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Abstract. In order to track progress towards the global cli-
mate targets, the parties that signed the Paris Climate Agree-
ment will regularly report their anthropogenic carbon dioxide
(CO2) emissions based on energy statistics and CO2 emis-
sion factors. Independent evaluation of this self-reporting
system is a fast-growing research topic. Here, we study the
value of satellite observations of the column CO2 concen-
trations to estimate CO2 anthropogenic emissions with 5
years of the Orbiting Carbon Observatory-2 (OCO-2) re-
trievals over and around China. With the detailed informa-
tion of emission source locations and the local wind, we
successfully observe CO2 plumes from 46 cities and in-
dustrial regions over China and quantify their CO2 emis-
sions from the OCO-2 observations, which add up to a to-
tal of 1.3 Gt CO2 yr−1 that accounts for approximately 13 %
of mainland China’s annual emissions. The number of cities
whose emissions are constrained by OCO-2 here is 3 to 10
times larger than in previous studies that only focused on
large cities and power plants in different locations around
the world. Our satellite-based emission estimates are broadly
consistent with the independent values from China’s detailed
emission inventory MEIC but are more different from those
of two widely used global gridded emission datasets (i.e.,
EDGAR and ODIAC), especially for the emission estimates
for the individual cities. These results demonstrate some
skill in the satellite-based emission quantification for isolated
source clusters with the OCO-2, despite the sparse sampling
of this instrument not designed for this purpose. This skill
can be improved by future satellite missions that will have a

denser spatial sampling of surface emitting areas, which will
come soon in the early 2020s.

1 Introduction

The Paris Agreement on climate change requires all par-
ties (countries) to report their anthropogenic greenhouse gas
emissions and removals at least every 2 years within an
enhanced transparency framework (UNFCCC, 2018). Then,
starting in 2023, the country reports will periodically form
the basis for a global stocktake that will assess collective
progress in bringing the global greenhouse gas emissions
consistent with global warming well below 2 ◦C above pre-
industrial levels. In order to address potential biases in this
self-reporting mechanism, the contribution of independent
observation systems is being increasingly sought (IPCC,
2019). Our focus here is on the direct observation of fossil
fuel carbon dioxide (CO2) emission plumes from space and
on the quantification of CO2 emissions from this observation
independently.

NASA’s second Orbiting Carbon Observatory (OCO-2)
polar satellite (Eldering et al., 2017) is one of the best ex-
isting instruments for the retrieval of column-averaged dry-
air mole fraction of CO2 (XCO2). It observes the clear-sky
and sunlit part of the Earth with footprints of a few square
kilometers (1.29 km× 2.25 km) gathered in a ∼ 10 km wide
swath for each orbit, particularly suitable for informing natu-
ral CO2 budgets at the continental scale. It has already ac-
quired more than 5 years of science data since its launch
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in July 2014, which have provided initial insight into car-
bon fluxes from the tropical terrestrial ecosystems (Liu et al.,
2017; Palmer et al., 2019) but not without ambivalence due
to likely significant residual systematic errors in the OCO-2
XCO2 retrievals (Chevallier, 2018).

Extending the use of OCO-2 to monitor fossil fuel CO2
emissions is rather challenging because the excess XCO2
generated by large cities or power plants typically reaches
∼ 1 % at best (Kort et al., 2012), which is about 4 ppm
compared with an instrument noise typically around 0.3–
0.6 ppm (Worden et al., 2017) for a single sounding. This
non-negligible noise in the XCO2 retrievals is hardly bal-
anced by the amount of data sampled near emission sources
with a narrow swath, which hampers the detection of emis-
sion plumes and the precision of emission quantification.
Only under rare occasions do the OCO-2 tracks cross CO2
plumes downwind of large cities (Labzovskii et al., 2019;
Reuter et al., 2019) or power plants (Schwandner et al., 2017;
Nassar et al., 2017; Zheng et al., 2019), limiting the pos-
sibility to quantify the corresponding CO2 emissions to a
few cases within a year. So far, studies on the potential of
spaceborne CO2 observations to infer CO2 emissions from
large cities or power plants have relied on Observing System
Simulation Experiments (OSSEs) (Bovensmann et al., 2010;
O’Brien et al., 2016; Broquet et al., 2018; Kuhlmann et al.,
2019; Wang et al., 2020) and on several well-chosen cases
with real OCO-2 retrievals (Nassar et al., 2017; Reuter et al.,
2019; Zheng et al., 2019; Wu et al., 2020). To our knowl-
edge, no attempt has been made yet to infer anthropogenic
emissions from actual OCO-2 data over a large area or a long
period to evaluate a large-scale CO2 budget.

Here we analyze all OCO-2 ground tracks between
September 2014 and August 2019 over and around China,
which is the largest emitter country in the world, in order
to quantify CO2 anthropogenic emissions at a large spatial
extent over China. We develop a novel, simple, and effec-
tive approach to identify the CO2 plumes from isolated emis-
sion clusters, to relate them unambiguously to nearby human
emission sources, and to estimate the CO2 emission fluxes
causing each plume. The 5-year period allows nearly one-
sixth of all the emissions from mainland China to be ob-
served, although OCO-2 swaths have a low probability of
crossing the emission plume from a given city. The bud-
get of CO2 emissions aggregating all the sources inferred
from the satellite is compared to different emission invento-
ries compiled by multiplying fuel consumption statistics by
emission factors. Such a comparison, for the first time cov-
ering a significant fraction of the emissions from a country,
demonstrates the potential of independently evaluating the
self-reporting emission inventories from space.

2 Data and method

2.1 Data input

We use version 9r of the OCO-2 bias-corrected XCO2 re-
trievals (Kiel et al., 2019). We use the good-quality data
(xco2_quality_flag equals 0) over both land and ocean
and associated retrieval uncertainty statistics. Our inversion
framework relies on auxiliary information about winds and
about the spatial distribution of emission sources, which are
jointly used to link the observed CO2 plume section with
upwind local emission sources. We choose the spatially ex-
plicit Multi-resolution Emission Inventory for China (MEIC)
dataset (Zheng et al., 2018a, b) that provides the locations of
∼ 100000 individual industrial point sources (82 % of main-
land China emissions) and 0.1◦×0.1◦ area source emissions
(18 % of mainland China emissions) developed for the year
2013. Unlike other inventories used to map industrial emis-
sions using spatial proxies, MEIC includes local reports from
each power plant and industrial operator about their emis-
sions and geographic locations. The ERA5 reanalysis data
(C3S, 2017) provide us with a first guess for the local wind
fields.

2.2 OCO-2 XCO2 local enhancement

The key steps of our method are the identification of an
XCO2 local enhancement from the satellite data that can be
attributed to a CO2 plume from a large emission source, its
separation from the surrounding background, and the estab-
lishment of a numerical link to the nearby upwind human
emission sources. They are designed to account for the speci-
ficity of the sampling capability of OCO-2 and for the XCO2
retrieval errors.

First, we look for XCO2 anomalies along the OCO-2
tracks, which exceed 2σ of the spatial variability above the
local average within 200 km wide moving windows centered
on the locations of the anomalies. These anomalies poten-
tially belong to significant CO2 plumes. In each window cor-
responding to such an anomaly and with more than 200 high-
quality retrievals (with ∼ 800 retrievals if none are missing
due to cloud contaminations or other issues in the retrieval al-
gorithm), the following curve fitting is applied to the XCO2
retrieval data along the OCO-2 track:

y =m · x+ b+
A

σ
√

2π
e
[
−(x−µ)2/2σ 2]

, (1)

where y is XCO2 (ppm); x is the distance (km) along the
OCO-2 track in a fitting window; and m, b, A, µ, and σ
are parameters that determine the curve shape, estimated by
a nonlinear least-squares fit weighted by the reciprocal of
XCO2 uncertainty statistics. The linear part m · x+ b repre-
sents the background level assuming the background is linear
(Reuter et al., 2019), while the remaining part depicts a single
XCO2 peak with a Gaussian shape (Nassar et al., 2017). Sev-
eral XCO2 anomalies should belong to the same CO2 plume:
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in order to only define a single equation for a given plume and
the corresponding background, we fit the curve around each
XCO2 anomaly and select the one with the largest R2. We
also reject all cases with low R2 (less than 0.25) to achieve
better fitting performance.

Second, we select the cases when the range of µ± 3σ is
fully covered by the 200 km window to achieve complete fit-
ting curves that cover both the plume part and the wide range
of local background. To make the curve fitting robust, we
further select the observational cases that have at least three
valid cross-track footprints (eight footprints if none are miss-
ing) on average within the plume transect (µ± 2σ ) to con-
strain the shape of the fitted curve with enough data points.
Finally, we check if the parameter A is positive and if the av-
erage XCO2 value within the plume (defined as the average
of raw XCO2 retrievals within µ± 2σ ) minus the surround-
ing background concentration (derived as the average of raw
XCO2 retrievals outside 2σ ) is larger than the standard devia-
tion of the background values within 200 km. Only the cases
that pass these two filtering criteria are finally identified as
the XCO2 local enhancements in this study.

2.3 Gaussian plume model

We use the Gaussian plume model (Bovensmann et al., 2010)
to attribute the observed XCO2 enhancement to a neighbor
cluster of emission sources. We simulate the sum of XCO2
plumes generated by each point source and each emission
grid cell from the MEIC inventory within 50 km of the stud-
ied OCO-2 track with the equations

V =
∑
∈50 km

F
√

2π · a · z0.894 · u
e
−

1
2

(
n

a·z0.894

)2

, (2)

XCO2 = V ·
Mair

MCO2

·
g

Psurf−w · g
· 1000, (3)

where V is the CO2 vertical column (g m−2) downwind of
the emission sources, F is the emission rate (g s−1), u is the
wind speed (m s−1), z is the along-wind distance (km), n is
the across-wind distance (m), and a is the atmospheric sta-
bility parameter. Equation (3) converts V (g m−2) to XCO2
(ppm), whereM is the molecular weight (kg mol−1), g is the
gravitational acceleration (m s−2), Psurf is the surface pres-
sure (Pa), and w is the total column water vapor (kg m−2).
F is derived from the MEIC emission inventory (Zheng et

al., 2018b), including both point sources and 0.1◦×0.1◦ area
source emissions. Each grid cell of area sources is used as a
point source in Eq. (2). u is the average wind at 1000, 975,
and 950 hPa to approximate the wind below 500 m (Beirle et
al., 2011) at the time of the OCO-2 overpass, derived from
the ERA5 reanalysis data (C3S, 2017). In the presence of
relief, the average of the pressure-level winds is weighted to-
wards the surface. a is a function of the atmospheric stability
condition (Martin, 1976) determined by both the 10 m wind
speed and the incoming solar radiation (Seinfeld and Pandis,

2006). Wind, solar radiation, and Psurf are all derived from
the ERA5 reanalysis dataset (C3S, 2017), and w is adopted
from the OCO-2 files.

2.4 Cross-sectional CO2 flux estimate

We relate each satellite-observed XCO2 enhancement to an-
thropogenic emission sources within 50 km using the Gaus-
sian plume model. We visually inspect the observed and
modeled XCO2 and further select the ones that exhibit a sin-
gle and isolated CO2 plume to attribute the plume to a neigh-
bor cluster of emission sources and estimate the correspond-
ing cross-sectional CO2 fluxes. We remove the linear back-
ground from the fitted curve of Eq. (1) and calculate the area
under the remaining fitted curve to derive the CO2 line den-
sity (ppm m), which can be converted to the unit of grams per
meter through Eq. (3). The errors in the CO2 line densities
are those of the area under the fitted curve, mainly driven by
the random errors of the XCO2 retrievals and also by Eq. (1)
that is not a perfect representation of actual CO2 plumes. The
standard error statistics for each parameter in Eq. (1) are ob-
tained from the weighted nonlinear least-squares fitting and
propagated to calculate the uncertainties of the area under the
fitted curve.

The CO2 line densities are multiplied by the wind speed
(m s−1) in the direction normal to the OCO-2 tracks at the
location of the plume peak to estimate cross-sectional CO2
fluxes (g s−1). The average wind below 500 m is used like
in Eq. (2). To reduce the errors in the wind direction, we al-
low rotation of the wind direction within 45◦ on each side of
the ERA5 local wind direction to maximize the spatial corre-
lation between the Gaussian plume-modeled and the OCO-
2-observed XCO2 according to Nassar et al. (2017). The de-
rived cross-sectional CO2 fluxes approximately represent up-
wind source emissions under steady-state atmospheric condi-
tions, while changes in the atmospheric stability (e.g., strong
turbulent diffusion) could make the cross-sectional flux di-
verge from the source emissions (Varon et al., 2018; Reuter
et al., 2019).

3 Results

3.1 CO2 emission plumes seen by satellite

The identification of CO2 emission plumes crossed by the
satellite field of view starts with the search for XCO2 local
enhancements. These are defined as XCO2 peaks above the
background along the thin OCO-2 tracks. As shown in Fig. 1,
we have identified a total of 6565 OCO-2 ground tracks over
or around China between September 2014 and August 2019,
with an even share between the cold-season (from September
to February, 47 %) and the warm-season ones (from March
to August, 53 %). We find 49 322 cases with local XCO2
enhancements that exceed 2σ above the local average in a
200 km wide moving window along the satellite tracks. How-
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Figure 1. OCO-2 XCO2 observational cases contained in each pro-
cessing step. Step 1 starts from 6565 OCO-2 tracks around and
over China between September 2014 and August 2019 (grey bar)
and finds 49 322 XCO2 anomalies along the OCO-2 tracks (blue
bar). A total of 12 590 anomalies (purple bar) and their surrounding
data points within a 200 km wide window can be fitted by a com-
plete nonlinear curve using Eq. (1), of which 1439 XCO2 anoma-
lies (green bar) are identified as a local enhancement significantly
higher than the background. Step 2 uses the Gaussian plume model
to select 370 XCO2 enhancements (yellow bar) that can be traced
back to upwind fossil fuel emission sources within 50 km. In step 3,
we finally select the 60 cases with single isolated CO2 plumes to
quantify the CO2 emissions. The red curve shows the percentage of
cold-season observational cases in each bar. The detail of each step
is described in Sect. 2.

ever, 97 % of these XCO2 enhancements are removed after
evaluation of the integrity of the plume section and of the
spatial variation in surrounding background retrievals, leav-
ing only 1439 XCO2 cases as potent candidates for retrieving
emissions.

The second step consists in attempting to attribute the ob-
served 1439 CO2 enhancements to nearby human emission
sources. Only 370 of the 1439 XCO2 local enhancements can
be related to emission sources in the MEIC dataset using the
Gaussian plume model within a 50 km upwind distance from
each OCO-2 ground track. The other cases that reveal XCO2
enhancement but no nearby emission sources within 50 km
upwind are probably due to either OCO-2 XCO2 retrieval er-
rors at local scales, sources missing in MEIC, or transport of
CO2 over a longer distance (Parazoo et al., 2011).

The third step is the quantification of cross-sectional CO2
fluxes within the satellite-observed CO2 plumes. Only 60
of the 370 cases correspond to single isolated CO2 plumes
within a 200 km wide window, which allows unambiguous
attribution to an emission site or cluster. One reason why we
reject the other 310 cases is that they have two or more in-
dividual plumes, partially overlapping or separated. Some of

the rejected cases also lack observation data of good qual-
ity (xco2_quality_flag equals 0) at a distance of several tens
of kilometers due to significant retrieval errors in the local
satellite observations.

The data filtering process retains more cold-season ob-
servations (55 %) than warm-season ones, in particular af-
ter the first step (52 % cases are from the cold season after
the first step), due to favorable meteorological patterns dur-
ing the cold season. Although the total number of selected
cases is small, it is several times larger than in previous stud-
ies that only focused on large cities and large power plants in
different locations of the world (Nassar et al., 2017; Reuter
et al., 2019; Wu et al., 2020). The finally selected 60 cases
include both densely populated urban areas (33 cases) and
small industrial areas (27 cases) that gather many industrial
plants. The peak height of XCO2 enhancement in the plumes
(A/(σ

√
2π) in Eq. 1) is within 1.1–6.0 µmol mol−1 (abbre-

viated as ppm) above the average local background and 2–
7 times higher than the standard deviation of background
levels within 200 km. The width of observed CO2 plumes,
defined as the full width at half maximum of peak height, is
estimated between 2.2 and 61.2 km.

3.2 Quantifying CO2 emissions: one city example

Figure 2 presents one example of the 60 selected cases. The
emitter here is the city Anshan that has about 1.5 million
inhabitants. On 17 October 2016, CO2 emissions from An-
shan were blown southward by a 7.1 m s−1 wind at the OCO-
2 overpass time and generated an XCO2 local enhancement
larger than 2 ppm (Fig. 2). At about 13:30 local time, OCO-2
flew over the east of China (Fig. 2a), crossed the CO2 plume
transported from Anshan, and successfully observed the lo-
cal enhancement near the southernmost part of the OCO-2
ground track (Fig. 2b).

We plot the XCO2 retrieval data (grey dots in Fig. 2c)
along the satellite ground track, the plot window of which
is centered at the highest XCO2 value in the CO2 plume. We
first fit the black curve (R2

= 0.4) based on Eq. (1) to depict
the CO2 plume transect. The local background is represented
by a straight line −2.6× 10−3

· x+ 402.1 that approximates
a flat background of 402.1 ppm. Then we subtract the back-
ground line from both the XCO2 data and the fitted black
curve to obtain the net enhancement of XCO2 above the local
background (pink dots and red curve in Fig. 2d). The maxi-
mum XCO2 net enhancement (peak height of the red curve)
is 2.4 ppm and the plume width is 15.0 km. The CO2 line
density is estimated as 0.60± 0.04 t-CO2 m−1 (central esti-
mate ±1σ ) by computing the area under the red curve (the
orange shade in Fig. 2d). The uncertainty is mainly caused
by random errors of the single XCO2 retrievals.

The CO2 line density derived from the satellite retrievals is
further multiplied by the wind speed in the normal direction
to the OCO-2 track to quantify the cross-sectional CO2 flux.
We use the average wind below 500 m from the ERA5 reanal-
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Figure 2. Quantification of CO2 emissions from Anshan. (a) The OCO-2 orbit on 17 October 2016 is plotted on the map of MEIC emission
point sources. (b) Zoom in closer to see OCO-2 XCO2 data, local wind speed, and wind direction. The width of the track is made of eight
cross-track OCO-2 footprints. (c) The valid XCO2 data points (grey dots) plotted along the OCO-2 orbit with a fitted curve (black) based on
Eq. (1). (d) The XCO2 enhancement (red dots) above background, the fitted curve (red), and the area under the curve (orange shade). (e) The
modeled XCO2 enhancement (blue dots) by the Gaussian plume model combined with the MEIC emission inventory.

ysis data. The ceiling height of 500 m is comparable to the
maximum height that smoke plumes from power plants and
industrial plants typically reach. The wind direction around
Anshan is optimized according to Nassar et al. (2017) and
is shifted by 1◦ in this case to maximize the spatial correla-
tion between the satellite-observed (Fig. 2d) and the model-
simulated (Fig. 2e) XCO2 enhancements. The wind speed in
the normal direction to the OCO-2 track is then estimated
as 2.6 m s−1 at the location of the maximum XCO2 value
(Fig. 2b). The CO2 hourly flux at the satellite overpassing
time is finally estimated as 5.7±1.2 kt-CO2 h−1, considering
uncertainties both in the CO2 line density and in the wind
speed.

The satellite-observed CO2 plume can be traced back to
anthropogenic emission sources located in the urbanized area
of Anshan by the Gaussian plume model combined with the
local emission map given by the MEIC inventory. We use
monthly, weekly, and diurnal emission time profiles by re-
gion and by source sector from MEIC to split the annual
emission totals reported by MEIC into hourly emission rates
during the satellite overpass. The MEIC hourly emission rate
of Anshan is 6.4± 1.9 kt-CO2 h−1, which is close to the
satellite-based inversion estimate.

3.3 CO2 emission estimates for 60 cases in China

We quantify the CO2 emissions corresponding to the 60
CO2 plumes selected from the 5-year OCO-2 archive. These
represent 46 different urban areas or industrial regions in
China. There are 14 regions whose emission plumes were
observed twice in our selection of the satellite data. The 60
CO2 plumes present CO2 line densities between 0.1 and 2.8 t-
CO2 m−1, and hourly CO2 fluxes at the time of the satel-
lite overpass are estimated within the range of 0.3–16.0 kt-
CO2 h−1 with the 1σ uncertainties of 20 %–30 %. The larger
sources tend to present lower relative uncertainties, because
a larger XCO2 enhancement makes it easier to separate a
plume from its background and is thus more easily observed
by the satellite. The inversions that estimate CO2 emissions
larger than 4 kt-CO2 h−1 tend to constrain their relative un-
certainties below 25 %.

We compare the satellite-based CO2 hourly fluxes to the
corresponding source emissions given by MEIC (Fig. 3), af-
ter applying emission time profiles to transform MEIC an-
nual emissions into hourly emissions at the time of satel-
lite overpass. Although the point-source-based MEIC emis-
sions data are only for the year 2013, China’s country-
wide emissions remained stable between 2013 and 2017
and marginally grew only after 2017 (Friedlingstein et al.,
2019). The satellite-based and MEIC-estimated emissions
are broadly consistent within a factor of 2 (solid dots in
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Figure 3. Comparison between OCO-2-based and MEIC-estimated
CO2 hourly fluxes. Each dot represents one of the 60 plume cases
selected in this study, plotted according to the MEIC-estimated CO2
flux (x axis) and the OCO-2-based estimate (y axis). The open dots
are OCO-2 estimates using the ERA5 wind data, while the solid
dots use the optimized wind and distinguish the warm-season (red
dots) and the cold-season (blue dots) cases.

Fig. 3) with comparable uncertainties for the same individual
estimates. The average of satellite-based estimates is 27.1 %
higher than the MEIC values in the cold season (solid blue
dots in Fig. 3), while it is 5.2 % lower in the warm season
(solid red dots in Fig. 3).

The differences in the results between cold and warm sea-
sons could be due to uncertainties in the emission estimate
methods of both our OCO-2-based inversion and the MEIC
inventory. The larger satellite-based estimates in the cold
season could be partially due to the fact that human respi-
ration contributes to urban CO2 fluxes while not included
in the MEIC inventory of fossil fuel and cement emissions.
We make a rough estimate of the metabolic CO2 release by
multiplying an emission factor of 0.52 t-CO2 yr−1 per person
(Prairie and Duarte, 2007) by the population living in each
emitting area. The results suggest that human metabolic CO2
emissions explain 8 % of the larger satellite-based emission
estimates on average in the cold season. The remaining dif-
ference could be due to the assumption that the 0–500 m av-
erage wind speed is representative of the transport wind in
the plume diffusion, the natural processes like plant respira-
tion, or the slight growth of fossil fuel emissions since 2013.
However it could also reflect some bias in the MEIC esti-
mates. In the warm season, despite human respiration emis-
sions, the satellite-based inversions give lower emission es-
timates, possibly due to the carbon uptake by plants damp-
ing the XCO2 enhancements (Mitchell et al., 2018), which
makes anthropogenic emission signals not easily separated
from the background in the satellite-based inversions.

The uncertainties in the satellite-based emission estimates
are driven by those of the local wind field and of the CO2

line density derived from the XCO2 retrievals. We reduce the
errors in wind directions and consequently increase the R2

of the linear correlation between satellite- and MEIC-based
emission estimates across emitting areas from 0.37 (open
dots) to 0.50 (solid dots) as shown in Fig. 3. The magnitude
of the wind speed uncertainty, typically considered 10 %–
20 % (Nassar et al., 2017; Varon et al., 2018; Reuter et al.,
2019), is comparable to the uncertainty in the satellite-based
CO2 line densities (3 %–23 % for the 60 emission plumes).
In high-wind-speed conditions, the CO2 plumes are spread
more quickly and thus cause smaller local enhancements,
which weakens the signal of XCO2 and causes larger un-
certainties in the estimate of CO2 line densities. Generally,
our estimates reach lower relative uncertainties for larger-
emission cities under lower wind speeds.

3.4 Comparison with global bottom-up inventories

We extrapolate the satellite-based CO2 hourly fluxes to an-
nual total fluxes using emission time profiles, and we com-
pare them to two global bottom-up emission maps: ODIAC
(Oda and Maksyutov, 2015; Oda et al., 2018) and EDGAR
(Janssens-Maenhout et al., 2019). We use the cases between
the years 2014 and 2018 when both inventories are available,
and we extract CO2 emissions over each satellite-observed
emitting area from the emission maps (Fig. 4). For the areas
observed by the satellite in different years, we compute an-
nual values from the corresponding inversions and average
them for the comparison with ODIAC and EDGAR.

For individual estimates, ODIAC (Fig. 4b) and EDGAR
(Fig. 4c) are broadly consistent with the annual budgets from
the satellite-based inversions, but the fit is slightly better in
the case of EDGAR. The large discrepancies are not surpris-
ing since global emission inventories typically involve large
uncertainties at city scales (Gately and Hutyra, 2017; Gurney
et al., 2019), because they disaggregate national emissions to
gridded maps with simple proxies like population or night-
time light in the countries like China where they lack detailed
direct local information. Only large power plants have ex-
act geographic locations (from the CARMA global database;
Wheeler and Ummel, 2008), in principle, but not all of the in-
dustrial plants like MEIC. ODIAC uses nightlights to disag-
gregate national emission estimates to grid cells, which may
lead to an underestimation of road emissions in cities (Gately
and Hutyra, 2017) and a misplacing of industrial emissions.
EDGAR relies on point source locations to allocate emis-
sions in space while it still suffers from missing local in-
formation in China, and gridded population maps have to
be used instead. Such an emission mapping approach over-
estimates emissions over densely populated cities in China
(Zheng et al., 2017), because the industry plants, the pri-
mary CO2 emission sources in China, are located far away
from densely populated urban areas. The MEIC inventory
estimates industrial emissions at the facility scale, transport
emissions at the county scale, and residential emissions at the
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Figure 4. Comparing OCO-2-based CO2 emission estimates with bottom-up inventories. (a) The sum of emissions from the different regions
observed by OCO-2 between the years 2014 and 2018, including OCO-2 estimates (scaled up to annual emissions based on MEIC emission
time profiles, pink bar), ODIAC (green bar), EDGAR (blue bar), and MEIC (purple bar) estimates. (b) Comparison of regional CO2 emissions
between OCO-2-based (y axis) and ODIAC estimates (x axis). (c) Comparison of regional CO2 emissions between OCO-2-based (y axis)
and EDGAR estimates (x axis).

provincial scale, which can achieve better spatial accuracy in
emissions estimates than the global emission inventories.

The sum of the emissions from the satellite-observed areas
reaches 1.25 Gt CO2 yr−1 (Fig. 4a), accounting for approxi-
mately 13 % of the mainland China’s total emissions. The
corresponding bottom-up estimates from ODIAC, EDGAR,
and MEIC are 1.13, 1.38, and 1.17 Gt CO2 yr−1, respectively.
ODIAC emissions are 9.6 % lower than the satellite-based
estimates while EDGAR emissions are 10.4 % higher. The
slight growth of the emissions from 2014 to 2018 (docu-
mented in, e.g., EDGAR) could alone mostly explain the 6 %
lower value for MEIC (valid for the year 2013) than the satel-
lite estimate. Overall, EDGAR matches the individual esti-
mates from the satellite-based inversions better than ODIAC
for the 13 % of mainland China’s CO2 emissions that are ob-
served by the satellite. However, both of these two global
emission inventories reveal large uncertainties in emission
estimates for individual areas as shown in Fig. 4b and c.

4 Conclusions

We developed a novel objective approach to quantify local
anthropogenic CO2 emissions from the OCO-2 XCO2 satel-
lite retrievals. The key of this method is a conservative selec-
tion of the satellite data that can be safely exploited for emis-
sion quantification. It also depends on the wind information
and the information about the locations of human emission
sources in the upwind vicinity of the selected OCO-2 tracks.
Future developments could aim at refining the stringent data
selection, or at improving the estimation of wind speed or
the description of the plume footprint, for instance using de-
tailed regional atmospheric transport models. However the
current simplicity of our approach makes it easily applicable
everywhere over the globe, in principle. Our first regional
analysis over mainland China suggests that 13 % of its CO2
human emissions can be observed and constrained, to some

extent, by 5 years of retrieval data from the OCO-2, a satel-
lite instrument not designed for this task. The satellite-based
emission inversion results are broadly consistent (R2

= 0.50,
meaning we agree on broad classes of emitters) with the re-
liable point-source-based MEIC regional inventory despite
our simple modeling of the plume and of its background
and despite possible biases due to local non-fossil-fuel emis-
sions or local sinks that contribute to the plume intensity. We
also use the satellite-based estimates as a rough independent
evaluation of two global bottom-up inventories, ODIAC and
EDGAR.

There is still a large gap between what the satellite can
see and the National Greenhouse Gas Inventory reports sub-
mitted to the United Nations Framework Convention on Cli-
mate Change (UNFCCC), mentioned at the start of the in-
troduction. The former is made of specific emission plumes
linked to recent emission events without any sectoral distinc-
tion within the plume. The latter is made of the country- and
annual-scale emission values assigned to specific human-
caused source–sink categories. The exhaustiveness of the
MEIC inventory, which involved detailed analysis of the
fine spatial and temporal emission patterns, allowed us to
bridge most of this gap for a time period when Chinese emis-
sions did not vary much, but few countries have such a de-
tailed geospatial inventory of their emissions and are able
to update it timely for such a task. We also acknowledge
the limitations of the temporal emission profiles even from
the detailed MEIC inventory. The sparse sampling of the
OCO-2 instrument, despite the good precision of individual
soundings, will partly be overcome by the next generation
of CO2-dedicated imagery satellites, such as the CO2 Mon-
itoring mission (CO2M) in Europe (Clery, 2019; Janssens-
Maenhout et al., 2020) and the Geostationary Carbon Cy-
cle Observatory (GeoCarb) in the US (Moore et al., 2018)
that will have denser spatial coverage. However, their mea-
surement principle still relies on sunlight and will prevent us
from sampling the diurnal emission cycle well. The need for
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a good knowledge of the emission space-time patterns (not
only the emission values) will therefore remain for the com-
parison between the national inventories and the satellite-
based estimates. However, for countries with less advanced
CO2 inventory infrastructures (typically non-Annex I parties
to UNFCCC), we could also envisage an incremental ap-
proach where both bottom-up and top-down estimates are
developed together in parallel.
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