

Supplement of

$\mathbf{OH}\ \mathbf{and}\ \mathbf{HO}_2\ \mathbf{radical}\ \mathbf{chemistry}\ \mathbf{in}\ \mathbf{a}\ \mathbf{midlatitude}\ \mathbf{forest:}\ \mathbf{measurements}\ \mathbf{and}\ \mathbf{model}\ \mathbf{comparisons}$

Michelle M. Lew et al.

Correspondence to: Philip S. Stevens (pstevens@indiana.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

RACM2	VOCs	Source	RACM2	VOCs	Source
NO	NO	UMass	НСНО	Formaldehyde	LD
NO2	NO ₂	UMass	ACD	Acetaldehyde	LD
H2O	Water vapor	IU	ACT	Acetone	LD
HONO	Nitrous Acid	IU	ЕОН	Ethanol	LD
			ACE	Acetylene	LD
CH4	Methane	est	ISO	Isoprene	LD
ETH	Ethane	LD	MACR	Methacrolein	est*
НС3	Propane, isobutene, butane, neopentane, 2,2-dimethylbutane, 2,2-diemthylpentane	LD	MEK	Methyl ethyl ketone	LD
НС5	Isopentane, pentane, propyne, 2-methylpentane, 3-methylpentane, hexane, 2,4-dimethylpentane, 2,2,3-trimethylbutane, 3,3-dimethylpentane, 2,3-diemthylpentane, isooctane	LD	MVK	Methyl vinyl ketone	LD
HC8	Butyne, cyclopentane + 2,3- diemthylbutane, cyclohexane, 2-methylhexane, heptane, octane, nonane, undecane, dodecane, nC13, nC14	LD	API	α-pinene, β-pinene, 3-carene	LD
ETE	Ethene	LD	ROH	Borneol	LD
OLT	Propene, 1-butene, isobutene, 3-methyl-1-butene, 1- pentene, 2- methyl-1-butene, hexene	LD	BENZENE	Benzene	LD
OLI	trans-2-butene, cis-2-butene, trans- 2-pentene, 2-methyl-2- butene, 1-pentene, cis-2- pentene, cyclopentane	LD	TOL	Toluene, chlorobenzene, ethylbenzene, styrene, isopropylbenzene, n-propylbenzene, 2-ethyltoluene, n-butylbenzene	LD
DIEN	1,3-butadiene, 3-methyl-1,4- pentadiene	LD	MXYL/ PXYL	<pre>m+p xylene, 3-ethyltoluene, 4-ethyltoluene, 1,3,5-trimethylbenzene + camphene, 1,2,4-trimethylbenzene + nC10, 1,2,3-trimethylbenzene + α-terpinene</pre>	LD
КЕТ	Nopinone	LD	OXYL	o-xylene	LD
			ORA1	Formic Acid	LD

Table S1: Characterization of measured compounds by various institutions (IU: Indiana University, UMass:University of Massachusetts, LD: IMT Lille Douai) into RACM2 groups.

*Mixing ratios of CO were estimated based on published emission ratios of CO with benzene (Warneke et al., 2007). Mixing ratios of methacrolein were estimated based on measured MVK/MACR ratios (Apel et al., 2002)

Figure S1. The RACM2 and MCM 3.2 diurnal average modeled peroxy radical concentration and composition for the days when NO was measured simultaneously (see text). Left panels show the modeled contribution to the HO₂* concentrations. Measured 30-min mean HO₂* is shown by the black line with $\pm 1\sigma$ standard error shown by the dotted lines. The calibration uncertainty of the measurements (not shown) is 38% (2 σ). Right panels show the total RO_x (RO₂ +HO₂) composition predicted by each model.

Figure S2. The diurnal average components of the mean calculated OH reactivity over the course of the campaign (top), as well as that during daytime (08:00-20:00 hours) and nighttime (20:00-08:00 hours).

Figure S3. Median measured and calculated OH reactivity separated by the measured components over the observed temperature range. Size of the measured symbol indicates the number of measurements in each temperature bin. Error bars represent $\pm 1\sigma$ standard error.

Figure S4. Diurnal box and whiskers plot of observed total OH reactivity showing the mean and median values for each hour with the mean calculated values from the measured OH sinks as well as the unmeasured oxidation products from the RACM2-LIM1 model results. Error bars show range of measurements and bars show Q1 and Q3 for the measured OH reactivity.

Figure S5: Experimental daytime OH radical budget for the days when NO was measured based on measured production and loss rates. Concentrations of HO₂ used to calculate the HO₂ + NO production rate were estimated based on the measured concentrations of HO₂* and the modeled HO₂/HO₂* ratio for these days (approximately 0.6). The modeled LIM1 contribution to OH production is included for reference. The OH loss rate is based on the average total OH reactivity measurements for this period.

Figure S6. Diurnal average measurements of HONO during the IRRONIC 2015 campaign. Error bars represent the standard error of the measurements.

References

Apel, E. C. et al., Measurement and interpretation of isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone mixing ratios at the PROPHET site during the 1998 Intensive, J. Geophys. Res., 107(D3), doi:10.1029/2000jd000225, 2002.

Warneke, C., et al., Determination of urban volatile organic compound emission ratios and comparison with an emissions database, J. Geophys. Res., 112, D10S47, doi:10.1029/2006JD007930, 2007.