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Abstract. This paper addresses the question of how much
uncertainties in CO2 fluxes over Australia can be reduced by
assimilation of total-column carbon dioxide retrievals from
the Orbiting Carbon Observatory-2 (OCO-2) satellite instru-
ment. We apply a four-dimensional variational data assimi-
lation system, based around the Community Multiscale Air
Quality (CMAQ) transport-dispersion model. We ran a se-
ries of observing system simulation experiments to estimate
posterior error statistics of optimized monthly-mean CO2
fluxes in Australia. Our assimilations were run with a hor-
izontal grid resolution of 81 km using OCO-2 data for 2015.
Based on four representative months, we find that the inte-
grated flux uncertainty for Australia is reduced from 0.52 to
0.13 Pg C yr−1. Uncertainty reductions of up to 90 % were
found at grid-point resolution over productive ecosystems.
Our sensitivity experiments show that the choice of the cor-
relation structure in the prior error covariance plays a large
role in distributing information from the observations. We
also found that biases in the observations would significantly
impact the inverted fluxes and could contaminate the final re-
sults of the inversion. Biases in prior fluxes are generally re-
moved by the inversion system. Biases in the boundary con-
ditions have a significant impact on retrieved fluxes, but this
can be mitigated by including boundary conditions in our re-
trieved parameters. In general, results from our idealized ex-
periments suggest that flux inversions at this unusually fine
scale will yield useful information on the carbon cycle at con-
tinental and finer scales.

1 Introduction

The future of climate change depends mainly on the tra-
jectory of greenhouse gas concentrations in the Earth’s at-
mosphere, in particular carbon dioxide (CO2) (Arora et al.,
2013). Emissions from fossil fuels, land use and land-use
change have added more CO2 to the atmosphere than can be
readily absorbed by the ocean and biosphere (Myhre et al.,
2013). Quantifying the terrestrial–atmosphere and ocean–
atmosphere carbon exchanges is relevant for understanding
the carbon cycle and climate since they play an important
role by absorbing more than half of anthropogenic CO2 emis-
sions (Ciais et al., 2013). Despite important progress in quan-
tifying all the components in the global CO2 carbon budget,
the amount of carbon uptake and release by the land compo-
nent remains poorly constrained by biosphere models. Cur-
rently, future predictions from most of the dynamic global
vegetation models (DGVMs) are highly uncertain about the
behaviour of the carbon cycle (Sitch et al., 2008). Even
though DGVMs simulate a cumulative carbon uptake by
2099, the magnitude of the uptake varies considerably among
them, especially at the regional scale (Sitch et al., 2015). Re-
ducing the regional-scale CO2 flux uncertainties in these bio-
geochemical models (Canadell et al., 2010, 2011) is crucial
to ascertain more accurate estimates of future climate pro-
jections (Friedlingstein et al., 2006; Huntingford et al., 2009;
Friedlingstein et al., 2014). Inverse modelling of CO2 fluxes
(Ciais et al., 2010; Rayner et al., 2019) can potentially help
to constrain these uncertainties (Chevallier et al., 2010b) by
directly using information from atmospheric CO2 concentra-
tions (Chevallier et al., 2005a, 2007; Baker et al., 2010).
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Several studies over Europe (e.g. Broquet et al., 2011) and
North America (e.g. Peters et al., 2007) have used ground-
based CO2 measurements to estimate CO2 surface fluxes,
which offer an accuracy of about 0.1–0.2 ppm. Despite their
relatively small measurement error, in situ observations have
some disadvantages, such as limited spatial representative-
ness. In situ measurements are traditionally located at remote
sites, distant from strong sources and sinks of CO2. Finally,
the existing in situ network leaves much of the world unob-
served (Ciais et al., 2013). For instance, the sparseness and
spatial inhomogeneity of the atmospheric CO2 monitoring
system in the tropics and Southern Hemisphere restricts the
potential of global atmospheric inversions to constrain re-
gional fluxes in continents such as South America, Africa
and Australia (Gurney et al., 2002; Peylin et al., 2013).

Satellite-based retrievals of total-column CO2 have the po-
tential to address some of these shortcomings, since they
have much higher spatial coverage compared with surface
networks (Rayner and O’Brien, 2001; Ciais et al., 2014).
During the last decade, satellite-derived estimates of the
column-average CO2 mole fraction have improved consider-
ably in terms of vertical sensitivity, precision and spatial res-
olution. Before this period, satellite-based instruments had
limited ability to constrain surface CO2 fluxes, since their
measurements were more sensitive to CO2 mixing ratios in
the middle to upper troposphere and not in the lower tropo-
sphere where surface CO2 fluxes have their greatest influence
(Chevallier et al., 2005b).

The SCanning Imaging Absorption spectroMeter for At-
mospheric CHartographY (SCIAMACHY; Burrows et al.,
1995; Buchwitz et al., 2015), which operated aboard EN-
VISAT during 2002–2012, was one of the first instruments
with a more uniform sensitivity to CO2 throughout the at-
mospheric column (including the boundary layer) compared
to earliest satellite instruments such as the Operational Ver-
tical Sounder (TOVS) (Chédin, 2003), the Infrared Atmo-
spheric Sounding Interferometer (IASI) (Crevoisier et al.,
2009) and the Tropospheric Emissions Spectrometer (TES)
(Kulawik et al., 2010). Despite its increased sensitivity to the
lower atmosphere, SCIAMACHY’s large nadir surface foot-
print (30 km by 60 km) and the low single-sounding precision
(2–5 ppm) restricted its ability to quantify in detail sources
and sinks of CO2 (e.g. Reuter et al., 2014). In contrast to
SCIAMACHY, the Greenhouse Gases Observing Satellite
(GOSAT, launched on 23 January 2009) was the first satellite
created to measure CO2 concentration with sufficient preci-
sion and resolution to study surface sources and sinks of CO2
(Hamazaki et al., 2004; Yokota et al., 2009). Its smaller foot-
print (10.5 km at nadir) and high scan rate (approximately
10 000 soundings per day) has provided considerably more
information about regional carbon fluxes in previously unob-
served regions (e.g. Parazoo et al., 2013).

The Orbiting Carbon Observatory-2 (OCO-2, launched
on 2 July 2014) was also designed to be sensitive to CO2
concentrations in the planetary boundary layer, with a even

smaller nadir footprint (1.6 km× 2.2 km) and a higher pre-
cision than GOSAT (Eldering et al., 2017). A recent val-
idation experiment, which compares GOSAT and OCO-2
against the Total Carbon Column Observing Network (TC-
CON) data (Liang et al., 2017) shows that in general OCO-2
has better accuracy in measuring the atmospheric CO2 col-
umn concentration over 2014–2016. Liang et al. (2017) find-
ings show that the mean biases of GOSAT (FTS Level 2–
3 data products; the product version is not given in the pa-
per but is likely to be version 02.60; Ailin Liang, personal
communication, 2019) were larger than OCO-2. Over 2014–
2016, the GOSAT mean bias was −0.62 ppm with a preci-
sion of 2.3 ppm compared to OCO-2 biases (OCO-2 Lite File
Product version 7), which was 0.27 ppm with a precision of
1.56 ppm. Because of a wider detection coverage and higher
spatial resolution, OCO-2 realize more accurate estimates of
carbon dioxide. However, and despite these differences, both
satellites on-orbit have atmospheric CO2 detection capabil-
ities to be used in regional atmospheric inversions to infer
CO2 surface fluxes.

Since 2013, several studies have used GOSAT retrievals to
estimate CO2 fluxes over the globe using inverse modelling
(Basu et al., 2013; Chevallier et al., 2014; Deng et al., 2014;
Maksyutov et al., 2013), while just a few have used OCO-2
data (Basu et al., 2018; Crowell et al., 2019). Most of these
studies use global models with a relatively coarse spatial and
temporal resolution. For instance, the set of global three-
dimensional models included in Basu et al. (2018) typically
have horizontal resolutions in latitude–longitude grid cells
from 1 up to 5◦. Coarse-resolution models capture large-
scale transport processes but do not take full advantage of
high-frequency information collected in the continental in-
terior (Geels et al., 2004). Uncertainties related to the sim-
ulation of large-scale transport lead to poorly constrained
flux estimates (Chevallier et al., 2014). Several studies (e.g.
Geels et al., 2004, 2007; Göckede et al., 2010; Broquet et al.,
2011; Lauvaux et al., 2012) indicate that errors in the sim-
ulation of large-scale atmospheric transport can be reduced
if the transport model is run at sufficiently high resolution.
Some of these studies (e.g. Broquet et al., 2011) performed a
regional-scale variational inversion of the European biogenic
CO2 fluxes on a 50 km resolution. Finer resolution models
have the potential to be more successful since they can offer
a better representation of surface CO2 fluxes and variability,
as well as a better simulation of the processes driving high-
frequency variability of transport (Schuh et al., 2010).

In this study, we present a regional-scale four-dimensional
variational flux-inversion system to assimilate OCO-2 re-
trievals. The study area here is Australia, chosen for the fol-
lowing three reasons. First, the current estimate of Australian
CO2 fluxes is highly uncertain, mainly due to the uncertain-
ties in the net primary productivity (NPP) simulated by bio-
sphere models (Haverd et al., 2013b; Trudinger et al., 2016).
In general, uncertainties in these NPP estimates are mainly
driven by errors in model parameters (e.g. parameters as-
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sociated with the leaf maximum carboxylation rate or the
amount of chlorophyll content in plants; Norton et al., 2018).
Second, Australia has a sparse in situ CO2 monitoring net-
work (four stations operating in our study year of 2015), so
the broader coverage offered by satellite data may help to
constrain fluxes. Third, Australia has reasonable coverage of
OCO-2 measurements due to relatively low cloud, and the
presence of three Total Carbon Column Observing Network
sites in the region provides good calibration and validation
for the OCO-2 data in the region.

This paper aims to assess the likely uncertainty reduction
for CO2 fluxes over Australia using a series of observing sys-
tem simulation experiments (OSSEs) and to test our four-
dimensional flux-inversion scheme. The structure of this pa-
per is as follows. Section 2 describes the flux-inversion sys-
tem, the OSSEs and the datasets used. Section 3 presents the
main results found for our ensemble of inversions, such as
degrees of freedom for signal, percentage of uncertainty flux
reduction at grid-cell scale and uncertainty flux reduction ag-
gregated by land cover type over Australia. Section 4 de-
scribes seven different sensitivity experiments to test the ro-
bustness and the performance of our inversion. In Sect. 5 we
further evaluate our inversion by using real data, essentially a
consistency test; this is done by comparing the posterior CO2
concentrations with OCO-2 data for March 2015. Sections 6
and 7 discuss the sensitivity experiments and summarize our
findings.

2 Methods and data

The methodology to perform our OSSEs follows Chevallier
et al. (2007). This randomization approach is illustrated in
Fig. 1 and follows four successive steps. First, we need to
specify fluxes (see Sect. 2.4), boundary conditions and ini-
tial conditions as inputs to the forward model (see Sect. 2.5).
These inputs define the “true” field that we attempt to recover
in the inversion. We run the Community Multiscale Air Qual-
ity (CMAQ) model forward with these inputs to generate a
four-dimensional concentration field. We sample the concen-
tration field with the OCO-2 observation operator to gener-
ate perfect observations (see Sect. 2.3). The perfect observa-
tions are perturbed following the observational error statis-
tics to generate the “pseudo-observations” used in the inver-
sion. Second, we perturb the true fluxes according to the prior
uncertainty to generate the prior fluxes. Third, we perform
the Bayesian inversion (see Sect. 2.1), using the prior fluxes
and pseudo-observations. Finally, we repeat the process of
adding random noise to generate prior fluxes and pseudo-
observations, and then we run the flux inversion; these ran-
dom realizations represent a sampling of the posterior error,
taken as the difference between the posterior and true fluxes.
It can be shown that this difference is a realization of a Gaus-
sian distribution with zero mean and covariance given by the
true posterior covariance.

Figure 1. Diagram representing an overview of the observing sys-
tem simulation experiments (OSSEs) and how the inversion is per-
formed using the L-BFGS-B minimization algorithm.

In this study the OSSEs were performed only for the
months of March, June, September and December 2015. We
ran an ensemble of five inversions for each month using dif-
ferent perturbations, generating five samples of the posterior
probability density function (PDF). In the following subsec-
tions we describe the main ingredients of this procedure.

2.1 Inversion scheme

The inversion scheme for optimizing CO2 surface fluxes
over Australia involves a Bayesian four-dimensional vari-
ational assimilation system. The system is a generalized
minimization-based inverse-modelling framework, which
can be applied to several potential models. We refer to it here-
after as “py4dvar”. py4dvar finds an optimal estimate of the
CO2 surface fluxes (xa) that fits both observations (y) and
the prior fluxes (xb) (Ciais et al., 2010; Rayner et al., 2019).
Assuming Gaussian PDFs, finding this maximum a posteriori
estimate is equivalent to minimizing the cost function J (x)
shown in Eq. 1 (Rayner et al., 2019).
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J (x)=
1
2

[(
x− xb

)T
B−1

(
x− xb

)]
+

1
2

[
(H(x)− y)TR−1 (H(x)− y)

]
(1)

The first term in Eq. (1) represents the sum of squared
differences between the control variable (x) and its prior or
background state (xb). The second term measures the sum-
of-squared difference between the model simulation, H(x),
and observations (y) during the time window of the assim-
ilation. The term H(x) is the function composition of an
atmospheric transport operator and an observation operator.
Both terms in Eq. (1) are weighted by their respective error
covariance matrices (B and R), and the errors are assumed
to be Gaussian and bias free. As mentioned in the previous
paragraph, the minimum of J (x) is found by an iterative pro-
cess rather than by an analytical expression. The minimiza-
tion inside py4dvar is performed using the limited-memory
BFGS (L-BFGS-B) algorithm, as implemented in the scipy
python module (Byrd et al., 1995). The minimization algo-
rithm, L-BFGS-B, requires values of the cost function and
its gradient, which are calculated using the CMAQ forward
model and the adjoint model, as shown in the third step in
Fig. 1.

∇xJ = B−1
(
x− xb

)
+HT

(
R−1 [H(x)− y

])
(2)

The gradient of the cost function in Eq. (2) is calcu-
lated using the adjoint of the CMAQ model (version 4.5.1;
Hakami et al., 2007). We can observe that in the second term
in Eq. (2), the adjoint model (HT ) is applied to the vector
R−1 (H(x)− y), which is often called the “adjoint forcing”,
or simply the “forcing”, and represents the error-weighted
differences between the forward model and the observed con-
centrations. Applying the adjoint model to the forcing, run-
ning backward in time from ti−1 to t0, allows us to construct
the gradient of the cost function, ∇xJ (x).

2.2 Choice of control variables

Our underlying physical variables are the monthly averaged
fluxes at the spatial resolution of CMAQ (≈ 81 km). We do
not split fluxes by day and night, consistent with only us-
ing daytime satellite observations, which are not subject to
much influence by diurnal cycles in CO2 fluxes (e.g. Deng
et al., 2014; Houweling et al., 2015). Like most previous
studies (e.g. Chevallier et al., 2007; Baker et al., 2010; Basu
et al., 2013; Crowell et al., 2019) we use spatially correlated
prior uncertainties to account for systematic errors in flux
estimates. The variables exposed to the minimizer are not
the fluxes themselves but rather multipliers for the principal
eigenvectors of B. We truncate the eigenspectrum at 99 % of
the total variance; doing this significantly reduces the size of
the control vector x (relative to if the control vector was com-
prised of the fluxes at each grid cell). This requires a different

Table 1. Number of eigenvectors included in our control vector (x).
Date format is YYYY-MM.

Months Control variables
(x)

2015-03 811
2015-06 822
2015-09 745
2015-12 716

number of eigenvectors for different months (Table 1). The
length of the control variables for our sensitivity experiments
are defined in Table 6. Similar to Chevallier et al. (2005a),
and because our inversion assimilation window is short, we
also include (in the state vector for the inversion) a perturba-
tion to the initial conditions (ICONs) of the CO2 concentra-
tion field. Because we are not interested in the analysis of this
field, and in order not to significantly increase the size of the
control vector, we added a scaling factor for the ICONs to our
control variables x = {i0,e0,e1, . . .,en}, where i0 is the fac-
tor we solve for ICONs and en is the number of eigenvectors.
The scaling factor was applied to the full three-dimensional
concentration field. Some freedom in the initial condition
avoids fluxes being unduly influenced by a mismatch in the
initial concentrations. We assumed 1 % (≈ 4 ppm) uncertain-
ties for the scaling factor.

2.3 Observations and their uncertainties

We used OCO-2 level 2 satellite data (Lite File Version 9)
distributed by the National Aeronautics and Space Ad-
ministration (NASA) (available for download from https://
oco2.gesdisc.eosdis.nasa.gov/data/s4pa/OCO2_DATA/, last
access: 18 January 2020). We used the column-averaged dry
air mole fraction of CO2, referred to as XCO2. We selected
bias-corrected data, as described by Kiel et al. (2019). We
used nadir and glint soundings over land that were flagged
as good quality, except in some of our sensitivity experi-
ments (described in Sect. 4) in which we excluded glint mode
data. We computed a weighted average for all OCO-2 mea-
surements using a two-step process similar to Crowell et al.
(2019). The first step is to average all the soundings into 1 s
intervals and the second is to average these 1 s averages into
the CMAQ vertical columns (81 km× 81 km) for each satel-
lite pass, where the transit time over the CMAQ grid cell is
about 11 s. For the 1 s averaging process, the weighted aver-
aging is defined in Eq. (3).

x̂CO2 =

∑n
i=1wi × xCO2,i∑n

i=1wi
, (3)

wherewi = 1
σ 2
i

is the squared reciprocal of the OCO-2 uncer-

tainties (σi). To get the uncertainties of these averaged sound-
ings, we considered three different forms of uncertainty cal-
culation (similar to Crowell et al., 2019). First if we assumed
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that all errors are entirely correlated in a 1 s span, we can
define the uncertainties as shown in Eq. (4).

σ 2
s =

1
N

[
N∑
i=1

σi

]2

(4)

However, and because the average shown in Eq. 4 is some-
times low, we also considered the standard deviation of the
XCO2 measurements (here referred to as the spread, or σr, of
the OCO-2 measurements). In other words, if the spread (σr)
of the XCO2 measurements was higher than the XCO2 un-
certainty (σi), we used the spread value as shown in Eq. (5).
We did this because the spread in OCO-2 measurements may
reflect real differences across the field within a 1 s time span.

σ 2
r =

1
N

N∑
i=1

[
xCO2 − xCO2,i

]2 (5)

Third, we also considered a baseline uncertainty (σb),
based on an error floor (ε) over land and ocean, as shown
in Eq. (6). We did this because sometimes we did not have
enough OCO-2 soundings to compute a realistic spread. The
values for our baseline uncertainties were taken to be 0.8 and
0.5 ppm over land and ocean, respectively. Finally, and after
defining the uncertainties for the 1 s averages, we choose the
maximum value between σs, σr and σb.

σ 2
b =

[
ε2

base
N

]
(6)

The second step was to take these 1 s averages and average
them within the CMAQ vertical columns using Eq. 7.

xCO2 =

∑J
j=1wj × x̂CO2∑J

j=1wj
, (7)

where wj = 1
σ 2
j

represents the squared reciprocal of the un-

certainties average in the 1 s span (σj ) and J is the number
of those 1 s values. The average uncertainty over the CMAQ
domain (Eq. 8) was similar to the procedure outlined for 1 s
average in Eq. (4). However, we also added a term to repre-
sent the contribution of the model uncertainty (σm). We as-
sumed that the model had a uncertainty of about 0.5 ppm.
The observational error covariance matrix R was assumed to
be diagonal.

σ 2
=

1
J

[
J∑
j=1

σj

]2

(8)

After averaging the OCO-2 sounding over the CMAQ do-
main, we generated a set of pseudo-observations as described
in step 1 of Fig. 1. In this process, we run the CMAQ model
forward. We start with an assumed set of CMAQ inputs,
which includes fossil fuel emissions, fires, land and ocean

fluxes (see Sect. 2.4 for a description of these fluxes). Our
py4dvar system takes in a vector x representing perturbations
to the assumed emission profile, which is set to all be zeros
in the “true case” and converts it into a format accessible to
the CMAQ model (e.g. copying the monthly-average values
into the hourly-resolution that the CMAQ model is config-
ured to run with). These perturbations to the emissions (zero
values in the true case) are then added to the assumed emis-
sion profile for CMAQ before the model is run to produce
a four-dimensional CO2 concentration field, as is in step 2
of Fig. 1. Fourth, this modelled CO2 concentration field is
then transformed using the OCO-2 observation space. Once
it is transformed, we perturbed the “true observations” with
Gaussian random noise to generate pseudo-observations as
follows.

y′ = ysim+R1/2
·p (9)

The first term of Eq. (9), ysim, represents the OCO-2- sim-
ulated observations using the true fluxes. The second term of
Eq. (9), p, is a vector with the same size as ysim and contains
normally distributed random numbers with mean zero and
variance of one. Scaling p by the square root of R ensures
that the resulting realization has the assumed error distribu-
tion.

2.4 Prior CO2 fluxes and their uncertainties

As is stated in Sect. 2.5, the CMAQ model needs hourly
emissions to run forward in time. We use the atmospheric
convention that a negative flux value indicates an uptake
by the surface and a positive value means a release of car-
bon to the atmosphere. Our total fluxes were comprised of
four datasets representing elements of the CO2 fluxes: ter-
restrial biospheric exchange, fossil fuels, fires and air–sea
exchange. Hourly biosphere CO2 fluxes were calculated by
combining two datasets: the net ecosystem exchange (NEE)
at 0.5◦×0.5◦ and daily resolution and the gross primary pro-
duction (GPP) at 0.5◦× 0.5◦ and 3-hourly resolution from
the Community Atmosphere Biosphere Land Exchange (CA-
BLE) model (Vanessa Harverd, personal communication,
2018).

The post-processing of 3-hourly NEE data involved four
steps. First, we calculated daily GPP. Then we used daily
GPP to estimate the daily ecosystem respiration (ER); in
terms of carbon balance, the ER can be calculated as ER=
GPP−NEE. Finally, daily ER was assumed equal through-
out the day and subtracted from 3-hourly GPP to obtain 3-
hourly NEE. These 3-hourly NEE fluxes were interpolated to
hourly resolution. Recall that for our OSSEs, only the uncer-
tainties, not the values themselves, are used. Given that the
optimization was performed to optimize monthly fluxes, the
uncertainties were computed with monthly resolution. We as-
sumed that the biosphere flux uncertainties were equal to the
net primary production (NPP) simulated by CABLE, with a
ceiling of 3 g C m−1 d−1 following Chevallier et al. (2010a).
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Fossil-fuel CO2 emissions were obtained from the Fos-
sil Fuel Data Assimilation System (FFDAS) (Rayner et al.,
2010; Asefi-Najafabady et al., 2014). For this study, we used
the 2015 FFDAS dataset (Kevin Robert Gurney, personal
communication, 2018). The FFDAS uncertainty estimates
were created by multiplying the FFDAS emissions dataset
with a factor of 0.44. This factor was calculated by linear
regression between the mean fluxes and the spread of an
ensemble of 25 realizations of posterior CO2 fluxes, fol-
lowing Asefi-Najafabady et al. (2014). We did not directly
use those realizations to get the posterior FFDAS uncertain-
ties, because the realizations only contained emissions over
land (i.e. excluding domestic, aviation, and maritime emis-
sions). These “missing” emissions were taken from the Emis-
sions Database for Global Atmospheric Research (EDGAR)
(Olivier et al., 2005). The highest value of FFDAS uncer-
tainty over land was 2.3 g C m−2 d−1 and over ocean was
0.5 g C m−2 d−1. This surprisingly large value over the ocean
was a coastal point coinciding with Perth (Western Aus-
tralia), where one of the largest and busiest general cargo
ports in Australia is located.

Fire emissions were taken from the Global Fire Emission
Database, version 4 (GFEDv4). This version of GFEDv4
provides gridded monthly fire emissions at 0.25◦ (van der
Werf et al., 2017). The GFEDv4 product combines four
satellite datasets: the Moderate Resolution Imaging Spec-
troradiometer (MODIS) burned area data product with
active fires, data from the Tropical Rainfall Measuring
Mission (TRMM) Visible and Infrared Scanner (VIRS)
and the Along-Track Scanning Radiometer (ATSR). We
used biomass-burning carbon emissions, a product based
on GFEDv4 and the Carnegie Ames Stanford Approach
(CASA) biosphere model (Randerson et al., 1996). Within
the CASA model, fire carbon losses are calculated for each
grid cell and month, based on fire carbon emissions based
on burned area from the GFED dataset. We assumed uncer-
tainties for GFEDv4 corresponding to 20 % of the biomass-
burning carbon emissions.

Ocean CO2 fluxes were derived from the Copernicus
Atmospheric Monitoring Service (CAMS) version 15r2
(Chevallier, 2016). The CAMS dataset is a global retrieval
product, with a horizontal resolution of 3.75◦ in longitude
and 1.875◦ in latitude at 3-hourly temporal resolution. Prior
ocean fluxes estimated by CAMS were based on Takahashi
et al. (2009). We assumed that the error statistics were uni-
form, 0.2 g C m−2 d−1, over ocean, as in Chevallier et al.
(2010a).

After defining the emission profiles and their uncertainties,
we incorporated spatial correlations into our prior error co-
variance matrix B. We assume no temporal correlations. This
differs from Chevallier et al. (2010a), who used a temporal
correlation length of 4 weeks; though, this would only intro-
duce weak correlations among our monthly averaged fluxes.
Following Basu et al. (2013, Sect. 3.1.1), the spatial correla-

tion between grid points r1 and r2 was defined as

C(r1, r2)= exp−d(r1,r2)/L, (10)

where d(r1, r2) is the distance (in km) between the two grid
points, and L, the correlation length, was assumed to be
500 km over land and 1000 km over ocean following Basu
et al. (2013).

After defining B, we performed an eigendecomposition,
B=WTwW, where W is a matrix of eigenvectors and w is
a diagonal matrix of corresponding eigenvalues. Figure 4a
shows the cumulative percentage variance and demonstrates
that 20 eigenvectors account for about 60 % of the variance in
B. We truncate the eigenspectrum to retain 99 % of the over-
all variance. The number required varied each month but was
at most 400, compared to approximately 6700 grid points.
The main reason for this strong truncation is the large corre-
lation length relative to the CMAQ grid resolution. We will
test and discuss this later.

We solve the minimization with a change of variable xb.
Given that our control vector x depends on the size of the
multipliers of the principal eigenvectors of B, our vector xb

was reconstructed (as is given in Eq. 11). This reconstruc-
tion includes a new vector q, which is normalized by the
square root of the eigenvalues of B; this transformation in-
volves minimization with respect to q, rather than xp.

This step (often called pre-conditioning) accelerates con-
vergence. It also simplifies the system since, all target vari-
ables have unit standard deviation. In our case, where we
solve for perturbations around a background state, they also
have a true value of zero. Generating our prior flux for the
inversion is achieved by defining a vector of normally dis-
tributed random numbers with unit standard deviation and
zero mean. The process to generate the pseudo prior is repre-
sented in Eq. (11).

xb = xp+WTw1/2q (11)

2.5 CMAQ model configuration

We used the CMAQ modelling system and its adjoint (ver-
sion 4.5.1; Hakami et al., 2007) to conduct numerical sim-
ulation of the atmospheric CO2 concentration over the Aus-
tralian region. The CMAQ modelling system is an Eulerian
(gridded) mesoscale chemical transport model (CTM), ini-
tially created for air quality studies. It has been previously
used to characterize the variability of CO2 at fine spatial and
temporal scales (Liu et al., 2014). The choice of an older ver-
sion of the CMAQ modelling system (cf. the latest version,
v5.3) relates to the requirement of the model adjoint (needed
to calculate the gradient of the cost function in the inversion).

We treat CO2 as an inert tracer, neglecting its chemi-
cal production (Folberth et al., 2005; Suntharalingam et al.,
2005). Thus modelled concentrations are determined only by
emissions, the atmospheric transport (horizontal and verti-
cal advection and diffusion), and initial and boundary condi-
tions. Initial and boundary conditions were interpolated from
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atmospheric CO2 concentration data from the Copernicus
Atmospheric Monitoring Service (CAMS) global CO2 atmo-
spheric flux inversions (Chevallier et al., 2010a). These data
have a resolution of 3.75◦ in longitude and 1.875◦ in latitude
with 39 vertical layers in the atmosphere; this dataset was
also the basis for the oceanic fluxes used in the prior. The
CMAQ chemical transport model (or CCTM) also requires
24-hourly three-dimensional emission data (recall that in our
py4dvar system we solve for a perturbation around these
background CO2 fluxes). Here our background CO2 fluxes
were generated by adding the four CO2 flux fields described
in Sect. 2.4: carbon exchange between biosphere and at-
mosphere, carbon exchange between ocean and atmosphere,
fossil-fuel emissions, and biomass-burning emissions.

The CMAQ model is an offline model, and thus requires
three-dimensional meteorological fields as inputs for the
transport calculations. We simulated meteorological data us-
ing the Weather Research and Forecasting model (WRF) Ad-
vance Research Dynamical Core WRF-ARW (henceforth,
WRF) version 3.7.1 (Skamarock et al., 2008). Details on the
physics schemes used in our WRF configuration are shown
in Table 2. Our domain has a horizontal resolution of 81 km
and 32 vertical layers from the surface up to 50 hPa. The nu-
merical simulation was carried out on a single domain (i.e.
non-nested) of 89× 99 grid cells.

The meteorological initial conditions were based on the
ERA-Interim global atmospheric reanalysis (Dee et al.,
2011), which has a resolution of approximately 80 km on
60 vertical levels from the surface up to 0.1 hPa. Sea sur-
face temperatures were obtained from the National Centers
for Environmental Prediction/Marine Modeling and Analy-
sis Branch (NCEP/MMAB). The WRF model was run with
a spin-up period of 12 h. The initial spin-up period stabilizes
the model, that is, the inconsistencies between the initial and
boundary conditions diminish in this period.

The WRF modelled meteorology was nudged towards the
global analysis fields above the boundary layer. The default
grid-nudging configuration was used; that is, nudging coeffi-
cients were assumed to be 10−4 s−1 for wind and temperature
and 10−5 s−1 for moisture, as suggested by Deng and Stauf-
fer (2006). Nudging has been widely used in mesoscale mod-
elling as an effective and efficient method to reduce model
errors (Stauffer and Seaman, 1990). It relaxes the model sim-
ulations of wind, temperature and moisture towards driving
conditions, preventing model drift over a long-term integra-
tion.

The WRF model output was post-processed by the
Meteorology-Chemistry Interface Processor (MCIP) ver-
sion 4.2 (Otte and Pleim, 2010). MCIP prepares the me-
teorological fields in a form required by CMAQ and per-
forms horizontal and vertical coordinate transformation. In
this process, we removed the outermost six rows and columns
from each edge of the WRF model domain, so the horizon-
tal CMAQ domain was set up (with 77× 87 grid cells). This
was done to prevent numerical instabilities in the “relaxation

zone” (the exterior rows and columns of the horizontal do-
main), where the lateral meteorological boundary conditions
and the WRF model’s internal physical processes both con-
tribute.

2.6 Observation operator: CMAQ CO2 simulations
and OCO-2 measurements

As is seen in Eq. (1), we need to compare the CMAQ simu-
lated CO2 concentration with OCO-2 satellite retrievals. As
outlined in Sect. 2.3, we averaged observations to approxi-
mate the observed XCO2 for any CMAQ grid cell observed
by OCO-2. To compare modelled and observed concentra-
tions, we used the Eq. (12) (Rodgers and Connor, 2003; Con-
nor et al., 2008) to convolve the simulated CO2 concentration
with the relevant averaging kernels, as follows:

xm
CO2
= xa

CO2
−

∑
j

hjaCO2,jxa,j +
∑
j

hjaCO2,jx
m
j , (12)

where xa is the OCO-2 a priori, h is a vector of pressure
weights, hj is the mass of dry air in layer j divided by the
mass of dry air in the total column, aCO2 is the averaging ker-
nel of OCO-2, xa,j is the OCO-2 a priori profile, and xm is
the simulated profile from the CMAQ model. In our py4dvar
system, the first and second terms in Eq. (12) represent an
“offset term”. The OCO-2 averaging kernel is defined on 20
pressure levels and we interpolate these to the CMAQ verti-
cal levels.

3 Results

In this section, we present an assessment of the uncertainty
reduction resulting from the flux-inversion process. First, we
present an analysis of the convergence of our minimization
and evaluate the information content (degrees of freedom for
signal) of our OSSE simulation experiments. This is followed
by an analysis of the uncertainty reduction categorized by
MODIS land coverage. Finally, we present seven sensitivity
experiments to determine the robustness and consistency of
our inversions.

3.1 Convergence diagnostic

One interesting diagnostic of the convergence is to compare
the cost function at the end of the optimization to its expected
theoretical value. In a consistent system, the theoretical value
of the cost function at its minimum should be close to half the
number of assimilated observations, assuming all error statis-
tics are correctly specified (Tarantola, 1987, p. 211). Table 3
shows the mean (across our five realizations) of the cost func-
tion J (x) and its gradient norm ∇xJ . For example, with 842
observations, the theoretical value should be 421. We see that
the theoretical value is reached to within a few percent for
all months. We see a corresponding decrease in the gradient
norm by about 99 %.
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Table 2. Physics parameterizations used in the Weather Research and Forecasting (WRF) model setup.

Category Selected schemes

Microphysics Morrison double-moment scheme (Morrison et al., 2009)
Short-wave radiation Rapid Radiative Transfer Model for GCMs (RRTM-G) scheme (Iacono et al., 2008)
Long-wave radiation Rapid Radiative Transfer Model for GCMs (RRTM-G) scheme (Iacono et al., 2008)
Surface layer Monin–Obukhov (Monin and Obukhov, 1954)
Land/water surface The NOAH land surface model and the urban canopy model (Tewari et al., 2007)
Planetary boundary layer (PBL) Mello–Yamada–Janjic scheme (Janjić, 1994)
Cumulus The Grell–Dévényi ensemble scheme (Grell and Dévényi, 2002)

Table 3. Convergence diagnostics of the inversion system using an ensemble of five independent OSSEs for March, June, September and
December 2015. Date format is YYYY-MM.

Months Mean Mean Mean Mean Reduction percent Mean N/2
J0(x) ∇xJ0 Jf(x) ∇xJf ∇xJ DFS

2015-03 2481.65 5365.17 418.51 71.59 98.67 38.66 421
2015-06 3099.77 4447.81 353.57 46.16 99.96 33.29 347
2015-09 6679.85 9158.88 508.77 58.25 99.36 30.30 501
2015-12 3318.09 4839.83 355.89 33.70 99.30 27.36 358

3.2 Degrees of freedom for signal

The number of degrees of freedom for signal (DFS) in
our OSSEs is another useful diagnostic of the inversion
(Rodgers, 2000, Eq. 2.46). The DFS quantifies the number
of independent pieces of information that the OCO-2 mea-
surements can provide given the prior information. In our
experimental framework, we computed the DFS following
Chevallier et al. (2007, Sect. 3.4.):

J (xa)=
(
xa
− xb

)T
B−1

(
xa
− xb

)
, (13)

where xa represents our posterior estimates. Table 3 shows
that on average the DFS in the prior for our four months is
about 30. This value is consistent with Fig. 4a and b, which
shows that only about 20 eigenvalues account for 60 % of the
variance in our prior error covariance matrix. The inversion
cannot add much information to other components, limiting
the DFS. Australia is a special case in this respect since most
of the continent comprises semi-arid and arid regions. We as-
sumed that land flux uncertainties are driven by NPP, as sim-
ulated by CABLE. Thus, the prior uncertainty will be small
in arid and semi-arid regions.

3.3 Spatial distribution of uncertainty reduction

The uncertainty reduction between the posterior and prior
fluxes is a useful way to evaluate the potential of satellite data
to constrain CO2 fluxes. We calculated the percentage uncer-
tainty reduction following (Chevallier et al., 2007, Sect. 3.5.),
as follows:

U=
(

1−
σa

σb

)
× 100%, (14)

where σa and σb are the posterior and prior standard devia-
tions, respectively. Figure 5 displays the monthly uncertainty
reduction in CO2 fluxes for (a) March, (b) June, (c) Septem-
ber and (d) December 2015. We have masked areas with
σb < 10−7 mol m−2 s−2. We also mask areas with negative
uncertainty reduction. Such uncertainty increase is simply a
result of the small number of realizations. We will now de-
scribe the magnitude and spatial patterns in the uncertainty
reduction, and in Sect. 3.4 we will discuss the uncertainty
reduction aggregated by land cover class.

In March, the largest uncertainty reductions (Fig. 5a) are
located in the north of Australia. In this area, the uncer-
tainty reduction is greater than 30 %, reaching values up to
80 %. We note that the regions with the largest reduction in
uncertainty coincide with the locations with high prior un-
certainty (Fig. 3). In June 2015 (Fig. 5b), for instance, the
largest uncertainty reduction was found in the north, north-
east, east and south-east of Australia, where values range be-
tween 70 % and 80 %. Uncertainty reductions in September
(Fig. 5c) are higher compared to June in the south-east of the
country, ranging between 70 % and 80 %. This is consistent
with the fact that September is in the middle of the growing
season in this part of Australia and our prior uncertainties are
driven by NPP. Also, more satellite soundings are available
for this region in September compared to other months. The
uncertainty reduction in December (Fig. 5d) decreases in the
north of Australia to a range of 20 %–30 %. This is likely due
to the fact that relatively few OCO-2 soundings are available
in that month (Fig. 2), due to increased cloud coverage dur-
ing the wet season in northern Australia. This is discussed
further in the next section.
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Figure 2. Spatial distribution of OCO-2 soundings (land nadir and glint data) over the CMAQ domain for March, June, September and
December 2015.

3.4 Uncertainty reduction over Australia by MODIS
land cover classification

To get a better understanding of the constraint on CO2 sur-
face fluxes provided by OCO-2, we aggregated the prior and
posterior fluxes into six categories over Australia: grasses
and cereal (GC), shrubs (SH), evergreen needleleaf forest
(ENF), savannah (SAV), evergreen broadleaf forest (EBF),
and unvegetated land (UN). We used the MODIS Land Cover
Type Product (MCD12C1) Version 6 data product. The dis-
tribution is shown in Fig. 6. After aggregating fluxes for each
realization we calculated standard deviations and uncertainty
reductions following Eq. (14).

The bar chart in Fig. 7 shows the prior (green bar) and the
posterior (orange bar) uncertainties of our five realizations
(in Pg C yr−1) split into six land-use classes for (a) March,

(b) June, (c) September and (d) December 2015. The uncer-
tainty reduction for each land-use class and each month is
represented by circles. Also shown is a second estimate of
the prior uncertainties, comprising 100 realizations (purple
bar). The prior of 100 realizations is plotted to assess the rep-
resentativity of the five random prior realizations of the prior
uncertainties. We see clearly in each figure that with only five
realizations we can represent quite well our assumed prior
uncertainties (we should also note that, due to computational
limitation, the uncertainty reduction is based only on these
five realizations).

The largest uncertainty reduction in March is over SH
(81 %). The large uncertainty reduction is likely due to the
large number of OCO-2 soundings in this region (464 ob-
servations). The next largest uncertainty reductions are over
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Figure 3. Monthly mean of CO2 prior uncertainties accounting for the major terms in the CO2 budget (anthropogenic fluxes, fires, land and
ocean exchange) (in units of g C m−2 d−1).

Figure 4. The cumulative percentage variance explained (a) and the eigenvalues (b) in the prior error covariance matrix.
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Figure 5. The percentage error reduction of the monthly-mean CO2 surface fluxes for March, June, September and December 2015 over the
CMAQ model domain. The percentage of error reduction is defined as (1− σa/σb), with σa and σb representing, respectively, the posterior
and prior uncertainties of the CO2 fluxes emissions.

GC (78 %) and ENF forest (68 %) likely due to the relatively
large NPP in these regions (Fig. 3a).

June shows less uncertainty reduction for GC (51 %) com-
pared to March, likely due to the smaller number (one third
as many) of OCO-2 soundings (Fig. 2) in southern Aus-
tralia. similarly, uncertainty reduction over the SH ecotype
decreases. Due to the small number of realizations, however,
this percentage of reduction might not be representative of
this region. For this category, we can see that the prior uncer-
tainty with five realizations is about 0.1 Pg C yr−1, whereas
with 100 realizations it is about 0.25 Pg C yr−1. Uncertainty
reduction over SAV is about 31 %, similar to the percentage
of reduction found in March. Even though we found rela-
tively few soundings over EBF and ENF in June, uncertainty
reductions for these regions are 47 % and 7 %, respectively.
The reduction over UN areas is about 39 %, again demon-
strating the potential of OCO-2 data to constrain fluxes.

In September the most significant uncertainty reduction
was found over EBF (74 %) and GC (68 %) compared with

all other months, associated with the peak of the growing sea-
son in much of Australia. Uncertainty reductions in these cat-
egories are much larger due to the increase of OCO-2 sound-
ings in south-eastern Australia (see Fig. 2c). The uncertainty
reduction over areas designated as SAV and ENF is about
53 % and 30 %, respectively. Over areas classified as SH and
UN, we see a weaker uncertainty reduction of 22 % and 33 %,
respectively.

Similar to September, in December we found the largest
uncertainty reductions over EBF (72 %) in line with the struc-
ture of the uncertainties seen in south-eastern of Australia in
(Fig. 3c). The percentage of uncertainty reduction found over
GC (77 %) may not represent the precise percentage for this
category (given the small number of realizations used). For
this category, we see that the prior uncertainties of 100 re-
alizations is about 0.17 Pg C yr−1, whereas with five realiza-
tions it is about 0.28 Pg C yr−1. We would expect to have a
smaller uncertainty reduction for this category due to scarcity
of soundings available in the north and north-eastern Aus-
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Figure 6. Aggregation of land cover classes over CMAQ domain
using MODIS Land Cover Type Product (MCD12C1) Version 6
data product. Colour bars represent each category: (0) ocean, (1)
grasses and cereal, (2) shrubs, (3) evergreen needleleaf forest, (4)
savannah, (5) evergreen broadleaf forest, and (6) unvegetated land.

Table 4. Prior and posterior uncertainties (in Pg C yr−1) for an en-
semble of five realizations aggregated over the Australian continent.
Date format is YYYY-MM.

Months Prior Posterior Reduction Prior reduction
(Pg C yr−1) (Pg C yr−1) (%) (Pg C yr−1)

2015-03 0.62 0.15 76 0.47
2015-06 0.49 0.34 31 0.16
2015-09 0.55 0.17 70 0.39
2015-12 0.63 0.12 80 0.51

tralia for this month, likely due to cloudiness associated with
the wet season. Uncertainty reductions found over areas clas-
sified as SH, SAV and ENF were 56 %, 62 % and 36 %, re-
spectively. Different to other months, the uncertainty reduc-
tion over UN is about 58 %.

3.5 Uncertainty reduction in the total Australian CO2
flux

Table 4 shows the standard deviation of the total CO2 flux
uncertainty over Australia for the four months in which in-
versions were run. Months with the largest uncertainty re-
ductions are found in December (80 %), March (76 %) and
September (70 %). In contrast with these results, the smallest
reduction is found in June (31 %). The last of these results
is not surprising, since June is the month with the smallest
number of OCO-2 soundings (for this month we only find
694 observations compared to September and March, with
1002 and 842 soundings, respectively).

Differences in the uncertainty reduction between months
not only depend on the number of soundings and the struc-
ture of the uncertainty but also other variables (e.g. wind di-

rection). Coastal grid points present a problem for our inver-
sion when the wind direction comes from the ocean because
our system only assimilates data over land). Prevailing winds
in this coastal zone restrict the ability of OCO-2 to constrain
surface fluxes (Figs. S1–S3 in the Supplement).

4 Sensitivity experiments

To assess the robustness and consistency of the previous re-
sults, we performed seven different sensitivity experiments
(S1, S2, S3, S4, S5, S6-A, S6-B), which are summarized in
Table 5. These experiments follow the same randomization
approach shown in Sect. 2 but with the following changes.

– S1 tests the effect of reducing the correlation lengths
in our prior error covariance matrix B. The correlation
length was changed from 500 to 50 km over land, and
from 1000 to 100 km over the ocean. By reducing the
correlation length, the number of retained eigenvectors
increased from 811 (control experiment) to 4101. The
shorter correlation lengths allow for a larger selection
of possible flux structures, requiring more eigenvalues
to capture the possible variance.

– S2 assesses what percentage of uncertainty reduction of
the Australian flux is affected by excluding glint land
observations from our inversion. Our control cases treat
land nadir and glint data as one single dataset because of
the small offset between them. The number of observa-
tions influences the footprint coverage and therefore the
number of fluxes we can solve. In this particular exper-
iment, we would expect a smaller uncertainty reduction
of Australian flux, because the number of observations
has been reduced from 842 to 419.

– S3 evaluates the effect of having uniform uncertainties
over land and a simplified structure of B. In this case,
we assumed uncertainties of 3 g C d−1 over land with
correlation lengths of 5 km over land and 10 km over
ocean. This change effectively transforms B into a diag-
onal matrix.

– S4 tests the impact of adding a bias of 3.3 ppm to
the OCO-2 observations. Here, biases were calculated
by taking the differences between the raw and bias-
corrected XCO2 values found in the OCO-2 retrieval
product. We performed this experiment because some
studies (e.g. Chevallier et al., 2007) indicate that just a
few tenths of a part per million bias in the observations
are enough to prevent the inversions from converging on
optimal fluxes.

– S5 tests the impact of introducing a mean absolute bias
of 0.21 Pg C yr−1 to prior fluxes. In this experiment, the
prior bias were created using a normal Gaussian random
perturbation of the prior uncertainty. For all five realiza-
tion, biases were introduced as constant component.
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Figure 7. Prior and posterior uncertainties (in Pg C yr−1) aggregated over five different classes over the Australian domain using MODIS
Land Cover Type Product (MCD12C1). Green and orange bars represent the prior and posterior uncertainties of five realizations, respectively,
while the purple bar represents prior uncertainties of 100 realizations. Circles show the percentage of uncertainty reduction by each category.

– S6-A tests the impact of adding bias in the boundary
conditions (BCs). We increased the BCs simulated by
adding a uniform offset of 0.5 ppm on each grid cell. In
this case, we did not solve for BCs in the inversion.

– S6-B assesses the impact of incorporating BCs in the
inversion system to deal with the bias introduced in
S6-A. BCs were introduced to the control vector x =

{i0,e0,e1, . . .,en,b0, . . .,b7} as eight boundary regions
b0, . . .,b7 (representing the upper and lower areas of the
north, south, east and west sides of the rectangular do-
main). We did not solve the BCs in the same way that we
solve for the surface fluxes, as they are not among the
key results (i.e. BCs were treated as nuisance variable).
In this case, we gave the optimizer the ability to modify
the BCs while it is optimizing surface fluxes. For this
test, we assumed a uniform uncertainty of 1 ppm s−1.
This is applied as an additive perturbation to tempo-
rally and spatially varying concentration boundary con-
ditions based on the CAMS global CO2 simulations.

4.1 Degrees of freedom for signal

Table 6 shows the number of retained eigenvalues from B and
the DFS for sensitivity experiments S1, S2, S3 and control
cases. Experiment S1 shows that merely reducing correla-
tion lengths does not lead to extra information being resolved
by the observations. S2 shows that, as expected, subtract-
ing observations from our inversion resolves less information
on fluxes. Experiment S3 (in which we reduce correlation
lengths but also increase the uncertainty on many grid points)
demonstrates an increase in the number of components re-
solved by the observations. The comparison of S1 and S3
suggests it is the low uncertainty rather than the smoothness
imposed by the uncertainty correlations that limits the DFS.

4.2 Spatial distribution of uncertainty reduction over
Australia

Figure 8 shows the spatial distribution of the uncertainty
reduction at grid-scale over Australia for sensitivity exper-
iments S1, S2 and S3. These figures should be compared
to Fig. 5a (control case). Experiment S1 shown in Fig. 8a
demonstrates that the correlation length plays a significant
role in the uncertainty reduction. A lower correlation length
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Table 5. A brief description of the sensitivity OSSEs performed for March 2015.

Case Lland Locean LN LNG Uniform Mean obs. Mean prior bias BC bias Solve for
(km) (km) uncertainties (B) bias (ppm) (Pg C yr−1) (ppm) BC bias

Control 500 1000 N Y N 0 0 0 N
S1 50 100 N Y N 0 0 0 N
S2 500 1000 Y N N 0 0 0 N
S3 5 10 N Y Y 0 0 0 N
S4 500 1000 N Y N 3.3 0 0 N
S5 500 1000 N Y N 0 0.21 0 N
S6-A 500 1000 N Y N 0 0 0.5 N
S6-B 500 1000 N Y N 0 0 0.5 Y

Land nadir data is defined as LN, and land nadir and glint data as LNG.

Table 6. Number of degrees of freedom for signal (DFS) in the
prior flux uncertainty and the number the principal eigenvector in
the prior error covariance matrix for sensitivity experiments S1, S2
and S3.

Sensitivity Mean Principal
experiments DFS eigenvectors

Control 38.66 811
S1 34.38 4101
S2 35.32 811
S3 96.56 3456

yields a lower reduction of the uncertainties. For example,
the error reduction over the productive areas in northern and
north-eastern Australia is between 0 % and 20 % compared to
the control experiment’s 40 %–80 %. This implies that longer
correlation length scales allow for information to be effec-
tively “transferred” in space, thus pooling data over a wider
region and magnifying the benefit from the assimilation.

Experiment S2 (Fig. 8b) illustrates that decreasing the
number of observations also reduces the percentage of re-
duction per grid cell. The uncertainty reduction (40 %–60 %)
is much weaker than the control experiment. These results
complement Table 6, where the DFS decrease from 38.66
(control experiment) to 35.32 (S2).

Experiment S3 (Fig. 8c) shows how the structure and mag-
nitude of the prior uncertainty influence uncertainty reduc-
tion. The uncertainty reductions are distributed almost uni-
formly across Australia, and their values range between 0 %
and 20 %. Our assumption of a linear relationship between
uncertainty and NPP means much of Australia has negligi-
ble impact on the prior uncertainty in the control case. This
result shows the importance of that assumption. Assuming
equal uncertainty across Australia may have a significant im-
pact on the final total flux estimate, because most of the con-
tinent is largely composed of arid and semi-arid land. The
small percentage of uncertainty reduction is due to the negli-

gible correlation length assumed in the prior error covariance
matrix.

4.3 Uncertainty reduction over Australia by MODIS
land cover classification

Figure 9 shows the uncertainty reduction for the sensitivity
cases S1, S2, and S3 aggregated by ecotype. There is good
consistency between the geographical distribution (Fig. 8)
and these spatial aggregates. Thus for case S1, the uncer-
tainty reductions were found to be small compared to the
results in the control experiment (Fig. 7a). For example, the
sensitivity case S1 in Fig. 9a shows uncertainty reductions
over GC and UN are about 30 % and 1 %, respectively. No
uncertainty reductions are observed over SH, SAV, EBF and
ENF. Because of an insufficient number of realizations, for
these particular categories, we found a negative error reduc-
tion. In these land-use classes, we display the posterior to be
equal to the prior uncertainty.

Similarly, case S2 (Fig. 9b) displays significantly weaker
uncertainty reductions for some of the six land-use classifi-
cations compared to the control experiments (Fig. 7a). For
instance, the fractional uncertainty reductions over GC and
SH reach values of about 51 % and 57 %, respectively. In the
control experiment in (Fig. 7a) these values were 78 % and
81 %, respectively. As mentioned in the previous section, the
stronger posterior reduction is due to the correlation length in
the prior covariance and an increase of the OCO-2 soundings
over Australia. Findings in the sensitivity case S3 (Fig. 9c)
show similar results to those found in sensitivity case S1: the
smaller the correlation length, the less efficient the inversion.

4.4 Uncertainty reduction in the total Australia CO2
flux uncertainty

Uncertainty reduction of the total Australian CO2 flux for
sensitivity experiments S1, S2 and S3 are shown in Table 7.
Experiment S1 shows that the regional flux uncertainty in
Australia was only reduced by ∼ 9 % compared to the con-
trol case (which was 76 %). In this test, we can see again the
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Figure 8. Maps of the percentage of error reduction for the three sensitivity cases. (a) Using only nadir OCO-2 sounding and correlation
lengths 50 and 100 km. (b) Using “nadir” and “glint” OCO-2 sounding and correlation lengths of 500 and 1000 km. (c) Uniform uncertainties
over land and ocean, and correlation lengths of 5 and 10 km.

Figure 9. Sensitivity experiments for the prior and posterior uncertainties (in Pg C yr−1) aggregated over six different classes over the
Australia domain using MODIS Land Cover Type Product (MCD12C1).
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Table 7. Prior and posterior uncertainties (in Pg C yr−1) for an en-
semble of five realizations.

Sensitivity Prior Posterior Reduction Prior reduction
experiments (Pg C yr−1) (Pg C yr−1) (%) (Pg C yr−1)

Control 0.62 0.15 76 0.47
1 0.13 0.12 9 0.01
2 0.52 0.15 72 0.37
3 0.22 0.15 34 0.08

importance of the choices of the correlation length in B. We
saw in Table 6 that by decreasing the spatial correlation to
5 km over land, we increase the number of principal compo-
nents. Given the small number of realizations and an increase
in the number of components in the prior, we expect that this
estimate of the uncertainty reduction may be less representa-
tive using our randomization approach.

Experiment S2 shows an uncertainty reduction over Aus-
tralia from 73 % compared to 76 % (control case). This small
shift in the percentage of reduction is related to the number
of soundings found in the northern region of Australia. By
removing glint land data from our observations, we are re-
ducing the coverage of surface flux footprints.

Experiment S3 demonstrates the same artefact as S1,
though the generally higher prior uncertainties in S3 result
in a higher uncertainty reduction for the total Australian flux.
In this case, the assimilation reduces the total uncertainty to
34 %.

4.5 Impact of OCO-2 biases on the posterior fluxes

We mentioned in Sect. 4 that potential biases in the ob-
servations prevent the inversions from converging on opti-
mal fluxes. The results of experiment S4 confirms that bi-
ases in the observations do indeed affect the resulting pos-
terior fluxes. After adding biases of about 3.3 ppm, our in-
version produced a posterior flux, which was bias by ap-
proximately 5.0 Pg C yr−1 over Australia. This value indi-
cates that in order to obtain an accuracy of 0.1 Pg C yr−1 in
the total Australian flux, bias in the observation must be re-
duce roughly to 0.07 ppm. This sensitivity case shows us the
importance of minimizing biases in the observations if the
goal is to estimate accurately CO2 fluxes. Figure 10 illus-
trates the impact of the observational biases on the posterior
mean fluxes in each of the six MODIS land-use categories.
Significant biases are observed over SH (1.7 Pg C yr−1), GC
(1.4 Pg C yr−1), and EBF (0.9 Pg C yr−1). For each category,
the inversion system only generates positive flux biases, con-
sistent with the direction of the bias in the observations. Our
results are mainly due to large biases we prescribed in the
observations. Finally, we found that uncertainty of prior and
posterior were 0.68 and 0.25 Pg C yr−1, respectively. Given
the magnitudes of the prior uncertainties (and hence biases
in this case), this result is consistent with the control case.

Figure 10. Posterior bias of monthly CO2 flux induced by OCO-2
bias categorized by MODIS ecotype.

4.6 Unbiased prior CO2 flux

Results of experiment S5 are illustrated in Fig. 11. This fig-
ure shows the monthly-mean biases (black diamonds) added
to our prior true fluxes (assumed to be 0.0 Pg C yr−1) cat-
egorized by MODIS ecotype. In this figure, we can see
that after performing the inversion we can recover suc-
cessfully the mean of our true fluxes (dashed grey line).
On average the total biases added to our Australian prior
flux was about 0.21 Pg C yr−1 (using a conversion factor of
2.12 Pg C ppm−1, this value is equivalent to adding 0.1 ppm
bias). After performing the inversion, the posterior mean bias
was reduced to 0.024 PgC. The distribution of the fluxes
across the different land-use classes (centred around zero;
Fig. 11) reflects the fact that biases added to our prior were
randomly distributed. We added negative biases to GC and
SH (−0.12, −0.05 Pg C yr−1) and positive bias to SAV and
EBF (−0.05, 0.05 Pg C yr−1). We can see clearly in this fig-
ure that the inversion system is able to handle negative and
positive biases.

4.7 Impact of boundary condition biases on the
posterior fluxes

Unlike global flux inversions, regional flux inversions are
sensitive to lateral boundary conditions (BCs). To explore
how sensitive our system is to biased BCs, we ran two further
sensitivity experiments (collectively termed “S6”). In sen-
sitivity experiment S6-A we increased the BCs by adding
0.5 ppm to each boundary grid cell. Findings of this exper-
iment show that our system is indeed sensitive to the altered
BCs. Adding an extra 0.5 ppm to the BCs yields a posterior
bias in Australia of about−0.7 Pg C yr−1. These findings are
in line with the values found in sensitivity case S4, but in a
opposite direction. The negative value of the bias means the
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Figure 11. Prior (blue) and posterior (red) monthly-mean CO2 flux
of a ensemble of five realizations and monthly-mean prior bias
(black) added to the true prior fluxes (dashed grey line). Note: re-
sults are shown for adding the same biases to our five realizations.

Figure 12. Posterior bias of monthly CO2 concentration induced by
changes in the lateral boundary conditions categorized by MODIS
ecotype.

inversion system is trying to reduce the fluxes to compensate
for the positive bias in the BCs. The mean posterior bias flux
for each land category is shown in Fig. 12.

4.8 Solving for the boundary condition in the inversion

Experiment S6-B was designed to see if the inversion could
correct for biases in the boundary conditions given additional
parameters to optimize. After solving for BCs in the inver-
sion, the biases introduced to BCs in S6-A were corrected.
We analysed the corrections by looking at the bias of the pos-
terior flux for each land-use category. Figure 12 shows that
the decrease of biases over GC was significant. In this cate-
gory biases were reduced from −0.11 to −0.019 Pg C yr−1.

Similar results were found over SAV, EBF and ENF, where
biases were also reduced. Biases over SH does not show
much improvement. In this category biases decreased only
from −0.30 to −0.20 Pg C yr−1. After a wind-rose analysis
for 10 selected locations around the coast in west Australia
(Figs. S1–S3), we found that the small reduction of the biases
in this category is explained by the orientation of the wind in
March. When winds come from ocean, the inversion loses
the ability to correct the wrong BCs. The treatment of the
bias in BCs is relatively simple, with a goal of introducing
relatively few additional parameters into the control vector.
The experimental design assumes that these biases are con-
stant in time and across large areas of the domain. The biases
in the BCs were generated with the same framework as was
used to solve them (i.e. fully specified by eight parameters).
In reality, error in BCs will vary in both space and time. Thus,
the results here are indicative but suggest that biases (as op-
posed to fluctuations) at least can be accounted for in such a
system.

5 Comparison between CMAQ simulations and
OCO-2 observations

One key uncertainty in any OSSE is the realism of the obser-
vational uncertainties. One simple test involves performing a
limited inversion of data and assessing whether the cost func-
tion (Eq. 1) is consistent with the number of observations.
Unlike the OSSE, this is not guaranteed; in the “real-data”
inversion, there are likely errors in the atmospheric transport
and the initial and boundary conditions. To test this, we per-
formed an inversion for March 2015 using nadir and glint
data. As mentioned in Sect. 2.2, we added a scaling factor
for the initial condition to our target variables to test the in-
version.

Figure 13 shows a histogram of residuals between the
CMAQ model simulations using optimized fluxes and OCO-
2 observations. We can see that the monthly-mean bias was
reduced from 0.49 to−0.01 ppm, with a decrease in the root-
mean-square error (RMSE) from 1.08 to 0.89 ppm. While
these are based on the same data that were assimilated and
do not necessarily show that the posterior fluxes are closer to
the truth, it does show that our system is self-consistent. The
cost function J (xa) at its minimum is 418.52, close to half
the number of observations (842).

6 Discussion

In this paper, we quantified the potential uncertainty reduc-
tion in monthly CO2 fluxes when assimilating OCO-2 satel-
lite retrievals with a regional-scale model at approximately
80 km grid resolution. If we compare our results shown in
Fig. 5 against, for example, Fig, 2 of Chevallier et al. (2007)
we see that our grid-scale uncertainty reductions are higher
than those by Chevallier et al. (2007) by almost a factor of
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Figure 13. The distribution of the difference between simulated
and observed XCO2 (in ppm). The red histogram presents the prior
XCO2 simulated minus the observed XCO2, whereas the blue his-
togram presents the posterior XCO2 simulated minus the observed
XCO2. Mean differences and standard deviations are indicated in
the legend.

2, using nadir and glint data over land. In Chevallier et al.
(2007), uncertainty reductions in Australia are about 30 %–
50 % over productive areas, while in this study they reach
60 %–80 %. One possible explanation for this is the lower
observational uncertainty assumed in our study, averaging
0.6 ppm compared with 2 ppm assumed by Chevallier et al.
(2007) before OCO-2 was launched. We can also compare
our results with those for the in situ network studied by Ziehn
et al. (2014). At the national scale, Ziehn et al. (2014) sug-
gested an uncertainty reduction of 30 %, while we see 76 %
for our control case.

Our results must be interpreted with caution, because, like
all OSSEs, they depend strongly on assumed inputs (such as
B and R), which are difficult to characterize. In particular, we
have assumed that the CABLE NPP (Haverd et al., 2013a) is
a good proxy for biospheric net flux uncertainty, following
Chevallier et al. (2010a). Chevallier et al. (2010a) used a dif-
ferent model and a different domain, so these assumptions
may require further testing in our model configuration and
region of interest. In future, we could compare CABLE simu-
lations against eddy-covariance CO2 flux measurements fol-
lowing Chevallier et al. (2012). Characterization of the prior
biospheric flux over semi-arid regions in Australia is critical
to account for the inter-annual variability of these ecosystems
(Poulter et al., 2014). Recent studies (e.g. Poulter et al., 2014)
have suggested that the semi-arid regions in Australia could
become an important driver of the carbon cycle in compari-
son with ecosystems dominated by tropical rainforests.

Sensitivity experiments S1 and S3 show that the uncer-
tainty reduction in CO2 surface fluxes over Australia is sen-
sitive to a combination of both magnitude and spatial distri-

bution of the uncertainty, as well as the choice of the cor-
relation length scale. We saw in case S1, for example, that
by reducing the correlation length in B, we do not necessar-
ily increase the number of degrees of freedom (DFS) in our
prior compared to the control. These findings suggest that the
number of DFS in our prior fluxes depends more on the spa-
tial distribution of error variance than on the assumed corre-
lation length-scale. These results are much clearer in exper-
iments S3, where the distribution of the uncertainty is uni-
form across Australia. In this case, we see that the number
of DFS increases by increasing the magnitude of the uncer-
tainty across Australia. In sensitivity case S2, we saw that by
subtracting glint data, our system was able to solve for fewer
DFS in the fluxes compared to the control experiment.

Sensitivity experiment S4 shows that the existence of bi-
ases in the observations has a significant impact on our pos-
terior flux estimate. Adding biases to our simulated OCO-2
observation prevents our inversion from converging on opti-
mal fluxes. We saw in Sect. 4.5 that when adding biases (cor-
responding to an average increase of 3.3 ppm) to the observa-
tion, the posterior flux is also biased by about 5.0 Pg C yr−1.
Our results are in agreement with Chevallier et al. (2007,
2010a) and show that regional biases in column-averaged
CO2 can significantly bias our posterior fluxes. Similar re-
sults are found in experiment S6-A, which looked at biases in
boundary conditions. Adding 0.5 ppm to the boundary con-
ditions also has an impact on our posterior fluxes. Increased
BCs resulted in negative bias in the posterior fluxes and to
a degree that was consistent with sensitivity case S4. These
findings suggests that our regional flux inversion is sensitive
to boundary conditions; therefore, in a real inversion, con-
trols on boundary conditions should be included in the state
vector in addition to the surface fluxes.

Results in sensitivity case S5 shows that biased prior fluxes
satisfy the theoretical assumption in the variational optimiza-
tion similar to using an unbiased prior case. We demonstrated
that our system is able to handle the impact of possible bi-
ases in the CMAQ model that might contaminate the result-
ing posterior fluxes.

Another direction for future work would be to explore the
impact of a finer temporal and horizontal resolution on the re-
sulting fluxes. Model simulations at higher spatio-temporal
resolutions have been shown to have better agreement with
observations, partly on account of allowing for a better rep-
resentation of the measurements. (Law et al., 2004; Peylin
et al., 2005; Patra et al., 2008). However, as we saw in
Sect. 2.3, we found it necessary to average OCO-2 sound-
ings before assimilating in the system. To simplify this pro-
cess, the averaging process removed any 1 s soundings that
spanned multiple grid cells in the CMAQ domain. This is
about 7 km in along-track distance. If we use a finer resolu-
tion than 80 km, we could remove more soundings and thus
weaken our constraint.

We emphasize again that our study quantifies the uncer-
tainty but not the realism of our posterior flux estimates. The
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assessment of posterior fluxes from assimilation of real data
will be the subject of an upcoming paper. This requires com-
parison with independent concentration data or, if available,
flux estimates at comparable scales.

7 Conclusion

We have performed an observing system simulation exper-
iment for the retrieval of CO2 fluxes over Australia using
OCO-2 data and a regional-scale flux-inversion system. The
main findings indicate that OCO-2 nadir and glint (version 9)
data can provide a moderate (≈ 30 %) to significant (> 70 %)
constraint on the Australian CO2 flux uncertainty in 2015
(for most months studied). We saw that these reductions at
a grid-point resolution reached values of about 90 %, with
the largest uncertainty reductions being observed over bio-
logically productive areas. Small uncertainty reductions are
found over arid and semi-arid ecosystem, where we assumed
the prior uncertainties were small. These reductions only be-
come significant when aggregating by land-use classifica-
tions (e.g. shrubs 20 %–80 % ). For future work, it is relevant
to consider a better characterization of our prior uncertain-
ties in this region to account for the inter-annual variability
of the carbon cycle in these semi-arid regions. Sensitivity ex-
periments show that uncertainty reductions are quite sensi-
tive to the assumed prior correlations but less sensitive to the
spatial distribution of prior uncertainties. Moreover, we also
saw that by excluding glint data from the assimilated obser-
vations, we reduce the coverage of the surface flux footprint
and therefore the uncertainty reduction of the total Australian
flux. It seems likely, therefore, that this combination of land
and glint data can help quantify the Australian carbon cy-
cle, provided simulations are sufficiently realistic. Finally,
we showed that such OSSEs are useful to test the potential of
the inversion to possible biases in the observation, prior and
boundary conditions. Our future work will focus on the ap-
plication of this assimilation system to estimate CO2 surface
fluxes in Australia as a contribution to the REgional Carbon
Cycle Assessment and Processes (RECCAP) project.
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Appendix A: Convergence diagnostic

Table A1. Convergence diagnostic of the inversion system using an ensemble of five independent OSSEs for March 2015 (∇xJ0 and ∇xJ0
represent the initial cost function and its gradient at the beginning of the optimization and ∇xJf and ∇xJf are for the end of the optimization).

March, 2015

Realizations J0(x) ∇xJ0 N Jf(x) ∇xJf Reduction percent DFS
iterations ∇xJ

1 1415.69 4289.81 32 422.12 47.04 98.9 39.45
2 4237.71 7888.37 36 438.47 55.31 99.3 54.43
3 3967.27 7452.77 28 426.24 143.48 98.1 31.10
4 877.09 2393.33 25 405.86 54.11 97.7 27.79
5 1910.48 4801.56 30 399.88 58.01 98.8 40.54

Table A2. Convergence diagnostic of the inversion system using an ensemble of five independent OSSEs for June 2015 (∇xJ0 and ∇xJ0
represent the initial cost function and its gradient at the beginning of the optimization and ∇xJf and ∇xJf are for the end of the optimization).

March, 2015

Realizations J0(x) ∇xJ0 N Jf(x) ∇xJf Reduction percent DFS
iterations ∇xJ

1 694.59 1425.53 21 353.60 21.61 98.5 28.49
2 5015.57 6436.36 21 342.48 91.79 98.6 26.52
3 5771.21 6928.37 21 374.91 37.70 99.5 45.99
4 3230.98 5853.03 22 327.08 42.00 99.3 37.23
5 786.51 1595.78 22 369.78 37.68 97.6 28.23

Table A3. Convergence diagnostic of the inversion system using an ensemble of five independent OSSEs for September 2015 (∇xJ0 and
∇xJ0 represent the initial cost function and its gradient at the beginning of the optimization and ∇xJf and ∇xJf are for the end).

March, 2015

Realizations J0(x) ∇xJ0 N Jf(x) ∇xJf Reduction percent DFS
iterations ∇xJ

1 669.74 1521.91 17 479.81 60.71 96.01 26.68
2 18748.00 18536.18 25 546.29 63.93 99.66 33.25
3 2397.70 5277.01 24 506.13 45.56 99.14 33.49
4 7732.10 12490.83 21 499.07 48.87 99.61 35.79
5 3851.70 7968.45 26 512.57 72.19 99.09 22.31

Table A4. Convergence diagnostic of the inversion system using an ensemble of five independent OSSEs for December 2015 (∇xJ0 and
∇xJ0 represent the initial cost function and its gradient at the beginning of the optimization and ∇xJf and ∇xJf are for the end of the
optimization).

March, 2015

Realizations J0(x) ∇xJ0 N Jf(x) ∇xJf Reduction percent DFS
iterations ∇xJ

1 11361.12 12893.66 23 344.26 47.22 99.63 35.33
2 1844.17 4600.57 18 352.94 31.99 99.30 31.05
3 385.52 413.49 21 365.55 22.48 94.56 24.62
4 394.00 497.57 26 341.68 37.96 92.37 22.91
5 2605.66 5793.86 22 374.99 28.87 99.50 22.91
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Appendix B: Uncertainty reduction over Australia
classified by MODIS ecotype

Table B1. Uncertainty reduction of total CO2 Australian flux (in Pg C yr−1) classified by MODIS ecotype (March, 2015).

March, 2015

Land cover type Prior Posterior Reduction Prior reduction
(Pg C yr−1) (Pg C yr−1) (%) (Pg C yr−1)

Grasses/cereal 0.402 0.088 78 0.314
Shrubs 0.243 0.046 81 0.197
Savannah 0.068 0.039 43 0.029
Evergreen broadleaf forest 0.087 0.045 48 0.042
Evergreen needleleaf forest 0.010 0.003 68 0.007
Unvegetated 0.003 0.002 30 0.001

Table B2. Uncertainty reduction of total CO2 Australian flux (in Pg C yr−1) classified by MODIS ecotype (June, 2015).

June, 2015

Land cover type Prior Posterior Reduction Prior reduction
(Pg C yr−1) (Pg C yr−1) (%) (Pg C yr−1)

Grasses/cereal 0.382 0.188 51 0.194
Shrubs 0.101 0.074 26 0.026
Savannah 0.104 0.072 31 0.032
Evergreen broadleaf forest 0.066 0.035 47 0.031
Evergreen needleleaf forest 0.007 0.006 7 0.000
Unvegetated 0.004 0.002 39 0.002

Table B3. Uncertainty reduction of total CO2 Australian flux (in Pg C yr−1) classified by MODIS ecotype (September, 2015).

June, 2015

Land cover type Prior Posterior Reduction Prior reduction
(Pg C yr−1) (Pg C yr−1) (%) (Pg C yr−1)

Grasses/cereal 0.265 0.086 68 0.179
Shrubs 0.072 0.056 22 0.015
Savannah 0.133 0.062 53 0.070
Evergreen broadleaf forest 0.089 0.023 74 0.066
Evergreen needleleaf forest 0.008 0.006 30 0.003
Unvegetated 0.003 0.002 33 0.001

Table B4. Uncertainty reduction of total CO2 Australian flux (in Pg C yr−1) classified by MODIS ecotype (December, 2015).

December, 2015

Land cover type Prior Posterior Reduction Prior reduction
(Pg C yr−1) (Pg C yr−1) (%) (Pg C yr−1)

Grasses/cereal 0.288 0.066 77 0.222
Shrubs 0.141 0.062 56 0.078
Savannah 0.105 0.040 62 0.065
Evergreen broadleaf forest 0.135 0.037 72 0.097
Evergreen needleleaf forest 0.015 0.010 36 0.006
Unvegetated 0.007 0.003 58 0.004
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Appendix C: Sensitivity cases: convergence diagnostic

Table C1. Convergence diagnostic of sensitivity case (1) after the inversion using an ensemble of five independent OSSEs for March 2015
(∇xJ0 and ∇xJ0 represent the initial cost function and its gradient at the beginning of the optimization, and ∇xJf and ∇xJf represent them
at the end of the optimization).

March, 2015

Realizations J0(x) ∇xJ0 N Jf(x) ∇xJf Reduction percent DFS
iterations ∇xJ

1 612.84 1628.22 22 433.04 23.00 98.59 41.15
2 498.35 1265.62 22 386.30 28.49 97.75 19.80
3 3378.61 6958.64 25 405.56 23.84 99.66 37.42
4 5528.23 9084.95 20 440.52 24.40 99.73 38.02
5 565.93 1554.60 15 398.93 116.29 92.52 14.39

Table C2. Convergence diagnostic of sensitivity case (2) after the inversion using an ensemble of five independent OSSEs for March 2015
(∇xJ0 and ∇xJ0 represent the initial cost function and its gradient at the beginning of the optimization, and ∇xJf and ∇xJf represent them
at the end of the optimization).

March, 2015

Realizations J0(x) ∇xJ0 N Jf(x) ∇xJf Reduction percent DFS
iterations ∇xJ

1 1270.51 2933.40 34 200.29 17.63 99.40 29.08
2 1288.23 2599.04 30 208.81 17.34 99.33 29.97
3 1079.26 2457.01 18 209.84 46.81 98.09 37.43
4 1980.78 3621.05 29 212.17 25.51 99.30 41.05
5 2526.50 3767.30 21 237.34 70.15 98.14 39.08

Table C3. Convergence diagnostic of sensitivity case (3) after the inversion using an ensemble of five independent OSSEs for March 2015
(∇xJ0 and ∇xJ0 represent the initial cost function and its gradient at the beginning of the optimization, and ∇xJf and ∇xJf represent them
at the end of the optimization).

March, 2015

Realizations J0(x) ∇xJ0 N Jf(x) ∇xJf Reduction percent DFS
iterations ∇xJ

1 533.99 1169.34 25 410.42 60.22 94.85 91.13
2 463.93 235.66 19 413.91 73.63 68.76 67.80
3 556.02 1279.81 31 426.40 127.93 90.00 132.58
4 2986.13 6426.37 28 446.52 252.70 96.07 75.39
5 6262.08 9885.14 27 414.45 53.01 99.46 115.91
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Appendix D: Sensitivity cases: uncertainty reduction of
the total CO2 Australian flux classified by MODIS
ecotype

Table D1. Sensitivity case (1): uncertainty reduction of total CO2 Australian flux (in Pg C yr−1) classified by MODIS ecotype (March, 2015).

March, 2015

Land cover type Prior Posterior Reduction Prior reduction
(Pg C yr−1) (Pg C yr−1) (%) (Pg C yr−1)

Grasses/cereal 0.101 0.071 30 0.030
Shrubs 0.039 0.039 0 0.000
Savannah 0.047 0.047 0 0.000
Evergreen broadleaf forest 0.012 0.012 0 0.000
Evergreen needleleaf forest 0.006 0.006 0 0.000
Unvegetated 0.004 0.004 1 0.000

Table D2. Sensitivity case (2): uncertainty reduction of total CO2 Australian flux (in Pg C yr−1) classified by MODIS ecotype (March, 2015).

March, 2015

Land cover type Prior Posterior Reduction Prior reduction
(Pg C yr−1) (Pg C yr−1) (%) (Pg C yr−1)

Grasses/cereal 0.226 0.110 51 0.116
Shrubs 0.190 0.082 57 0.108
Savannah 0.081 0.016 81 0.065
Evergreen broadleaf forest 0.146 0.038 74 0.108
Evergreen needleleaf forest 0.020 0.007 62 0.012
Unvegetated 0.004 0.003 27 0.001

Table D3. Sensitivity case (3): uncertainty reduction of total CO2 Australian flux (in Pg C yr−1) classified by MODIS ecotype (March, 2015).

March, 2015

Land cover type Prior Posterior Reduction Prior reduction
(Pg C yr−1) (Pg C yr−1) (%) (Pg C yr−1)

Grasses/cereal 0.155 0.129 17 0.026
Shrubs 0.153 0.133 13 0.020
Savannah 0.094 0.088 6 0.006
Evergreen broadleaf forest 0.051 0.049 4 0.002
Evergreen needleleaf forest 0.004 0.004 0 0.000
Unvegetated 0.025 0.025 0 0.000
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