◦ N, obtained from the control runs (dotted lines) and data
assimilation analysis (solid line). For CO (a), the relative ratio to
the mean surface concentrations is shown. For OH (b), the unit is
106 molecules cm−3.

imately 30 %–45 % (Fig. 14). The zonal mean OH shows a
strong latitudinal gradient around the subtropics. The ratio of
OH in the NH tropics–subtropics (Equator–30◦ N) to the NH
midlatitudes (30–60◦ N) ranges from 1.42 (GEOS-Chem) to
1.71 (MIROC-Chem).

Data assimilation largely modified global OH distribu-
tions in all the systems. The analyzed OH fields and data
assimilation increments are often regionally localized, which
demonstrates the importance of accurately representing dif-
ferent chemical regimes and local emissions for each re-
gion, for estimation of both regional and global OH dis-
tributions. The annual mean OH is increased in the SH
extratropics by 10 %–25 % in GEOS-Chem and AGCM-
CHASER and by 30 %–50 % in MIROC-Chem and MIROC-
Chem-H, probably because of the increased ozone. MIROC-
Chem-H shows large increases in OH by 20 %–40 % over
Africa, Southeast Asia, the tropical Pacific, and central and
South America, associated with the increased ozone and de-
creased CO. The NH exhibits large inter-model differences

Atmos. Chem. Phys., 20, 931–967, 2020 www.atmos-chem-phys.net/20/931/2020/
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Table 5. Annual and regional mean OH concentration at 700 hPa. Units are 106 molecules cm−3. The results of the control run are also
shown in brackets. The results are shown for individual models, the multi-model mean (mean ±1σ ), and integrated analysis (xm± σ

2
m).

Changes in the multi-model spread due to data assimilation (1spread, %) are also shown.

E China E USA Europe India SE Asia S America N Africa C Africa S Africa

GEOS-Chem 1.9 1.5 1.2 2.5 2.3 1.2 2.1 2.1 2.2
(2.2) (1.8) (1.5) (2.5) (2.2) (1.1) (2.1) (2.1) (2.1)

AGCM-CHASER 2.4 1.7 1.4 2.6 2.2 1.2 2.3 1.9 2.4
(2.5) (1.7) (1.4) (2.6) (2.0) (1.2) (2.1) (1.6) (2.1)

MIROC-Chem 2.1 1.5 1.3 2.4 2.1 1.3 2.4 1.9 2.1
(1.9) (1.3) (1.1) (2.1) (1.8) (1.1) (2.0) (1.5) (1.7)

MIROC-Chem-H 1.6 1.3 1.1 1.9 1.6 1.1 1.8 1.7 1.7
(1.4) (1.1) (1.0) (1.7) (1.3) (0.7) (1.4) (1.3) (1.1)

Multi-model mean 2.0± 0.3 1.5± 0.2 1.3± 0.1 2.3± 0.3 2.0± 0.3 1.2± 0.1 2.1± 0.2 1.9± 0.2 2.1± 0.3
(2.0± 0.4) (1.5± 0.3) (1.3± 0.2) (2.2± 0.3) (1.8± 0.3) (1.0± 0.2) (1.9± 0.3) (1.6± 0.3) (1.8± 0.4)

1spread (%) −31 −41 −44 −25 −27 −58 −16 −50 −24

Integrate analysis 2.0± 0.2 1.5± 0.1 1.3± 0.1 2.5± 0.2 2.2± 0.2 1.2± 0.1 2.1± 0.1 2.0± 0.2 2.3± 0.2

Figure 13. Global distributions of annual mean OH concentrations (106 molecules cm−3) averaged over the troposphere (from the surface
to 300 hPa) from the control runs (upper panels), data assimilation analyses (middle panels), and differences between the data assimilation
analyses and the control runs (bottom panels, %). The figures on the right show the standard deviation among the four systems for the control
runs (right top) and data assimilation analyses (right middle). The right bottom figure shows the difference in the multi-model standard
deviation between the data assimilation analyses and the control runs (106 molecules cm−3).

in OH increments, decreasing in GEOS-Chem by 10 %–
40 % with large increments over east Asia, the United States,
and Europe and increasing in MIROC-Chem and MIROC-
Chem-H by 15 %–30 % and by 20 %–40 % over the conti-
nents, respectively. The negative increments in GEOS-Chem
are likely associated with the increased CO and decreased
NOx , whereas the positive increments in MIROC-Chem and
MIROC-Chem-H could be attributed to the increased ozone
and increased NOx . The NH ratio of OH of the tropics–
subtropics (Equator–30◦ N) to midlatitudes (30–60◦ N) is in-

creased in all the models by 1 %–15 %, with the largest in-
crease in GEOS-Chem (from 1.42 to 1.64).

Because of the data assimilation, the multi-model spread
of OH is reduced by 24 %–58 % over the major polluted ar-
eas of the globe such as over Europe (44 %), China (31 %),
the United States (41 %), central Africa (50 %), and South
America (58 %). At the local scale, the multi-model spread is
reduced largely over central eastern Africa (up to 55 %), as-
sociated with adjustments made to biomass burning plumes,
and over Indonesia (up to 40 %) and the western US (up
to 55 %), corresponding to large changes in local NOx and

www.atmos-chem-phys.net/20/931/2020/ Atmos. Chem. Phys., 20, 931–967, 2020
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Table 6. Interhemispheric gradient (NH /SH) and global mean (with area weight) concentration (106 molecules cm−3) of tropospheric mean
OH (averaged between the surface and 300 hPa) from the control and data assimilation runs. The results are shown for individual models and
the multi-model mean (mean±1σ ).

GEOS-Chem AGCM-CHASER MIROC-Chem MIROC-Chem-H Multi-model

NH /SH ratio Model 1.30 1.36 1.29 1.31 1.29± 0.03
assimilation 1.17 1.23 1.18 1.21 1.18± 0.03

Global mean Model 1.31 1.23 1.13 0.82 1.12± 0.18
Assimilation 1.31 1.31 1.34 1.09 1.26± 0.10

CO emissions and consequently in ozone production. The
improved multi-model consistency suggests that the multi-
constituent data assimilation provides a more similar repre-
sentation of the tropospheric chemistry system, by remov-
ing model errors in the relevant species in the individual sys-
tems. The obtained OH fields, which are less dependent on
individual model performance due to reduced model errors
in relevant species, demonstrate the potential of the multi-
constituent (ozone, CO, and NO2) data assimilation for var-
ious atmospheric chemistry studies including emission in-
version and methane budget analyses. Because the chemical
lifetimes of NOx and CO are affected by the amount of OH,
these changes once more suggest the importance of the si-
multaneous optimization of the concentration and emissions
on the entire tropospheric chemical system and the emission
estimates.

The integrated analysis xm shows slightly higher OH con-
centrations than the multi-model means for most regions,
mainly reflecting the largest OH spreads and smallest OH
concentrations in MIROC-Chem-H among the models. The
analysis spread of OH is determined by analysis spreads in
various species such as ozone (see Sect. 3.2) during model
forecasts. Because of the different chemical mechanisms and
model responses to given perturbations (see Sect. 5), OH
spreads differed by factor of up to 2.5 among the models for
the regional means. The integrated uncertainty σ 2

m is smaller
than the multi-model spreads by 20 %–50 % for most re-
gions.

As summarized in Table 6, the north-to-south gradient of
the tropospheric OH (averaged below 300 hPa) decreased
owing to data assimilation in all the models, i.e., from 1.29–
1.36 (1.32± 0.03) to 1.17–1.23 (1.19± 0.03), as similarly
suggested by our previous analysis (Miyazaki et al., 2015).
The NH /SH ratio of OH simulated from the four mod-
els is in the range of 1.28± 0.10 in the ACCMIP multi-
model estimates (Naik et al., 2013), whereas the values
from the data assimilation runs are significantly lower. The
data assimilation estimates are in better agreement with an
observational estimate (0.97± 0.12) obtained using methyl
chloroform observations (Patra et al., 2014). The signifi-
cant changes in the global OH distributions, which are com-
mon to all the models, are important in propagating the ob-
servational information between various species and mod-

ulating the chemical lifetimes of many species, thus im-
proving emission inversion. The simultaneous optimization
of emissions and concentrations was essential to modify
the global OH distributions. The increases (by 1 %–32 %)
in the global mean OH concentrations by data assimila-
tion in all the models, with the multi-model mean values
of 1.12± 0.18× 106 molecules cm−3 in the control runs and
1.26±0.10×106 molecules cm−3 in the data assimilation as
summarized in Table 6, suggest overestimated CH4 lifetimes
in the model simulations.

5 Ozone and NO2 response to NOx emissions

5.1 Multi-model comparisons

From a system analysis perspective, one of the fundamen-
tal questions in atmospheric chemistry is the sensitivity of a
constituent like ozone to changes in surface emissions such
as NOx emissions. With recent advances in estimating prein-
dustrial ozone (Yeung et al., 2019), model sensitivities are
the primary drivers of chemistry–climate estimates of quan-
tities such as ozone radiative forcing (Bowman et al., 2013,
Myhre et al., 2013). While these simulations describe rela-
tively slow, equilibrium responses, data assimilation incre-
mental updates provide statistics on “fast” responses within
the short data assimilation windows. By simultaneously up-
dating ozone and NOx emissions, multi-constituent data as-
similation can yield insight into this fundamental quantity.
We explore this potential by regressing both the ozone and
NO2 increments with respect to the NOx emission analysis
increments using the daily mean data assimilation outputs at
each grid point.

As summarized in Table 7, the response of ozone and NO2
analysis to emission perturbations (i.e., data assimilation in-
crements) is largely different among the models. The NO2
surface response to NOx emissions is well correlated (corre-
lation >=0.93 for all models) but the response differs by al-
most a factor of 2 between GEOS-Chem and MIROC-Chem-
H. Globally, this diversity holds between surface ozone con-
centration and NOx emission increments (1O3

1
ENOx) for

these two models. However, the AGCM-CHASER ozone–
NOx emissions response (1.5 ppb per (10−11 kg N m−2 s−1))

Atmos. Chem. Phys., 20, 931–967, 2020 www.atmos-chem-phys.net/20/931/2020/
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Table 7. Linear regression of changes in surface NOx emissions (10−11 kg N m−2 s−1) and surface concentrations of ozone and NO2 (ppb)
by data assimilation in May 2007 over areas with NOx emission changes greater than 5×10−13 kg N m−2 s−1 in the four models. The results
for regions without strong NOx emission changes (greater than 3× 10−11 kg N m−2 s−1 that could suffer from dilution effects) are shown
in brackets.

Slope Intercept Correlation
(ppb per (10−11 kg N m−2 s−1)) (ppb)

Ozone GEOS-Chem 1.2 (1.8) 2.2 (2.2) 0.34 (0.34)

AGCM-CHASER 1.5 (3.6) 3.6 (3.0) 0.42 (0.45)

MIROC-Chem 1.0 (2.5) 3.0 (2.7) 0.35 (0.42)

MIROC-Chem-H 0.6 (1.3) 4.1 (3.9) 0.25 (0.42)

NO2 GEOS-Chem 0.80 0.01 0.93

AGCM-CHASER 0.56 0.01 0.96

MIROC-Chem 0.54 0.01 0.94

MIROC-Chem-H 0.44 0.04 0.94

is the largest among all the models. On the other hand, the
correlation between surface ozone and NOx emissions is rel-
atively weak (correlation< 0.43), reflecting the much more
complicated chemical and dynamical relationship. For pol-
luted areas (greater than 3× 10−11 kg N m−2 s−1, as shown
in the brackets in Table 7), the largest response is AGCM-
CHASER and MIROC-Chem, which is greater than the other
two models by 40 %–180 %, with similar intercepts and cor-
relations. The multi-model diversity reflects the different rep-
resentation of NOx and VOC as well as dynamics, lead-
ing to different ozone production efficiencies. In the case
of GEOS-Chem and MIROC-Chem-H, there appears to be a
clearer relationship between 1NO2

1ENOx
and 1O3

1ENOx
, suggesting

that NOx chemistry plays a more dominant role in ozone for-
mation than other factors. By separating these two responses,
MOMO-Chem is able to quantify the responses of forward
models with unique diagnostics, without making any sensi-
tivity calculations.

Different model responses would directly impact the
Kalman gain in Eq. (4), leading to a more efficient model
error reduction. Given the same predefined minimum values
for the surface NOx emission perturbation (see Sect. 2.6), a
larger ozone analysis uncertainty (through a larger forecast
model spread) would be obtained in models with a stronger
ozone response to NOx emissions. In fact, stronger ozone re-
sponse (Table 7) and larger analysis uncertainty (Fig. 2b) are
consistently found in AGCM-CHASER and MIROC-Chem.
Meanwhile, the ozone response to a given perturbation is de-
pendent on the background condition because of the nonlin-
ear O3–NOx chemistry (e.g., Zaveri et al., 2003). The multi-
constituent framework allows us to evaluate model ozone re-
sponse in a realistic condition while considering possible er-
ror ranges in precursor emissions using emissions analysis
increments (see Sect. 6). The ozone analysis increments be-

Figure 14. Latitudinal distributions of annual and zonal mean
OH concentrations (106 molecules cm−3) averaged over the tropo-
sphere obtained from the control runs (dotted lines) and data assim-
ilation analyses (solid lines) for the four systems.

came substantially smaller in all the models for most cases
by including the emission optimization, and the increments
could be regarded as inherent and persistent model biases of
individual models. Therefore, a systematic investigation of
model ozone response and analysis increment in the multi-
constituent data assimilation framework could benefit eval-
uation of future prediction of the chemistry–climate system
as a hierarchical emergent constraint that uses relationships
between future and current climate states to constrain projec-
tions of climate response with observations (Bowman et al.,
2018). They could also be useful for making effective ozone
control strategies.

In addition, tropospheric ozone shows strong correlations
with other species such as CO (Zhang et al., 2006) over re-
gions such as continental outflow regions. The relationship
can be included in the state vector to improve the tropo-
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spheric ozone analysis. The uncertainty information in the
CO response to ozone obtained from the MOMO-Chem can
be expected to provide useful information on model diagnos-
tics and future predictions.

5.2 Implications for chemistry model predictions

By applying linear regressions to the multi-model integrated
fields (see Sect. 3.3), we evaluated model responses of sur-
face ozone and NO2 concentrations to NOx emissions. We
first produced the daily multi-model integrated fields at
1.1◦× 1.1◦ resolution and then applied them to linear re-
gressions. As shown by Fig. 15, the estimated model re-
sponses from the MOMO-Chem integrated fields provide
unique information on fast responses to NOx emissions.
The surface NO2 response exhibits a large seasonal vari-
ation in the NH, with a maximum value of about 2 ppb
per (10−11 kg N m−2 s−1) in January, reflecting the longer
chemical lifetime of NOx in winter. The rapid increases
from September to December and decreases from January
to March can be associated primarily with variations in tem-
perature, OH, and NO2 photolysis. The annual mean slope is
about 40 % smaller in the tropics than in the NH (0.70 vs.
1.15 ppb per (10−11 kg N m−2 s−1)) because of the shorter
chemical lifetime of NOx in the tropics. The surface NO2
and NOx emissions in the integrated fields are well corre-
lated (coefficients> 0.9) throughout the year in both the NH
and the tropics. The inter-model differences (red shading) in-
crease in winter in the NH, with a maximum standard devia-
tion of 35 % in January, implying strong model dependence
of surface NO2 given the same NOx emissions.

The ozone response shows a seasonal cycle opposite to the
NO2 response in the NH. It gradually increased from Jan-
uary to August by about 0.4 ppb per (10−11 kg N m−2 s−1)
per month. It reaches 2.4 ppb per (10−11 kg N m−2 s−1) in
August with relatively large coefficients (0.3–0.6) in May–
September. The large ozone response implies substantial
photochemical productions of surface ozone over polluted
areas in summer. Then, the slope decreases rapidly from Au-
gust to October by about 1.1 ppb per (10−11 kg N m−2 s−1)
per month, and it becomes negative in winter but with low
coefficients (−0.3–0.2). The negative slopes, with a mini-
mum value of−0.6 ppb per (10−11 kg N m−2 s−1) in January,
could be driven by the dilution effects over highly polluted
areas.

In the tropics, the ozone response is stronger than in
the NH (3.1 vs. 0.6 ppb per (10−11 kg N m−2 s−1) for an-
nual mean), with the strongest responses of about 4.3 ppb
per (10−11 kg N m−2 s−1) in March and October. The differ-
ent ozone production efficiency implies that any latitudinal
shifts in NOx emissions from the extratropics to the trop-
ics would lead to increases in global tropospheric ozone,
as suggested by Zhang et al. (2016), while showing strong
seasonality. Our analysis indicates that the mean ozone re-
sponse is comparable between the NH and the tropics in Au-

Figure 15. Time series of model response of surface ozone and
NO2 concentrations to NOx emissions estimated from linear regres-
sions using the multi-model integrated fields in 2007 over areas with
NOx emission changes greater than 5×10−13 kg N m−2 s−1 for the
Northern Hemisphere (20–60◦ N, red line) and the tropics (20◦ S–
20◦ N, blue line). The ±1σ deviation among the four models (i.e.,
model spread) is shown in light red for the NH and in light blue for
the tropics. The multi-model mean value (i.e., an average of indi-
vidual estimates) is shown by white lines. The correlation is shown
by dashed lines.

gust and September. The seasonal variation in the tropics is
likely associated with biomass burning events (e.g., Bow-
man et al., 2009; Jones et al., 2009; Parrington et al., 2012),
with enhanced ozone responses over Southeast Asia during
February–June (2.3–3.7 ppb per (10−11 kg N m−2 s−1)), over
central America and tropical South America during April–
July (2.8–5.3 ppb per (10−11 kg N m−2 s−1)), over central
Africa in March (5.5 ppb per (10−11 kg N m−2 s−1)) and Oc-
tober (7.1 ppb per (10−11 kg N m−2 s−1)), and over India in
March and October (5.1 ppb per (10−11 kg N m−2 s−1)). Al-
though the surface ozone and NOx emissions are well cor-
related in the multi-model integrated analysis throughout
the year (coefficients> 0.5), the large multi-model spreads
(25 %–55 %) suggest that individual models have large un-
certainty in representing strong ozone productions, for in-
stance, associated with VOC emissions and chemistry that
could result in different chemical regimes. The correlations
of 1ENOx and 1O3 among the models estimated at each
point at each day were strongly dependent on season and lo-
cation (not shown), which also provide information on the ro-
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bustness (i.e., multi-model diversity) of the estimated ozone
and NO2 responses for each location and season.

Finally, the model responses differ significantly between
the MOMO-Chem integrated fields (solid blue and red lines)
and the mean of the individual model estimates obtained
by averaging the model responses from individual model
fields (solid white lines), especially when the model re-
sponses are strong. The multi-model integrated fields ex-
hibit about a 20 % larger NO2 response in December and
about a 70 % larger ozone response in August than the mean
of the individual model estimates in the NH. In the tropics
the monthly ozone response is up to about 60 % larger in
the multi-model integrated analysis. The different responses
reflect non-Gaussian distributions of the individual model
fields. The results imply that the observationally constrained,
multi-model integrated fields provide fundamentally differ-
ent fast chemical processes than those in the individual mod-
els. Meanwhile, the uncertainty-weighted multi-model in-
tegrated ozone fields showed closer agreements with inde-
pendent observations than the multi-model averages in the
lower troposphere (see Sect. 4.1.2). This suggests that the
MOMO-Chem framework provides improved estimates of
the atmospheric states for many cases. With further investiga-
tions of the chemical relationships in the integrated fields, the
MOMO-Chem framework would provide insights into ozone
production processes to inform chemical predictions through
relationships such as emergent constraints (Bowman et al.,
2018). This example demonstrates the unique capability of
the MOMO-Chem framework for various applications.

6 Estimated emissions

6.1 NOx emissions

As summarized in Table 8 and shown in Fig. 16, the global
total NOx emissions are increased by 12 % in GEOS-Chem,
40 % in AGCM-CHASER, 25 % in MIROC-Chem, and 30 %
in MIROC-Chem-H due to data assimilation. The a posteri-
ori global total emissions vary from 39.1 TgN (GEOS-Chem)
to 51.9 TgN (AGCM-CHASER) with the multi-model mean
of 47.6± 5.8 TgN, in contrast to the a posteriori global
total emissions varying from 37.1 TgN (GEOS-Chem) to
42.4 TgN (MIROC-Chem-H). The regional NOx emissions
are increased in the models other than GEOS-Chem over the
United States (with annual regional total emission increases
of 10 %–22 %), eastern China (2 %–34 %), and western Eu-
rope (7 %–23 %). The a posteriori emissions over eastern
China in these models (5.8–6.4 TgN) are closer to the HTAP-
v2 2010 inventory (5.7 TgN) than those from EDGAR v4.2
(4.2 TgN). The emissions over Europe are largely increased
in MIROC-Chem-H (by 23 %) and AGCM-CHASER (by
24 %). In GEOS-Chem, the emissions are decreased over
most parts of eastern China (by 21 % for regional total emis-
sions), the United States (by 9 %), and western Europe (by

21 %), where the a posteriori emissions are obviously lower
than the other estimates. As shown in Fig. 17, the multi-
model mean of the a posteriori emissions shows strong NOx
emissions over major polluted areas, while the multi-model
spread is large for eastern China, the eastern United States,
Mexico City, western Europe, and South Africa. The multi-
model spread of the a posteriori regional NOx emissions is
smaller than the assumed a priori emission uncertainty (i.e.,
by 40 %) for all the polluted areas (Table 8), while the a pri-
ori emission spreads could influence the obtained a posteri-
ori emission spreads. From sensitivity calculations, we con-
firmed that the daily emission updates greatly reduce the de-
pendence of the a priori emissions for many regions (now
shown).

For biomass burning areas, the emissions are increased in
all the models by 17 %–25 % over Southeast Asia, by 13 %–
30 % over northern Africa, and by 4 %–39 % over central
Africa. The positive increments over northern and central
Africa are smallest in MIROC-Chem-H, likely due to the use
of updated biomass burning emission inventories (GFED v4)
as well as updated NO2 retrievals. The a posteriori emissions
for the biomass burning areas are similar between the four
systems: 0.6–0.8 TgN (16 % standard deviation) for South-
east Asia, 2.9–3.2 TgN (4 %) for northern Africa, and 2.2–
2.8 TgN (10 %) for central Africa. Over South Africa, the
emissions are increased by 29 %–50 % in all the systems,
with a large multi-model spread of the a posteriori emissions
(0.4–0.9 TgN, 31 % standard deviation).

The seasonal variations in NOx emissions are largely
modified by data assimilation for many regions, with com-
mon features for all four systems (Fig. 18). Over eastern
China, the emissions in early summer (June) and winter
(November–January) are enhanced in all the systems, which
could be associated with emissions from soils and the use
of wintertime heating, respectively. The magnitude of the
summertime enhancement differs among the models, which
could reflect the different chemical lifetime of NOx under
strong photolysis conditions. Over the United States and Eu-
rope, large enhancements in late spring and early summer
and subsequently in the seasonal amplitude are commonly
found in all the systems. Also, the timing of maximum emis-
sions in summer moves forward by a few months (from 1
to 2 months over eastern China and Europe and from 2 to 3
months over the United States) due to data assimilation in all
the systems, likely due to underestimated soil emissions in
early summer, which has also been suggested by Oikawa et
al. (2015).

Over India, the a posteriori emissions reveal strong in-
creases from April to June in all the systems, which is likely
associated with open biomass burning that is not represented
by the bottom-up inventories (Venkataraman et al., 2006).
Over Southeast Asia, the emissions are mostly increased
throughout the year in all the systems, with large increases
in the biomass burning season (boreal spring), except in
MIROC-Chem-H. Over South America, the emissions in the
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Figure 16. Global distributions of annual mean surface NOx emissions (10−11 kg N m−2 s−1) and surface CO emissions
(10−10 kg CO m−2 s−1) for 2007. The a posteriori emissions and analysis increment (a posteriori minus a priori emissions) are shown.

Figure 17. Same as Fig. 16, but for the multi-model mean and spread.

www.atmos-chem-phys.net/20/931/2020/ Atmos. Chem. Phys., 20, 931–967, 2020



958 K. Miyazaki et al.: Multi-model multi-constituent assimilation

Figure 18. Time series of monthly total regional surface NOx emissions (Tg N yr−1) obtained from the a priori emissions (dotted lines) and
the a posteriori emissions (solid lines) for 2007 for the four systems. AGCM-CHASER and MIROC-Chem use the same a priori emissions.
The±1σ deviation among the four models (i.e., model spread) is shown in gray for the control runs and in light blue for the data assimilation
results.

biomass burning season (August–September) are decreased
by 30 %–50 % due to data assimilation in all the systems.
The negative increments suggest an overestimation of emis-
sions by forest fires in dry conditions in the GFED v2, v3,
and v4 inventories, as similarly suggested by Castellanos et
al. (2014) for the GFED v3 inventory. In contrast, the emis-
sions are increased in the biomass burning off-season by
30 %–60 % in all the systems.

Over northern Africa, in the biomass burning season (bo-
real winter), fire-related emission factors in the GFED v3
inventory (AGCM-CHASER, MIROC-Chem) are suggested
to be too low by 20 %–30 %, whereas those in the GFED
v2 (GEOS-Chem) and v4 (MIROC-Chem-H) inventories are
too high by 50 % and by 10 %, respectively. The multi-model
consistency is high throughout the year over northern Africa.
Over central Africa, the emissions in the biomass burning
season (July–September) are increased by 30 %–45 % from
the GFED v2 and v3 inventories and decreased by 20 % from
the GFED v4 inventory.

The differences in the a posteriori emissions could be ex-
plained by the different model configurations, such as the

chemical lifetime of NOx , vertical mixing, lightning NOx
sources, and model resolutions for many regions. The ob-
tained inter-model differences are generally larger for in-
dustrialized areas (12 %–31 %) than biomass burning areas
(4 %–21 %), suggesting substantial influences of different ur-
ban chemistry configurations and/or model settings for an-
thropogenic NOx emissions (e.g., NO2 : NO ratio). Large un-
certainties in chemical NOx loss have strong effects on the
simulated NOx lifetime and the accuracy of top-down NOx
source inversion (Lin et al., 2012; Stavrakou et al., 2013).

As discussed in Sect. 5, the NO2 response to NOx emis-
sions ( 1NO2

1ENOx
) is stronger in GEOS-Chem than in other

models probably associated with a weaker chemical NOx
loss. This suggests that the same levels of tropospheric NO2
columns can be explained by smaller amounts of NOx emis-
sions, and this could explain the lower a posterior NOx emis-
sions evaluated in this model with respect to other models.
The multi-model differences in simulated NOx levels could
also explain parts of the diversity in model ozone response
to NOx emissions (Sect. 5). In addition, processes such as
vertical mixing and lightning NOx production are strongly
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model–dependent and influence the responses of NO2 to
NOx emissions. Meanwhile, the updated NO2 retrievals were
assimilated only in MIROC-Chem-H, whereas the diurnal
emission variability was optimized from data assimilation
in MIROC-Chem and MIROC-Chem-H. These differences
could also lead to model dependence on emission estimates
and model responses to the updated emissions. To fully un-
derstand the inter-model differences of the a posteriori emis-
sions, their influence needs to be explored.

6.2 CO emissions

The global total CO emissions are increased by 50 % in
GEOS-Chem, 51 % in AGCM-CHASER, 12 % in MIROC-
Chem, and 25 % in MIROC-Chem-H due to data assim-
ilation, with a large diversity in the estimated global to-
tal emissions (943.3–1376.9 TgCO, with 16 % multi-model
standard deviation), as summarized in Table 8. The CO emis-
sions are increased by 18 %–119 % over eastern China, 9 %–
122 % over the United States, and 37 %–146 % over Europe
in all the models, suggesting significant underestimations of
anthropogenic CO emissions in the bottom-up inventories
used as a priori emissions. Using the same a priori emis-
sion data sets, the positive increments are larger in AGCM-
CHASER than in MIROC-Chem over eastern China, western
Europe, and the United States, likely associated with under-
estimated (or overestimated) chemical production (destruc-
tion), as similarly discussed by Jiang et al. (2015). In fact,
AGCM-CHASER reveals relatively high OH concentrations
corresponding to large CO emissions (see Table 5) over these
regions. The multi-model spread of the a posteriori emissions
is large over these industrialized regions (13 %–32 %), with
the largest spreads over central eastern China (Fig. 17).

The a posteriori emissions exhibit a wintertime peak over
eastern China in the models other than MIROC-Chem and
over Europe other than GEOS-Chem (Fig. 19). Stein et
al. (2014) commonly found that large corrections are needed
for CO emissions in winter–spring seasons for industrial-
ized areas. Because the chemical destructions are weak in
these seasons, the results suggest underestimations in the
bottom-up inventories rather than model errors in OH. Mean-
while, the distinct differences in the seasonality as well as
mean strength of the a posteriori emissions highlight strong
model dependence of CO emission estimations for the an-
thropogenic emission regions.

Over India, a pronounced peak in boreal spring is com-
monly introduced, and the a posteriori emissions show simi-
lar seasonality between NOx and CO in all the systems. Over
Southeast Asia, the annual total emissions are decreased by
3 %–11 % in all the models, with an enhanced multi-model
discrepancy in the biomass burning season. Over South
America, the annual total emissions are decreased by 27 %–
41 % in the models except for MIROC-Chem-H, with large
reductions in the biomass burning season. The results suggest
a common overestimation problem in fire-related emission

factors for both CO and NOx (see Sect. 6.1) in GFED v2 and
v3 over South America. In African regions, although the an-
alyzed seasonal variations are similar, the annual total emis-
sions reveal large discrepancies among the models (20 %–
35 %). In comparison with the averaged values in other mod-
els, the estimated emissions are larger by 28 % in GEOS-
Chem over northern Africa, by 27 % in MIROC-Chem-H
over central Africa, and by 40 % in GEOS-Chem over south-
ern Africa. The multi-model spread of the a posteriori emis-
sions is large over major biomass burning regions, such as
eastern central Africa, northern Thailand, and the Amazon
(Fig. 17). The substantial inter-model differences highlight
the importance of chemistry and dynamics in understanding
the carbon budget over these regions.

The inter-model differences in data assimilation adjust-
ments and a posteriori emissions are generally larger for CO
than for NOx , which can be associated with different repre-
sentations of atmospheric transports such as convective trans-
port and vertical mixing (e.g., Jiang et al., 2015) because of
the longer chemical lifetime of CO. Also, differences in the
chemical production of CO from the oxidation of NMHCs
and the chemical lifetime of CO, which were not optimized
by the data assimilation, could lead to large multi-model dis-
crepancies in CO simulations and emission estimates, as sim-
ilarly discussed by Gaubert et al. (2016). Thus, the differ-
ences in various factors can enhance the multi-model dis-
crepancies in the a posteriori CO emissions.

Our results suggest requirements for further development
of the CO emission optimization framework to obtain more
consistent estimates, for instance, by using a longer assimi-
lation window and a larger ensemble size. The data assimi-
lation windows employed (2–6 h) are clearly insufficient to
optimize surface CO emissions using remote measurements
while considering the influence of atmospheric transports.
The estimated CO emissions were also sensitive to the choice
of other parameters such as localization length and covari-
ance inflation factor, while optimal values of these parame-
ters are expected to differ among the models mainly associ-
ated with different representations of atmospheric transport
among the models. Optimizing these parameters for individ-
ual models would thus also be important. Meanwhile, adding
observational constraints, for instance on NMHC emissions
from formaldehyde measurements (e.g., Stavrakou et al.,
2009), and considering interspecies correlations (e.g., be-
tween NOx and CO) would help to improve the data as-
similation analysis and multi-model consistency. Some of
the increments seem to be inadequate in MIROC-Chem-H,
which could suggest different optimal settings requirements
for the assimilation of total column retrievals and for higher-
resolution models.
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Figure 19. Same as in Fig. 18, but for monthly total regional surface CO emissions (Tg CO yr−1).

7 Conclusions and discussion

We developed the MOMO-Chem framework to integrate
a portfolio of data assimilation analyses obtained using
forward CTMs (GEOS-Chem, AGCM-CHASER, MIROC-
Chem, MIROC-Chem-H) in a state-of-the-art ensemble
Kalman filter data assimilation system. The data assimila-
tion was used to simultaneously optimize both chemical con-
centrations and emissions of multiple species through inges-
tion of a suite of measurements (ozone, NO2, CO, HNO3)
from multiple satellite sensors. The framework was used
to demonstrate the importance of the performance of fore-
cast models for tropospheric chemistry data assimilation and
to provide multi-model integrated information on the tropo-
spheric chemistry system.

The forecast performance of the models differed for many
species because of the different model configurations. In the
absence of data assimilation, the multi-model discrepancies
and forecast model errors for ozone against the ozonesonde
observations were obvious, with annual mean biases rang-
ing from −5.1 to 1.4 ppbv (from −6.2 to −0.7 ppbv) in the
lower troposphere and from −4.0 to 16.1 ppbv (from 2.8 to
20.5 ppbv) in the middle and upper troposphere at NH (SH)
midlatitudes. Tropospheric NO2 columns are largely under-
estimated by the models other than GEOS-Chem over ma-
jor polluted areas, whereas the simulated column peaks in

biomass burning areas are largely biased. For CO, all the
models underestimated surface concentrations in the NH by
20–80 ppb.

Multi-constituent assimilation greatly improved the multi-
model consistency and the level of agreements with inde-
pendent measurements. In comparison with the ozonesonde
measurements, the annual mean bias is reduced by about
40 %–80 % in the NH, by 50 %–90 % in the tropics, and
45 %–95 % in the SH in the middle and upper troposphere,
while reducing the multi-model spread of annual mean ozone
by 20 %–60 % in the NH and 30 %–85 % in the SH. Data
assimilation also reduced the model biases in tropospheric
NO2 columns by more than 40 % for both major industrial-
ized and biomass burning areas while improving the seasonal
variations. The model negative biases of CO in the NH are
also reduced by about 40 %–95 % in all the models. These re-
sults demonstrate that harnessing the current observing sys-
tem provides sufficient constraints to greatly reduce the influ-
ences of model errors and to provide consistent concentration
analysis.

The multi-model comparisons of tropospheric OH reveal
common features of global distributions but with obvious
differences in mean concentration levels among the models.
Data assimilation increments for OH differ largely among
the models, decreasing in GEOS-Chem by 10 %–40 % over
east Asia, the United States, and Europe and increasing in
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MIROC-Chem and MIROC-Chem-H over most parts of the
NH by 15 %–40 %. In spite of the different increments, the
multi-constituent data assimilation reduced the multi-model
spread by about 25 %–60 % over major polluted areas, while
the north-to-south hemispheric ratio is reduced in all the
models from 1.32± 0.03 to 1.19± 0.03. These results sug-
gests that the multi-constituent data assimilation framework
can be used to provide a common representation of the tropo-
spheric chemistry system that is less dependent on individual
model performance.

The MOMO-Chem framework provides possible uncer-
tainty ranges in the a posteriori emissions in the current
data assimilation framework due to model errors, which are
quantified in 4 %–31 % for NOx and 13 %–35 % for CO re-
gional emissions from a multi-model spread of the a poste-
riori emissions. Meanwhile, the multi-model analysis com-
monly suggests potential problems in the bottom-up emis-
sion inventories, such as underestimation of soil NOx emis-
sions in early summer at NH midlatitudes, underestimations
of open biomass burning emissions in spring over India, and
overestimation of emissions by forest fires in dry conditions
over South America. For NOx emissions, the large inter-
model discrepancies are attributable to the chemical lifetime
of NOx , vertical mixing, lightning NOx sources, and model
resolution. For CO emissions, the a posteriori emission dif-
ferences are largely attributable to different representations
of atmospheric transport, such as convective transport and
vertical mixing, as well as chemical destruction and produc-
tion and the use of a short assimilation window. The larger
discrepancy for CO emissions than for NOx emissions sug-
gest the need to further develop the CO emission optimiza-
tion framework, for instance, by using a longer assimilation
window and a larger ensemble size.

The response of surface NO2 and ozone concentrations
to NOx emission perturbations is largely different among
the models. A stronger ozone response could help to re-
duce model errors more efficiently through changes in the
model ozone equilibrium state from the emission optimiza-
tion. The multi-constituent framework allows us to evaluate
model ozone responses in realistic conditions while consid-
ering possible error ranges in precursor emissions. The ozone
and emission analysis increment information obtained using
the optimized emissions can be used as a diagnostic to quan-
tify model sensitivities related to chemistry and transport.
Thus, a systematic investigation of model ozone response
and analysis increments in the multi-constituent data assim-
ilation framework could benefit evaluation of future predic-
tion of the chemistry–climate system as a hierarchical emer-
gent constraint (Bowman et al., 2018). By using the multi-
model integrated fields from MOMO-Chem and applying the
linear regressions, we estimated the surface concentration re-
sponses to NOx emissions in the NH to be largest in January
for NO2 (2.0 ppb per (10−11 kg N m−2 s−1) and in August
for ozone (2.4 ppb per (10−11 kg N m−2 s−1)). The estimated
ozone response was larger in the tropics than in the NH, im-

plying that any latitudinal shifts in NOx emissions from the
extratropics to the tropics would lead to increases in global
tropospheric ozone. The obtained results also suggest that the
multi-model integrated fields could provide fundamentally
different chemical relationships than those in the individual
models, which would inform chemical predictions through
relationships such as emergent constraints. Meanwhile, more
research is needed to comprehend detailed chemical mecha-
nisms. This example demonstrates the unique capability of
MOMO-Chem for various applications.

In summary, the MOMO-Chem framework can be used
to generate an ensemble of data assimilation analyses and
to provide integrated unique information on the tropospheric
chemistry system including precursor emissions while di-
rectly accounting for structural uncertainty. Meanwhile, the
framework provides uncertainty ranges in data assimilation
analyses including the a posteriori emissions due to model
errors. The information on the uncertainty obtained from the
multi-model framework could be used to suggest require-
ments for the development of the individual models and
observations. To obtain highly consistent data assimilation
fields, increasing observational constraints and/or optimiza-
tion of model parameters, such as VOC emissions, would
be needed. Also, improving background error information
(e.g., by using multi-model ensembles), considering inter-
species emission correlations, and increasing the ensemble
size would be useful to improve the performance of the in-
dividual data assimilation systems. Comparing different data
assimilation methods, such as EnKF vs. 4D-Var, would also
be important to investigate whether we are able to produce
a consistent data assimilation analysis that is independent of
both the data assimilation scheme and forecast model perfor-
mance.
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