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Abstract. Mineral dust is the most abundant aerosol species
by mass in the atmosphere, and it impacts global climate, bio-
geochemistry, and human health. Understanding these var-
ied impacts on the Earth system requires accurate knowl-
edge of dust abundance, size, and optical properties, and
how they vary in space and time. However, current global
models show substantial biases against measurements of
these dust properties. For instance, recent studies suggest
that atmospheric dust is substantially coarser and more as-
pherical than accounted for in models, leading to persis-
tent biases in modelled impacts of dust on the Earth sys-
tem. Here, we facilitate more accurate constraints on dust
impacts by developing a new dataset: Dust Constraints from
joint Observational-Modelling-experiMental analysis (Dust-
COMM). This dataset combines an ensemble of global
model simulations with observational and experimental con-
straints on dust size distribution and shape to obtain more
accurate constraints on three-dimensional (3-D) atmospheric
dust properties than is possible from global model simula-
tions alone. Specifically, we present annual and seasonal cli-
matologies of the 3-D dust size distribution, 3-D dust mass
extinction efficiency at 550 nm, and two-dimensional (2-D)
atmospheric dust loading. Comparisons with independent
measurements taken over several locations, heights, and sea-
sons show that DustCOMM estimates consistently outper-
form conventional global model simulations. In particular,
DustCOMM achieves a substantial reduction in the bias rel-
ative to measured dust size distributions in the 0.5–20 µm

diameter range. Furthermore, DustCOMM reproduces mea-
surements of dust mass extinction efficiency to almost within
the experimental uncertainties, whereas global models gener-
ally overestimate the mass extinction efficiency. DustCOMM
thus provides more accurate constraints on 3-D dust proper-
ties, and as such can be used to improve global models or
serve as an alternative to global model simulations in con-
straining dust impacts on the Earth system.

1 Introduction

Even though mineral dust accounts for a substantial fraction
of the total mass of aerosol particles in the atmosphere and
produces important impacts on the Earth system, global mod-
els are unable to accurately reproduce dust abundance, size,
and optical properties (Kinne et al., 2006; Huneeus et al.,
2011). Model difficulties in reproducing these atmospheric
dust properties are largely associated with their inability to
accurately simulate important dust processes, such as dust
emission, transport, and deposition (e.g. Ginoux et al., 2001;
Shao, 2001; Zender et al., 2003; Huneeus et al., 2011; Kok
et al., 2017). Dust aerosols are emitted from source regions
such as the Saharan, Middle East, and Asian deserts and are
deposited after they are transported for thousands of kilome-
tres (Duce et al., 1980; Prospero et al., 1981; Weinzierl et
al., 2017). Their abundance and long-range transport allow
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them to play a significant role in the processes that impact
global climate (Boucher et al., 2013), biogeochemistry (e.g.
Mahowald et al., 2008, 2009; Ito et al., 2019), and human
health (e.g. Giannadaki et al., 2014). Specifically, dust affects
global climate directly by influencing the amount of radiation
that can reach or leave the atmosphere and the surface (Hay-
wood et al., 2003; Kok et al., 2017) or indirectly by changing
the amount, reflectivity, and lifetime of clouds (e.g. Lohmann
and Diehl, 2006; Doherty and Evan, 2014; Amiri-Farahani et
al., 2017). In addition, dust also impacts global biogeochem-
istry through deposition of iron and phosphorous-rich micro-
nutrients (Mahowald et al., 2008, 2009; Ito et al., 2019), both
of which are linked to the ability of ocean and land ecosys-
tems to absorb atmospheric carbon dioxide (e.g. Watson et
al., 2000; Blain et al., 2007). Finally, dust particles are easily
inhaled by humans, with smaller dust particles penetrating
deeply into the lungs and leading to cardiopulmonary dis-
ease, lung cancer, and eventually death (e.g. Giannadaki et
al., 2014). Therefore, obtaining accurate constraints on the
many impacts of dust on the Earth system requires accurate
knowledge of the sizes, abundance, and optical properties of
atmospheric dust particles (Mahowald et al., 2014).

Uncertainties in dust aerosol properties directly translate
into uncertainties in estimating their impact on the Earth sys-
tem, such as dust radiative impacts (e.g. Huneeus et al., 2011;
Zhao et al., 2013; Albani et al., 2014). Several studies have
associated a large part of these uncertainties to the uncer-
tainty in simulating the dust size distributions (e.g. Huneeus
et al., 2011; Kok, 2011a; Evan et al., 2014). Specifically,
global models simulate too much fine-mode dust (∼D ≤
2.5µm) and too little coarse-mode dust (∼D ≥ 5µm), both
at emission and during transport in the atmosphere (e.g. Kok,
2011a; Kok et al., 2017). This bias is particularly problematic
because fine dust predominantly cools the climate system by
extinguishing shortwave (SW) radiation, whereas coarse dust
warms it by also extinguishing longwave (LW) radiation (e.g.
Tegen and Lacis, 1996; Dufresne et al., 2002). Whereas pre-
vious modelling studies affected by the size bias found that
the combined (SW+LW) effect of dust is to cool the climate
system (e.g. Tegen and Lacis, 1996; Tegen et al., 1996; Co-
larco et al., 2014), it is unclear whether the dust LW warming
effect may overcome the dust SW cooling effect when the
underestimation of coarse-mode particles is corrected (Kok
et al., 2017). Since the dust radiative effect is sensitive to
the representation of size distribution in global models, con-
straining the dust size distribution, and how it varies spatially,
is thus important.

In addition to the sensitivity of dust size distribution, dust
radiative effects are also sensitive to the shape of dust par-
ticles (e.g. Kalashnikova and Sokolik, 2004). Global mod-
els generally assume that dust particles are spherical (Gi-
noux et al., 2001; Miller et al., 2006; Huneeus et al., 2011),
even though observations suggest that they are highly non-
spherical (Okada et al., 2001; Potenza et al., 2016). This ide-
alization in the representation of dust shape in global models

is used to simplify model physics (e.g. Miller et al., 2006)
and the calculation of their optical properties, but recent stud-
ies show that neglecting the asphericity of dust in models
causes an underestimation of about 30 % of dust aerosol opti-
cal depth (AOD) or extinction produced per unit mass of dust
(Potenza et al., 2016; Kok et al., 2017). This is largely caused
by the greater surface-to-volume ratio of non-spherical par-
ticles compared to that of equal-volume spherical particles
(e.g. Kalashnikova and Sokolik, 2002, 2004). The assump-
tion of spherical dust in climate models is also problematic
because the resulting underestimation of dust AOD largely
masks the positive bias associated with the fine dust particles
in models, which results in an overestimation of dust AOD
and extinction at remote regions when the dust emissions are
scaled to match the observation of AOD near the source re-
gions (e.g. Kok et al., 2017). Hence, to properly constrain
dust impacts on radiation, observational constraints must be
applied to both the dust size distribution and dust shape.

Global model simulations of the global dust cycle are
thus subject to numerous important biases, which have ob-
scured a detailed understanding of the impacts of dust on
the Earth system. To address the problem of size and shape
biases in model simulation of dust properties, we propose
a methodology to more accurately obtain three-dimensional
(3-D) dust properties than is possible from global model sim-
ulations alone. Specifically, we propose a new product called
the Dust Constraints from joint Observational-Modelling-
experiMental analysis (DustCOMM), which combines an en-
semble of global model simulations with observational and
experimental constraints on dust size distribution and shape.
DustCOMM builds on the results from Kok et al. (2017);
however, unlike the globally averaged results obtained in
Kok et al. (2017), our product constrains the climatology of
3-D global atmospheric dust properties, and it is provided
on seasonal and annual timescales. Below, Sect. 2 describes
the details of the methodology as well as the data used. In
Sect. 3, we present the constrained spatial distribution of the
dust size distribution, mass extinction efficiency, and atmo-
spheric dust loading, which we evaluate using independent
in situ measurements of dust size distributions and mass ex-
tinction efficiencies. Section 4 discusses some discrepancies
between DustCOMM and measurements, the impact of dust
asphericity on the DustCOMM product, and the possible use
of DustCOMM to improve estimates of dust impacts in the
global model simulations. Section 5 summarizes the paper.
Finally, we note that all the DustCOMM dust aerosol proper-
ties (dark shaded boxes in Fig. 1) presented in this study are
publicly available (Adebiyi et al., 2019a).

2 Data and methodology

We describe here all the steps we took to obtain the Dust-
COMM products. First, we use three sets of input datasets to
create the DustCOMM products (Fig. 1): (1) the constrained
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Figure 1. Schematic of the key steps to obtain the DustCOMM products (dark shaded boxes): constraints on the 3-D dust size distribution,
3-D mass extinction efficiency, and 2-D atmospheric loading. The variables are a function of the following: x–y–z (three-dimensional field),
x–y (two-dimensional field), S (seasonally resolved), D (size-resolved), and σ (includes uncertainties). The variables in the light grey boxes
are obtained from Kok et al. (2017). See Sect. 2 for details.

globally averaged data from Kok et al. (2017); (2) six model
simulations of size-resolved dust mass concentrations, from
which we estimate the modelled dust size distribution; and
(3) reanalysis datasets of the dust aerosol optical depth.
We focus here only on describing the model simulations
(Sect. 2.1) and the reanalysis products (Sect. 2.2), as details
of the in situ measurements used to constrain the globally
averaged datasets are described in Kok et al. (2017). Second,
we describe the framework used to obtain DustCOMM dust
size distribution, mass extinction efficiency, and atmospheric
dust loading (Sect. 2.3). Finally, we describe the independent
measurements we use to evaluate DustCOMM dust size dis-
tribution and the dust mass extinction efficiency in Sect. 2.4.

2.1 Model simulations

We use model outputs of dust aerosol properties from six
leading atmospheric global models, namely the Goddard In-
stitute for Space Studies (GISS) ModelE atmospheric general
circulation model (Miller et al., 2006); the Weather Research
and Forecasting model coupled with Chemistry updated by
the University of Science and Technology of China (USTC)
suitable for quasi-global simulation (WRF-Chem; Zhao et
al., 2010, 2013; Hu et al., 2016); the Community Earth Sys-

tem Model (CESM; Hurrell et al., 2013); the Goddard Earth
Observing System coupled with Chemistry (GEOS-Chem;
see Kok et al., 2017); the ARPEGE-Climat model from the
Centre National de Recherches Météorologiques Earth sys-
tem model (Michou et al., 2015); and the Integrated Mas-
sively Parallel Atmospheric Chemical Transport (IMPACT;
Ito and Kok, 2017, and references therein) model. We use the
different simulations from global climate and chemical trans-
port models between 2004 and 2008 (except for WRF-Chem
and IMPACT, which are 2007–2016 and 2004, respectively)
to capture the general model uncertainties that are associated
with the dust emission, transport, and deposition processes.
The GISS, CESM, and GEOS-Chem model simulations are
described in Kok et al. (2017) and the references therein
(see Sect. 5 of their supplementary document). Here, we sup-
plement these simulations with three additional simulations
from the WRF-Chem, ARPEGE-Climat, and IMPACT mod-
els. The WRF-Chem model simulation represents an updated
USTC version of the one used in Kok et al. (2017). Further
details of these three additional model simulations are thus
given in the Supplement.

We obtain the spatially varying dust size distribution from
each of the six model simulations, which we use to define
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the spatial variability of the DustCOMM dust size distribu-
tion (see Sect. 2.3.1). Specifically, the spatial variability of
DustCOMM dust size distribution follows the ensemble of
the six model simulations. We summarize the particle bin
ranges, time periods, spatial resolutions, as well as the me-
teorology used for each model simulation of the dust size
distribution in Table 1. All the models use discrete bins that
represent the dust particles up to about 10 µm, except for
the GISS, ARPEGE-Climat, and IMPACT models, which ex-
tend beyond the 10 µm diameter limit. Four of the models –
WRF-Chem, CESM, ARPEGE-Climat, and IMPACT – have
a lower diameter limit smaller than 0.2 µm. For consistency,
we set the lower diameter limits for all the model simulations
to the common diameter of 0.2 µm and correct the upper di-
ameter limit to 20 µm, following the procedures we describe
later in Sect. 2.3.1. In addition, since the time periods are
different for the available model dataset (Table 1), we focus
on annual and seasonal climatologies, which we obtain here
from the monthly means of the model outputs.

In order to test our hypothesis that integrating experimen-
tal and observational constraints on dust size and shape dis-
tributions can constrain 3-D dust properties more accurately
than is possible from model simulations alone, we obtain a
model ensemble of 3-D dust size distribution and mass ex-
tinction efficiency and 2-D dust column loading. To do so, we
interpolated seasonal and annual climatologies of these dust
properties to a common resolution of approximately 2.5◦ by
2.0◦ spatial resolution, with 35 levels from the surface to
100 hPa. In addition, we correct each modelled dust size dis-
tribution to a common particle bin spacing between 0.2 and
20 µm by assuming a power-law distribution between nearby
model particle bins. After putting all the model simulations
on the same footing in this manner, we thus represent the
ensemble of the model dust size distribution with the mean,
standard deviation, and range (minimum–maximum value)
as a function of particle sizes, horizontal locations, heights,
and seasons. Where necessary, the 95 % confidence interval
of the model ensemble is estimated as 1.96 times the stan-
dard error (e.g. Altman and Bland, 2005). We also perform a
similar aggregation and interpolation procedure on the mod-
elled dust aerosol optical depth and column-integrated atmo-
spheric dust loading, which are used to calculate the column-
integrated dust mass extinction efficiency (MEE) for each
model and thus for the model ensemble.

2.2 Reanalysis dust aerosol optical depth

We obtain the dust aerosol optical depth from four reanal-
ysis products to constrain the atmospheric dust loading for
DustCOMM (see Sect. 2.3.3). These four reanalysis prod-
ucts are the Modern-Era Retrospective analysis for Research
and Applications, Version 2 (MERRA-2; Gelaro et al., 2017);
the Navy Aerosol Analysis and Prediction System (NAAPS;
Lynch et al., 2016); the Japanese Reanalysis for Aerosol
(JRAero; Yumimoto et al., 2017); and the Copernicus At-

mosphere Monitoring Service (CAMS) interim Reanalysis
(CAMSiRA; Flemming et al., 2017). While the description
of each reanalysis product can be found in the Supplement,
we give a general overview in this section.

A key advantage of these reanalysis products is that they
assimilate data from several observing systems and thus pro-
vide a complete spatial and temporal coverage of atmo-
spheric composition that captures its variabilities and trends
(Buchard et al., 2017). Most of these four reanalysis prod-
ucts assimilate similar satellite and ground-based observa-
tions of AOD, which includes data from at least one or
all of the following observing systems: the Terra and Aqua
satellites of the MODerate resolution Imaging SpectroRa-
diometer (MODIS), the Advanced Very High Resolution
Radiometer (AVHRR), the Multi-angle Imaging SpectroRa-
diometer (MISR), as well as ground-based observation of
AOD from several Aerosol Robotic Network (AERONET)
stations (Lynch et al., 2016; Flemming et al., 2017; Gelaro
et al., 2017; Yumimoto et al., 2017). In addition, some re-
analysis products also assimilate other aerosol constituents
and reactive gases, like carbon monoxide and ozone obser-
vations from the Measurements Of Pollution In The Tropo-
sphere (MOPITT) instrument on the Terra Satellite, Solar
Backscatter Ultraviolet (SBUV/2) instruments (from various
National Oceanic and Atmospheric Administration (NOAA)
platforms), and Microwave Limb Sounder (MLS) ozone pro-
files (e.g. Flemming et al., 2017). These observations are
mostly bias-corrected before they are assimilated through ra-
diatively coupled aerosol models and are used to constrain
the different species that constitute the aerosol particles in
the atmosphere.

Although the total AOD is constrained, errors in each re-
analysis model’s treatment of emission, transport, and de-
position of mineral dust introduce uncertainties. Dust emis-
sion and deposition in the assimilation procedure are either
modelled or sometimes constrained by observations. For ex-
ample, the dust emission for NAAPS is constrained by us-
ing a regional source tuning that is, in turn, constrained by
space-based and ground-based AOD observations (Lynch et
al., 2016). Other reanalysis products use dust emissions that
are parameterized and model-dependent (e.g. Yumimoto et
al., 2017). In general, wet deposition is partially constrained
by the assimilated global satellite-based precipitation infor-
mation, such as from the NOAA Climate Prediction Center
MORPHing technique data (CMORPH). Dry deposition is
still mostly model dependent, but may also be adjusted based
on assimilated AOD. For all the reanalysis products, aerosol
transport in the atmosphere is constrained by the assimilation
of several meteorological observations of winds and temper-
ature. Hence, in order to constrain the dust AOD, the assimi-
lation procedure takes advantage of the best features in both
the observations and model simulations.

Similarly to our treatment of the model simulations de-
scribed in Sect. 2.1 above, we use annual and seasonal clima-
tologies of dust AOD obtained from monthly averages of the

Atmos. Chem. Phys., 20, 829–863, 2020 www.atmos-chem-phys.net/20/829/2020/



A. A. Adebiyi et al.: Dust Constraints from joint Observational-Modelling-experiMental analysis 833

Table 1. Details of model simulations used in this study. Shown are the particle bin ranges, time periods of simulations, the spatial resolutions,
the meteorology used, and the relevant model reference. We interpolate all model simulations to 2.5◦ by 1.9◦ to facilitate comparison and
consistency with other datasets. See Sect. 2 for details.

Model Particle size bins (diameter – µm) Time period Spatial resolution Meteorology used Relevant reference
for simulation

GISS 0.2–0.36, 0.36–0.6, 0.6–1.2, 1.2–2.0, 2004–2008 5◦ by 4◦ with Internal model Miller et al. (2006)
2.0–4.0, 4.0–8.0, 8.0–16.0, 16.0–32.0 20 levels up to 0.1 hPa meteorology

WRF-Chem 0.039–0.312, 0.312–0.625, 0.625–1.25, 2007–2016 1◦ by 1◦ with NCEP/FNL Zhao et al. (2013)
1.25–2.5, 2.5–5.0, 5.0–10.0 35 levels up to 50 hPa. reanalysis

CESM 0.1–1.0, 1.0–2.5, 2.5–5.0, 5.0–10.0 2004–2008 2.5◦ by 1.89◦ with ERA-Interim Hurrell et al. (2013)
56 levels up to 1.8 hPa. reanalysis

GEOS-Chem 0.2–0.36, 0.36–0.6, 0.6–1.2, 2004–2008 2.5◦ by 2◦ with MERRA reanalysis See Kok et al. (2017).
1.2–2.0, 2.0–3.6, 3.6–6.0, 6.0–12.0 47 levels up to 0.1 hPa.

ARPEGE-Climat 0.1–0.2, 0.2–0.5, 0.5–1.0, 2004–2008 1.4◦ by 1.4◦ with Internal model Michou et al. (2015)
1.0–2.5, 2.5–10.0, 10.0–100.0 91 levels up to 10 hPa. meteorology

IMPACT 0.1–1.26, 1.26–2.5, 2.5–5.0, 5.0–20.0 2004 2.0◦× 2.5◦ with Meteorology from Ito and Kok (2017)
59 levels up to 0.02 hPa. GEOS-5 model

reanalysis products. We use the reanalysis dust AOD from
2004 to 2008 for each reanalysis product except for JRAero,
for which we use 2011–2015. In order to combine the differ-
ent reanalysis dust AOD products, we interpolate each prod-
uct to approximately 2.5◦ by 2.0◦ spatial resolution and esti-
mate the ensemble mean and standard error over each loca-
tion (see Sect. 2.3.3).

2.3 Constraining DustCOMM products

Our aim is to create a new product – DustCOMM – that con-
strains the spatial variability of three major properties of at-
mospheric dust which determine many of its impacts on the
Earth system, namely (1) the atmospheric dust size distri-
bution, (2) the dust mass extinction efficiency, and (3) the
column-integrated atmospheric dust loading. We do so by
combining observational, experimental and theoretical con-
straints on dust properties and abundance with global model
simulations of the size-resolved spatially varying dust con-
centration (Fig. 1). After we present a general overview of
the methodology here, we describe the details of the method-
ology and the calculation of the associated uncertainty esti-
mates in the following sub-sections.

We obtain the first constrained product in our dust cli-
matology, the dust size distribution, by bias-correcting the
six global model simulations (see Sect. 2.3.1; left panel of
Fig. 1). Specifically, we bias-correct these model simulations
using the constraint on the globally averaged dust size dis-
tribution from Kok et al. (2017), which was obtained from
measurements of the emitted dust size distribution and model
simulations of the globally averaged dust lifetime. Model
simulations of the size-resolved dust lifetimes were used be-
cause this cannot be readily constrained with observations or
measurements. Similarly, we use the constraints on the glob-
ally averaged size distribution from Kok et al. (2017) to cor-

rect modelled size distributions because dust size distribution
measurements are insufficient to constrain the dust size dis-
tribution for every location. After correcting the model sim-
ulations of the dust size distribution, we combine them into
a single multi-model constraint on the 3-D dust size distri-
bution. To do this, we estimate the sub-bin distributions by
fitting the dust size distribution after the bias correction with
a generalized analytical function based on brittle fragmenta-
tion theory (Kok, 2011a). We then use the resulting distribu-
tions from the multiple models to obtain a constraint on the
atmospheric dust size distribution, for each horizontal loca-
tion and height level.

We use these constrained size distributions to obtain our
second product, namely the size-integrated 3-D dust mass
extinction efficiency (Sect. 2.3.2; middle panel in Fig. 1).
Specifically, we combine the constrained 3-D dust size dis-
tribution with the constraint on the size-resolved globally av-
eraged single-particle dust extinction efficiency at 550 nm
obtained from Kok et al. (2017). This size-resolved single-
particle dust extinction efficiency leverages measurements of
the dust index of refraction and also accounts for the non-
spherical shape of dust particles. As we did for the size dis-
tribution, we use the globally averaged dust extinction effi-
ciency here because measurements of dust shapes and index
of refraction are currently insufficient to constrain this for ev-
ery location. As with the size distribution, we also constrain
the mass extinction efficiency over each horizontal location
and height level.

We obtain our third product – the column-integrated atmo-
spheric dust loading – by combining the constraint on dust
mass extinction efficiency with dust aerosol optical depth
from multiple reanalysis products (Sect. 2.3.3; right panel in
Fig. 1). Using four state-of-the-art reanalysis products (see
Sect. 2.2), we calculate the ensemble average of dust aerosol
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optical depth, accounting for systematic and random errors.
We propagate the errors in the dust mass extinction efficiency
and dust aerosol optical depth to obtain the mean and the un-
certainty of the column-integrated atmospheric dust loading
over each horizontal location.

We estimate all DustCOMM products at a horizontal res-
olution of 2.5◦× 1.9◦ with 35 levels, that is, up to 100 hPa.

2.3.1 Constraining the 3-D atmospheric dust size
distribution

We constrain the spatially varying atmospheric dust size dis-
tributions by combining constraints on the globally averaged
dust size distribution with an ensemble of simulations of the
3-D spatial variability of the dust size distribution (Fig. 1).
We obtain the globally averaged atmospheric size distribu-
tion,

[
dV̂ (D)

dD

]
g
, from Kok et al. (2017; see their Fig. 2a). This

globally averaged size distribution was obtained by com-
bining constraints on the size distribution of emitted dust
particles with simulations of the size-resolved dust lifetime.
While details can be found in Kok et al. (2017), a summary
of their globally averaged size distribution is given here as[

dV̂ (D)
dD

]
g

=

[
dV̂emit (D)

dD

]
g

·

[
T̃ (D)

T̃

]
g

, (1)

where the long-square parentheses []g indicate quantities
that are globally averaged, quantities with ˆ accents are par-
tially constrained by observations, and quantities with ˜ ac-
cents are obtained from model simulations. As reported in
Kok et al. (2017; hereafter referred to as K17), the con-
strained globally averaged size distribution of emitted dust
particles,

[
dV̂emit(D)

dD

]
g
, is based on an analysis of different

measurements of the emitted dust size distribution, while the
size-resolved globally averaged dust lifetime,

[
T̃ (D)

]
g
, is

based on an ensemble of global model simulations;
[
T̃
]

g

is the mass-weighted mean of
[
T̃ (D)

]
g
. The constrained

K17 globally averaged size distribution is normalized such
that

∫ Dmax
0

[
dV̂ (D)

dD

]
g
dD = 1, whereDmax represents the max-

imum geometric diameter above which the contribution to
extinction is negligible (Dmax = 20µm; see Sect. 2.3.1).

We use this constrained K17 globally averaged atmo-
spheric dust size distribution (Eq. 1) to bias-correct our spa-
tially varying model simulations of the annually averaged
dust size distribution. This is necessary because models gen-
erally underestimate coarse dust particles, largely because
they assume too much fine dust in the emitted dust size dis-
tribution (Kok, 2011a). For each model, we force the sim-
ulated globally averaged dust size distribution to match the
K17 constraint on the globally averaged size distribution (see

Supplement Fig. S1), such that

f̂k,i
(
x,y,z,Dk,i

)
= f̃k,i

(
x,y,z,Dk,i

)
·αk,i,

where αk,i =

∫ Dk,i+
Dk,i−

[
dV̂ (D)

dD

]
g
dD[

f̃ k,i(Dk,i)
]

g

. (2)

The annually averaged 3-D distribution of the dust size dis-
tribution for each particle bin i simulated by model k is
f̃k,i

(
x,y,z,Dk,i

)
, and the corresponding simulated globally

averaged dust mass fraction is
[
f̃ k,i(Dk,i)

]
g
; x is the di-

mension for longitude, y is for latitude, and z is for height.
Further, the numerator,

∫ Dk,i+
Dk,i−

[
dV̂ (D)

dD

]
g
dD, is the constraint

obtained from Kok et al. (2017), while Dk,i− and Dk,i+,
respectively, denote the lower and upper geometric diame-
ter limits of particle bin i of model k, and i = 1,2, . . .,Nk ,
with Nk as the total number of dust particle bins for a given
model simulation k. In Eq. (2), we multiply each simulated
dust size distribution f̃k,i

(
x,y,z,Dk,i

)
by a correction fac-

tor αk,i that is estimated as the ratio of the fractional con-
tributions of the K17 globally averaged constraint to that
obtained from the same model. This correction is done for
each bin i of each model k, defined between Dk,i− and
Dk, i+. The resulting corrected spatially varying dust size dis-
tribution, f̂k,i

(
x,y,z,Dk,i

)
, is normalized such that the dis-

crete sum over each location and height equals unity, that is,
Nk∑
i=1k

f̂k,i
(
x,y,z,Dk,i

)
= 1.

Each model simulation in the ensemble has a particle size
range and spacing that differ from other models (see Table 1
and Sect. 2.1 for details). In order to combine the corrected
size distributions from the different models into a single es-
timate and to quantify the uncertainty across the different
models, each corrected size distribution must be in a consis-
tent size range and spacing with other models. We therefore
process the corrected size distributions over a given location
as follows: (1) we correct and scale each model’s lower and
upper diameter limits to the common diameter range of 0.2–
20 µm (see Sect. 2.3.1); and (2) we estimate the sub-bin dis-
tribution for each model’s bias-corrected size distribution by
fitting a generalized analytical function, extending the Kok
et al. (2017) theoretical expression of dust size distribution
to the 3-D dataset (see Sect. 2.3.1).

Correcting model simulations to a common diameter
range

For all simulations in the model ensemble, we set the lower
and upper diameter limits to common limits defined by
Dmin = 0.2µm and Dmax = 20µm, respectively. The lower
diameter limit (Dmin) is based on the lowest common diam-
eter included in all the model simulations used in our analy-
sis (Table 1). In addition, possible contaminations by other
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aerosol species are significantly more likely below 0.2µm
in measurements of dust aerosol particles (e.g. Dubovik et
al., 2000). For these reasons, we set the lower diameter limit
to Dmin = 0.2µm, consistent with previous studies (e.g. Ma-
howald et al., 2014; Kok et al., 2017). Further, we set the
upper diameter limit to Dmax = 20µm, because most global
models generally do not incorporate dust particles beyond
20 µm and also because the observational constraints on the
size distribution from Kok et al. (2017) are limited to this
maximum diameter. Although advances in airborne observa-
tions in recent years have led to measurements of larger dust
particles withD >Dmax in the atmosphere, which has shown
that the contributions of D > 20µm to shortwave and long-
wave extinctions are non-negligible (e.g. Ryder et al., 2013b,
2019; Weinzierl et al., 2009, 2017), there is still a scarcity of
these measurements, such that an observational constraint on
dust particles with D >Dmax would be very uncertain (e.g.
Mahowald et al., 2014).

To correct each model simulation to the common diame-
ter range of [Dmin, Dmax], we first create a new particle bin
for the lower and/or upper diameter limit, and then we use
the K17 constraints on the globally averaged size distribu-
tion (Eq. 1) to estimate the equivalent fraction of dust mass
in that bin. This dust mass fraction is estimated in a way
that is consistent with the size distribution obtained earlier
from Eq. (2). Specifically, for simulations with a lower di-
ameter limit (Dk,1k−) less than Dmin, we estimate the equiv-
alent dust mass fraction for the bin betweenDmin andDk,1k+
(where Dk,1k+ is the upper diameter limit of bin 1, such that
Dk,1k+ >Dmin) by scaling the mass in the nearest bin with a
factor that depends on the globally averaged size distribu-
tion. For instance, the first particle bin of the CESM (Ta-
ble 1) has a range of

[
Dk,1k−,Dk,1k+

]
= 0.1− 1.0µm, such

that we create a new particle bin defined by
[
Dmin,Dk,1k+

]
=

0.2− 1.0µm and estimate the equivalent dust mass fraction
in that new bin. For all model simulations, we can denote this
procedure mathematically as

f̂k
(
x,y,z,

[
Dmin,Dk,1k+

])
=

f̂k
(
x,y,z,

[
Dk,1k−,Dk,1k+

])
· δDmin ,

where δDmin =

∫ Dk,1k+
Dmin

[
dV̂ (D)

dD

]
g
dD∫ Dk,1k+

Dk,1k−

[
dV̂ (D)

dD

]
g
dD

, (3)

The modelled dust size distribution is relatively invariant for
fine particles because of the consistent emitted dust size dis-
tribution (Kok, 2011a, b) and because removal processes for
fine dust (wet deposition) do not strongly depend on parti-
cle size (e.g. Zender et al., 2003). Therefore, we simply esti-
mate δDmin in Eq. (3) as the ratio between the fractional val-
ues of the K17 globally averaged size distribution in the de-
sired new bin [Dmin,Dk,1k+] and in the model’s original bin
[Dk,1k−Dk,1k+].

We also create a new bin with the upper diameter equal
to Dmax for model simulations with an upper diameter limit
(Dk,Nk+) that differs from Dmax. We do so by scaling the
nearest bin by a factor (δDmax ) that also depends, in part,
on the constrained K17 globally averaged size distribution.
Because the main removal process for large dust particles
(D > 10µm) is dry deposition, which depends strongly on
particle size, the relative contribution to the size distribution
of different particle bins of large particles has substantial spa-
tial variability. To account for this, we use simulations of bins
with D >Dk,Nk+ from other model simulations in order to
estimate what model k would have predicted for a hypothet-
ical

[
Dk,Nk+,Dmax

]
particle bin. That is,

f̂k
(
x,y,z,

[
Dk,Nk+,Dmax

])
=

f̂k
(
x,y,z,

[
Dk,Nk−,Dk,Nk+

])
· δDmax (x,y,z) ,

where δDmax(xyz)=

∫Dmax
Dk,Nk+

[
dV̂ (D)

dD

]
g
dD

∫Dk,Nk+
Dk,Nk−

[
dV̂ (D)

dD

]
g
dD
·βr(xyz). (4a)

The factor βr thus quantifies the ratio of the mass fractions
between the model’s largest particle bin (

[
Dk,Nk−,Dk,Nk+

]
)

and the newly created particle bin to extend the simulation
to Dmax = 20µm (

[
Dk,Nk+,Dmax

]
), as estimated from the

GISS and ARPEGE-Climat simulations, which have parti-
cle bins extending to Dmax (Table 1). We denote these latter
model simulations with a subscript r for the purpose of clar-
ity and to separate them from the model simulation that is
being adjusted to the [Dmin, Dmax] size range, which is de-
noted by a subscript k in Eq. (4a) above. We thus estimate βr
as

βr (x,y,z)=
f̂r
(
x,y,z,

[
Dr,Nr−,Dr,Nr+

])∫ Dr,Nr+
Dr,Nr−

[
dV̂ (D)

dD

]
g
dD

/

f̂r
(
x,y,z,

[
Dr,jr−,Dr,jr+

])∫ Dr,jr+
Dr,jr−

[
dV̂ (D)

dD

]
g
dD

, (4b)

where
[
Dr,Nr−,Dr,Nr+

]
is the bin in model r with dust mass

that overlaps in size with the new bin
[
Dk,Nk+,Dmax

]
we

want to estimate for model k; and
[
Dr,jr−,Dr,jr+

]
is the

bin that similarly overlaps with
[
Dk,Nk−,Dk,Nk+

]
. To ac-

count for the bin–range mismatch between the model sim-
ulation that resolved dust up to Dmax (with subscript r) and
the model simulation being adjusted to the dust size range
up to Dmax (with subscript k), we normalize each bin mass
fraction by its contribution to the constrained K17 globally
averaged size distribution. For cases where model r is the
same as model k (i.e. for GISS and ARPEGE-Climat), βr re-
duces to 1 everywhere. It should be noted that the correction
of Eq. (4) takes into account the potential difference in the
dust deposition between models k and r by considering the
differences in the spatial variability of dust loading between
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similar bins of
[
Dk,Nk−,Dk,Nk+

]
and

[
Dr,jr−,Dr,jr+

]
. After

the dust mass fractions are corrected, they are re-normalized
such that the discrete sum between Dmin and Dmax equals
unity over each location and height.

This procedure described above (Eqs. 3 and 4) can be used
to correct either the original modelled dust size distribution
(Sect. 2.1) or the bias-corrected modelled dust size distribu-
tion of Eq. (2).

Estimating the sub-bin distribution of the dust size
distribution

After setting the corrected dust size distribution from each
model to a common diameter range, [Dmin, Dmax], we next
estimate the sub-bin distribution in order to combine esti-
mates from different models into one dust size distribution
product. To do this, we fit a generalized theoretical function
of the dust size distribution to the estimated bias-corrected
dust size distribution from each model over each location and
height level (Eq. 2). Although fitting log-normal modes are
appropriate for several other aerosol species, Mahowald et
al. (2014) highlighted that dust size distributions are usually
not log-normal and are thus better characterized by a gener-
alized function based on mechanistic understanding of dust
emission and deposition processes. Therefore, we describe in
this section the generalized function and the fitting procedure
used to constrain the dust size distributions.

We define the generalized function for the atmospheric
size distribution by considering the theoretical expressions
that characterize the processes affecting the dust size distri-
bution. The degree of the impact of any of these processes on
the dust size distribution will depend on the location. For ex-
ample, the impact of emission processes on the shape of the
dust size distribution is expected to be large close to major
dust source regions but less farther from source regions. Fur-
thermore, farther from dust source regions, deposition pro-
cesses are expected to have more impact on the size distribu-
tion. We therefore assume that the atmospheric size distribu-
tion over any location is proportional to the dust size distribu-
tion at emission, dVemit(D)

dD , the size-resolved dust lifetime in
the atmosphere, T (D), and any other changes to the dust par-
ticle size distribution during transport, A(D) (e.g. Weinzierl
et al., 2009; Schladitz et al., 2011; Kok et al., 2017). That is,

dVatm (D)

dD
∝

dVemit (D)

dD
· T (D) ·A(D). (5a)

For the dust size distribution at emission, Kok (2011) sug-
gested that dVemit(D)

dD can be represented by a simple theoret-
ical expression based on brittle fragmentation theory, which
shows good agreement with measurements (e.g. Mahowald
et al., 2014; Rosenberg et al., 2014). To better represent the
variability in dust emission affecting the emitted size distri-
bution in the different simulations, here we generalize this

expression such that

dVemit (D)

dD
=

1
Cv
·

1+ erf

 ln
(
D
Dv

)
√

2ln(σv)

·e[−(Dω )α], (5b)

where Dv and σv are, respectively, the geometric median di-
ameter by volume and the geometric standard deviation of
a typical desert soil, ω denotes the propagation distance of
main cracks in dust aggregates during fragmentation, α is a
tunable parameter primarily affecting the large dust particles,
and Cv is a normalization constant.

The second term in our generalized dust size distribution
describes the size-resolved dust lifetime, which global model
results compiled in Kok et al. (2017) suggest can analytically
be approximated as an exponential function of particle diam-
eter, such that

T (D)∼= T0 · e
−

(
D
κ

)
, (5c)

where T0 is a constant associated with the lifetime for van-
ishingly small dust particles, which is determined by depo-
sitional processes, and κ is a constant that scales the expo-
nential decay of the dust lifetime with particle size. This ex-
ponential decay of dust lifetime with size is caused by the
increase in the gravitational settling speed with particle size
(e.g. van der Does et al., 2016, 2018).

Finally, we account for other changes to the dust size dis-
tribution during transport by assuming that such changes are
likely described by power-law distribution (e.g. Seinfeld and
Pandis, 2016). Maring et al. (2003) highlighted that between
emission and deposition, changes in dust size distribution
cannot be accounted for by simple preferential removal of
dust particles by gravitational settling. Since such changes in
the dust size distribution are difficult to account for, we rep-
resent them with a parameter that can affect the entire size
range. In addition, T (D) and dVemit(D)

dD represent expressions
that describe the globally averaged size distributions, and ap-
plying them to a specific location requires an additional pa-
rameter that captures the loss rate as a function of location.
To represent all other changes to the dust size distribution
between emission and deposition, we thus define

A(D)∝Db. (5d)

Combining Eqs. (5b) and (5d), we obtain

dVatm (D)

dD
=

1
Cv

1+ erf

 ln
(
D
Ds

)
√

2ln(σs)


e

[
−

(
D
ω

)α]
· T0e

−

(
D
κ

)
·Db. (5e)

We combine the two exponential terms in Eq. (5e) in order
to reduce the number of fitting parameters. It is worth noting
that both parameters κ and ω are sensitive to the larger parti-
cles, as they remain highly uncertain and poorly constrained
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by observation (e.g. Mahowald et al., 2014). The parameter
ω depends on the soil moisture, mineralogy, and other pro-
cesses (e.g. Mahowald et al., 2014; Rosenberg et al., 2014;
Kok et al., 2017), while the parameter κ depends on the dust
wet and dry deposition rates, as the dust particles are trans-
ported away from the source (e.g. Han and Zender, 2010;
van der Does et al., 2016). To combine them, we define 3
to account for the uncertainty in the atmospheric large-size
dust particles over every location. The generalized theoretical
function for atmospheric size distribution therefore becomes

dVatm(D)

dD
=

1
C∗v
·

1+ erf

 ln
(
D
Ds

)
√

2ln(σs)


· e

[
−

(
D
3

)α]
·Db, (6)

where C∗v is a new normalization constant that is obtained
from requiring that the integral over Eq. (6) from Dmin to
Dmax yields unity.

To determine the parameters in Eq. (6) for each height,
horizontal location, season, and model simulation, we fit the
generalized size distribution of Eq. (6) to the corresponding
corrected dust size distribution from Eq. (2) above. To do
this, we minimize the chi-squared (χ2

k ) value for each height,
for each location, and for each model k, such that

χ2
k =

Nk∑
i

log

 Dk,i+∫
Dk,i−

dVatm

dD
dD

− log
(
f̂k,i

)
2

. (7)

In each case, we estimate the constrained dust size dis-
tribution, dV̂atm

dD (x,y,z), based on the parameters we deter-
mine from Eq. (7). In order to restrict the fitted function to
physically realistic dust size distributions, we set the fol-
lowing bounds for the five parameters of Eq. (6): Ds =
0.25 to 6.0µm; σs = 1.6 to 4.0; 3= 1 to 30µm;α = 1 to 6;
and b =−10 to 4, consistent with previous studies (e.g. Kok,
2011a; Kok et al., 2017; Rosenberg et al., 2014). The prob-
ability distribution of these parameters for all heights, hori-
zontal locations, and model simulations of the annually aver-
aged dust size distribution is shown in Supplement Fig. S2.
Finally, we note here that although our generalized theoret-
ical function of Eq. (6) builds on the brittle fragmentation
theory of Kok (2011), it adds analytical expressions of dust
deposition and dust changes during transport that allow us to
better fit different shapes of dust size distribution over differ-
ent locations.

2.3.2 Constraining the 3-D dust mass extinction
efficiency

After obtaining the constrained atmospheric dust size distri-
butions (Sect. 2.3.1 above), we combine it with constraints on
size-resolved single-particle extinction efficiency at 550 nm

to obtain constraints on the 3-D dust mass extinction effi-
ciency (ε̂τ −m2 g−1). That is (see also Kok et al., 2017),

ε̂τ (x,y,z)=

Dmax∫
Dmin

dV̂atm (x,y,z,D)

dD
3

2ρdD
Q̂ext (D)dD, (8)

where dV̂atm(x,y,z,D)
dD is the constrained atmospheric dust size

distribution at a given location and height with sub-bin dis-
tribution (Eq. 6); ρd = 2.5± 0.2 g cm−3 is the globally av-
eraged density of dust aerosols (Fratini et al., 2007; Reid et
al., 2008; Kaaden et al., 2009; Sow et al., 2009; Kok et al.,
2017), and its error range is expected to account for the spa-
tial and temporal variability of dust density (e.g. Tegen and
Fung, 1994; Li et al., 2008); and Q̂ext (D) is the globally av-
eraged size-resolved single-particle extinction efficiency at
550 nm wavelength, with the extinction cross section normal-
ized by πD2/4 – the projected area of a sphere with diameter
D.

We obtain Q̂ext from Kok et al. (2017), which constrained
the dust extinction efficiency by combining measurements
of the dust index of refraction and probability distribution
of dust particle shape with the single-scattering database
of Meng et al. (2010). Specifically, Kok et al. (2017) esti-
mated the globally averaged values of the real and imaginary
dust indexes of refraction as n= 1.53±0.03 and log(−k)=
−2.5± 0.3 (Sokolik et al., 1993; Patterson et al., 1977;
Dubovik et al., 2002; Kandler et al., 2009; Kim et al., 2011;
Denjean et al., 2016), and both are assumed to be normally
distributed. Dust particle shapes were represented by the dust
aspect ratio – the ratio of the major and minor axes of an el-
lipsoid best fit to the irregularly shaped 2-D image of a dust
particle – and the height-to-width ratio. Kandler et al. (2007)
showed that the deviation of measured dust aspect ratios from
a sphere can be approximated by a log-normal distribution,
with typical values ranging from 1 – a perfect sphere – to
about 3, and a median between ∼ 1.5 and 1.9. Based on ag-
gregates of measurements (Okada et al., 2001; Reid et al.,
2003a; Kandler et al., 2007; Chou et al., 2008; Kandler et
al., 2009, 2011; Scheuvens et al., 2011; Scheuvens and Kan-
dler, 2014), Kok et al. (2017) estimated the median and ge-
ometric standard deviation for the distribution of the dust
aspect ratio as 1.7± 0.3 and 0.6± 0.2, respectively. Simi-
larly, based on limited available measurements of the dust
height-to-width ratio (Okada et al., 2001; Chou et al., 2008;
Veghte and Freedman, 2014), Kok et al. (2017) used a mean
value of 0.333 (see details in the supplementary document
of Kok et al., 2017). By combining these constraints on the
optical properties and shape of the ensemble of dust particles
in Earth’s atmosphere with the single-scattering database of
Meng et al. (2010), Kok et al. (2017) obtained a constraint
on the globally averaged size-resolved extinction efficiency
Q̂ext(D), which explicitly accounts for the enhancement of
extinction by the asphericity of dust. Specifically, they found
that accounting for dust asphericity enhances the extinction
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produced by a unit mass loading of dust by 29± 5 % over
the extinction calculated from Mie theory for spherical dust
particles, which is used in most climate models.

We use this constrained K17 globally averaged Q̂ext to
constrain ε̂τ (Eq. 8) for every location. We thus neglect any
regional variation in Q̂ext because measurements of dust
shapes and index of refraction are currently insufficient to
constrain ε̂τ on a regional basis. In addition, since measure-
ments of dust refractive index needed to constrain ε̂τ at other
wavelengths are also scarce, we limit our estimate here only
to the 550 nm wavelength. We use 550 nm as the wavelength
of choice because measurements to validate our estimate of
ε̂τ and the observational constraints to estimate the dust at-
mospheric loading are mostly available at mid-visible wave-
length.

2.3.3 Constraining the 2-D atmospheric dust loading

We now combine the above-estimated mass extinction effi-
ciency at 550 nm (Sect. 2.3.2) with dust aerosol optical depth
at the same wavelength to constrain the atmospheric column
dust loading (L̂− g m−2) (Kaufman et al., 2005; Kok et al.,
2017). Because our constraints on dust size distributions are
normalized to unity, and also to ensure that our estimates of
dust loading produce the same extinction as those from re-
analysis dataset or satellite measurements, we use this ap-
proach to estimate the atmospheric dust loading, such that

L̂ (x,y)=
τ̂d (x,y)

ε̂m (x,y)
, (9)

where ε̂m (unit: m2 g−1) is the vertically integrated 2-D mass
extinction efficiency calculated from ε̂τ and τ̂d (x,y) is ob-
tained from an ensemble of reanalysis dust aerosol optical
depth products.

The ensemble dust AOD climatology is obtained from the
average of four different reanalysis products (MERRA-2,
JRAero, NAAPS, and CAMSiRA; see Sect. 2.2 for details).
This individual reanalysis dataset assimilates several satellite
and ground-based measurements from multiple platforms,
including MODIS (Terra and Aqua), AVHRR, and MISR
satellites, as well as from the ground-based AERONET sta-
tions (Lynch et al., 2016; Mccarty et al., 2016; Flemming et
al., 2017; Yumimoto et al., 2017). As such the assimilation
procedure takes advantage of the best features in both the
observations and model simulations, thus producing column-
integrated dust AOD that is largely representative of what
is observed, based on validation studies (e.g. Buchard et al.,
2017).

Despite the advantage of assimilating observational
datasets, estimating a realistic overall error in the dust
AOD across the reanalysis datasets is difficult yet impor-
tant. Here, we estimate the total error (σd) by consider-
ing both the systematic error (σsys) and the random er-
ror (σrand) inherent in the reanalysis-derived dust AOD. As
such, we estimate the uncertainty in dust AOD as σd (x,y)=

√
σ 2

sys (x,y)+ σ
2
rand (x,y). We define the σrand as the stan-

dard error between the four datasets, which represents that
part of the total uncertainty that does not correlate across
the four reanalysis dust AOD datasets. For instance, σrand
may be associated with differences in the assimilating sys-
tems for the different reanalysis products. In contrast, the
σsys is expected to correlate between the four datasets since
most of the reanalysis datasets use similar observational
datasets. Hence, we assume that the σsys will be propor-
tional to the mean dust AOD, such that σsys(x,y)

τd(x,y)
= Cd. We

estimate the proportionality constant, Cd, by requiring that
the relative error is the same as the relative error obtained
from annually averaged climatology of dust AOD from Rid-
ley et al. (2016), which leveraged observational datasets sim-
ilar to those used for the reanalysis dataset but propagated
many of the relevant uncertainties. From that, we deduce that

Cd =

√
σ 2

o
τ 2

o
−
σ 2

rand
τ 2

d
, where τo and σo are the mean and error

estimates of the observationally constrained dust AOD from
Ridley et al. (2016), respectively. We estimate Cd = 0.26 for
annual climatology (between 2004 and 2008), averaged over
regions that are constrained by Ridley et al. (2016) and ac-
count for about 95 % of the global dust AOD. Similarly, we
estimate 0.31, 0.22, 0.24, and 0.28 for December–February,
March–May, June–August, and September–November sea-
sonal climatologies, respectively.

2.3.4 Quantifying the uncertainties in DustCOMM
products

For each DustCOMM product above – the constrained dust
size distribution, dust mass extinction efficiency, and dust at-
mospheric loading – we describe here how we estimate the
most likely value and quantify the uncertainty over each loca-
tion. Specifically, we use a non-parametric procedure based
on the bootstrap method (Efron and Gong, 1983; Chernick,
2007). We use this method because the complexity of the
equations (Eqs. 1–9) prevents a parametric quantification of
error, and the bootstrap approach allows us to nonetheless
propagate the uncertainty in the various physical variables
used to estimate each product. Using this method, we further
assume that the set of input variables in relevant equations
above are independent and are represented by defined prob-
ability distributions. Thus, we estimate the probability distri-
bution of the resulting products by randomly sampling (with
replacement) the probability distribution of each of the input
variables for a large number of times (n≈ 1500).

In practice, the procedure uses the following steps to de-
termine the dust size distribution, mass extinction efficiency,
and atmospheric loading, and their uncertainties.

– We randomly select a realization of the globally aver-
aged size distribution from Kok et al. (2017), which in
turn was obtained in that study by randomly selecting a
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realization of the emitted dust size distribution and the
dust lifetime (Eq. 1).

– We use this randomly selected constrained K17 globally
averaged size distribution to correct a randomly selected
model simulation (Eq. 2).

– After this model simulation is corrected, we then scale
the resulting 3-D dust size distribution between Dmin
and Dmax following Eqs. (3) and (4).

– We thereafter estimate the constrained dust size dis-
tribution, dV̂atm

dD (xyzD), and obtain the sub-bin distri-
bution by fitting the generalized theoretical expression
(Eq. 6) and minimizing the chi square over each location
(Eq. 7).

– We randomly select a realization of the globally aver-
aged size-resolved single-particle extinction efficiency,
Q̂ext(D), from Kok et al. (2017). This realization is also
similarly estimated by randomly selecting from the dis-
tribution of the dust index of refraction and dust shape
distribution parameters, as explained in Sect. 2.3.2.

– We then use the randomly selected Q̂ext(D) and
dV̂atm

dD (xyzD) to estimate the dust mass extinction effi-
ciency over each location, ε̂τ (xyzD), following Eq. (8).
This uses a randomly selected dust density value (ρd)
from its assumed normal distribution.

– Similarly, assuming a normal distribution for the dust
AOD, we randomly estimate the τ̂d (x,y) value within
the range of its uncertainty, σd (x, y).

– We use this τ̂d (x,y) and the vertically integrated value
of dust mass extinction efficiency, ε̂m (x,y), to esti-
mate the atmospheric dust loading, L̂ (x,y), following
Eq. (9).

– We repeated steps 1–8 for n= 1500 times, thereby
producing a probability distribution for dV̂atm

dD (xyzD),
ε̂τ (xyzD), and L̂ (x,y) for each location and height.
We report the mean, median, 1-sigma uncertainty range
(68 % of the distribution) and the 95 % confidence in-
terval (95 % CI) of those distributions (Adebiyi et al.,
2019a).

The above procedure propagates various uncertainties in
the estimation of each product. These include the measure-
ment uncertainties and the uncertainties in model simula-
tions. First, the measurement uncertainties are associated
with the K17 globally averaged size distribution and the
globally averaged extinction efficiency (Fig. 1), and these
are propagated equally to every location. In addition, we
estimated the correlated systematic error in the dust AOD
(Sect. 2.3.3), associated with the assimilated observational
dataset, and this is also propagated. Second, the uncertainty

in model simulations is associated with the spread of the
model dust size distribution, which is different for every lo-
cation. This model uncertainty is, in turn, a result of many
processes, such as dust emission, deposition, and transport
processes in the models (Ginoux et al., 2001; Huneeus et
al., 2011; Zhao et al., 2013). Our procedure constrains these
model uncertainties (see Supplement Fig. S1) while retaining
the spatial distribution of the model ensemble.

To quantify the size-resolved discrepancies in the Dust-
COMM size distribution, we quantify the bias with respect to
independent measurements as follows (e.g. Lee et al., 2009):

ψbias
i =

1
Nm

Nm∑
m=1

log10

(
M
f
i,m

O
f
i,m

)
, (10)

where m sums over the Nm in situ measurements of the dust
size distribution available in the literature (see Table 2),Of

i,m

is the mth measurement of the mass fraction contained in
measurement bin i, andMf

i,m is the correspondingmth Dust-
COMM dust mass fraction for the same diameter range as
measured and collocated with the measurement – i.e.Mf

i,m =∫ Di+
Di−

dV̂atm
dD dD. ψbias

i is the log-mean normalized bias and it
represents the average number of orders of magnitude bias
for each bin i.

We also estimate the performance of DustCOMM mass
extinction efficiency by quantifying the reduced chi square
(χ2
ε ) defined as the chi square per degree of freedom (e.g.

Bevington et al., 1993):

χ2
ε =

1
υε

Nm∑
m=1

(
Oε
m− ε̂τ,m

σ εm

)
, (11)

where Oε
m is the mth measurement of the dust mass ex-

tinction efficiency with error defined as σ εm, ε̂τ,m is the cor-
responding mth DustCOMM dust extinction efficiency (ε̂τ )
collocated with the measurement, and υε is the number of
degrees of freedom given as Nm− 1. A value of χ2

ε ≈ 1 in
Eq. (11) indicates there is agreement between DustCOMM
and observations that is in accordance with the measurement
errors, while χ2

ε � 1 indicates that DustCOMM estimates do
not fully capture the observations (e.g. Andrae et al., 2010).

To facilitate comparison between DustCOMM and model
evaluations, Eqs. (10) and (11) are also used to evaluate
the performance and calculate the discrepancies between the
measurements and the model ensemble.

2.3.5 DustCOMM at other timescales

While we describe above the procedure that constrains the
annually averaged dust size distribution, dust mass extinc-
tion efficiency, and atmospheric dust loading, a similar pro-
cedure to that highlighted above can also be used to constrain
the three products at any other timescale, such as at daily,
monthly, or seasonal timescales. For this study, we only con-
sider the seasonally averaged and annually averaged prod-
ucts.
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Table 2. Overview of in situ measurements used to evaluate DustCOMM and model ensemble estimates of the dust size distribution and dust
mass extinction efficiency (see Sect. 2.4 for details). The label PSD in the last column indicates that we take dust size distribution values
from the study. MSE and MEE similarly indicate that we take dust mass scattering or extinction efficiency values.

Measurement Project Time Representative Comments
reference name period location

D’Almeida (1987) N/A Feb–Mar 1979; Niamey (Niger): PSD only; Z = 0–100 m
(ground station) Jan–Feb 1982 14.21◦ N, 2.5◦ E Data taken from their Fig. 3.

Li et al. (1996) N/A April–May 1994 Barbados: MEE only; λ= 530 nm
(ground station) 13.19◦ N, 59.54◦W See their Eq. (3).

Li et al. (2000) N/A Oct–Nov 1997 Qinghai Province (China): MSE only; λ= 550 nm
(ground station) and Jan 1998 33.16◦ N, 96.25◦ E Data taken from their Table 2.

Maring et al. (2000) N/A July 1995 Tenerife (Canary Islands): MSE only; λ= 532 nm
(ground station) 28.29◦ N, 16.63◦W Data taken from their Table 4.

Andreae et al. (2002) ARACHNE Dec 1995–Oct 1997 Sde Boker (Israel): MSE only; λ= 550 nm
30◦ N, 34.79◦ E Data taken from their Table 4.

Quinn et al. (2002) INDOEX Feb–Mar 1999 Arabia Sea: 15◦ N, 69◦ E MEE only; λ= 550 nm
Arabia Sea – Indian Ocean: 8◦ N, 72◦ E Data taken from their Table 10.
Indian Ocean: 8◦ S, 74◦ E

Haywood et al. (2003) SHADE Sep 2000 Cabo Verde: MEE only; λ= 550 nm
18◦ N, 21◦W Data taken from their Table 2.

Clarke et al. (2004) ACE-Asia/TRACE-P Feb–Apr 2001 Sea of Japan: PSD and MSE; λ= 550 nm, Z = 0–6000 m
38.85◦ N, 130◦ E PSD data taken from their Fig. 5.

MSE data taken from the paper.

Otto et al. (2007) ACE-2 Jun–Jul 1997 Canary Islands: PSD only; Z = 2700, 4000, 5500, 7000 m
27.65◦ N, 14.25◦W Data taken from their Fig. 3.

Osborne et al. (2008) DABEX Jan–Feb 2006 Niamey (Niger): MEE only; λ= 550 nm
15.5◦ N, 5.0◦ E Data taken from their Table 4.

Chou et al. (2008) AMMA/DABEX Jan–Feb 2006 Niamey (Niger): PSD only; Z = 0–1500 m
15.5◦ N, 5.0◦ E Data take from their Fig. 6.

McConnell et al. (2008) DODO-1 Feb 2006 Dakar (Senegal): MEE only; λ= 550 nm
14.76◦ N, 17.38◦W Data taken from Table 4 of Osborne et al. (2008).

McConnell et al. (2008) DODO-2 Aug 2006 Dakar (Senegal): PSD only; Z = 0–1000 m
19.89◦ N, 12.5◦W Data taken from their Fig. 7.

Weinzierl et al. (2009) SAMUM-1 May–Jun 2006 Morocco: PSD only; Z = 3700–4900 m
31.26◦ N 7.5◦W Data taken from their Fig. 8.

Wagner et al. (2009) DARPO May 2006 Évora (Portugal): PSD only; Z = 2300–5000 m
38.57◦ N 7.91◦W Data taken from their Fig. 9.

Kandler et al. (2009) SAMUM-1 May 2006 Morocco: PSD only; Z = 0–700 m
31.26◦ N 7.5◦W Data taken from their Fig. 8.

Kandler et al. (2011) SAMUM-2 Jan–Feb 2008 Praia (Cabo Verde): PSD only; Z = 0–110 m
14.21◦ N, 22.5◦W Data taken from their Fig. 6.

Jung et al. (2013) BACEX Mar–Apr 2010 Barbados: PSD only; Z = 1250–2700 m
12.32◦ N, 60◦W Data taken from their Fig. 14.

Ryder et al. (2013a) Fennec 2011 Jun 2011 Canary Islands: PSD and MEE; λ= 550 nm; Z = 0–6000 m
27.65◦ N, 14.25◦W PSD data obtained from the author.

MEE data taken from their Sect. 3.4.

Ryder et al. (2013b) Fennec 2011 Jun 2011 Mauritania–Mali: PSD only; λ= 550 nm; Z = 0–3000 m
24◦ N, 6◦W Data taken from their Fig. 5b.

Weinzierl et al. (2017) SALTRACE Jun 2013 Cabo Verde: 14.21◦ N, 22.5◦W PSD only; Z = 0–2600 m
Barbados: 13.19◦ N, 59.54◦W Data taken from their Fig. 9.

Ryder et al. (2018) AER-D Aug 2015 Cabo Verde: PSD and MEE; λ= 550 nm; Z = 0–6000 m
18◦ N, 21◦W PSD data obtained from the author.

MEE data taken from their Table 6.
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First, to constrain the dust size distribution at any specific
timescales, we correct an ensemble of model size distribu-
tions at that timescale in a way similar to Eq. (2) above.
However, unlike Eq. (2) that uses the constrained globally
averaged size distribution, here we use the constrained annu-
ally averaged dust size distribution over every location. That
is,

f̂ t
k,i

(
x,y,z,Dk,i

)
= f̃ t

k,i

(
x,y,z,Dk,i

)
·

∫ Dk,i+
Dk,i−

dV̂atm
dD (x,y,z,D)dD

f̃k,i
(
x,y,z,Dk,i

) , (12)

where dV̂atm
dD is the DustCOMM annually averaged dust size

distribution at a given 3-D location, obtained from the pro-
cedure described in Sect. 2.3.1, while f̃ and f̃ t are the an-
nually averaged and specific time-averaged model simula-
tions of the dust size distribution, respectively. Using an en-
semble of model simulations, as we do above, the resulting
corrected time-averaged dust size distributions, f̂ t, are also
taken through the steps highlighted in Sect. 2.3.4 to calcu-
late the mean and the uncertainty of the constrained dust size
distribution ( dV t

atm
dD ) at that particular timescale.

Second, to constrain the dust mass extinction at any spe-
cific timescale (ε̂t

τ ), we combine the constrained dust size

distribution at that timescale, dV t
atm

dD , with the globally av-
eraged extinction efficiency, Q̂ext. This similarly follows
Eq. (8) above. We note here that the uncertainty range of
Q̂ext also accommodates the location-dependent and time-
dependent variability in the dust index of refraction and dust
particle shape, consistent with previous studies (e.g. Dubovik
et al., 2002). Hence, using Q̂ext propagates the uncertainty in
the measurements that determine the dust mass extinction ef-
ficiency estimate at that timescale. Finally, we constrain the
dust loading at any specific timescale (L̂t) using the con-
strained ε̂t

τ and dust AOD at that same timescale, similarly
following Eq. (9).

2.4 Description of measurements used for evaluation

We use several types of published measurements to evalu-
ate the dust size distribution and dust mass extinction ef-
ficiency from both DustCOMM and the model ensemble.
We select 21 studies that measured dust properties – 14 of
these reported dust size distributions and 11 of these reported
dust mass extinction or scattering efficiencies (Table 2).
These measurements were taken both near and far from dust-
dominated regions (Table 2 and Supplement Fig. S3). While
some measurements were taken close to (or over) some of the
Northern Hemisphere deserts – such as the Saharan, Mid-
dle East, and Asian deserts – no measurements were taken
close to the Southern Hemisphere deserts. Of the 21 studies,
12 obtained measurements near the Sahara, while one mea-
surement each was taken near the Middle East (Sde Boker,
Israel) and Asian (Qinghai Province, China) deserts. Other

measurements represent dust properties at different distances
of transport away from the dust sources.

Except for four measurements, most of the data are taken
during airborne field campaigns that often occur over a wide
geographical area, several altitude levels, and several days
(Table 2). As such, studies often report measurements that
represent the averages of the dust properties taken during
the campaign. Details of the flight path, showing the loca-
tions where dust particles are encountered, are not always re-
ported. To use these measurements, we therefore define a rep-
resentative location and altitude for each measurement based
on the area where the majority of dust was encountered. In
addition, since the measurements often represent the aver-
age of several days and sometimes multiple months, we also
compare them against seasonal averages of the DustCOMM
and model ensemble estimates.

Below, we give a broad overview of the measurements of
the dust size distribution and mass extinction efficiency, and
further information on each study, including the instruments
used, can be found in the Supplement.

2.4.1 Dust size distribution measurements

Dust size distribution measurements are taken using a vari-
ety of instruments with different sizing methodologies (e.g.
Reid et al., 2003b). These instruments generally fall within
the categories of sample collectors (e.g. D’Almeida, 1987;
McConnell et al., 2008), cascade impactors (e.g. Chou et al.,
2008; Kandler et al., 2009) and aerodynamic particle sizers
(e.g. Otto et al., 2007), and optical particle counters or spec-
trometers (e.g. Chou et al., 2008; Clarke, 2004; Otto et al.,
2007). The first category of instruments, sample collectors,
are usually installed behind filters or thermal denuders to re-
move non-dust particles. The aerosol samples are then anal-
ysed using electron or light microscopy techniques, where
they are counted and sized either manually or using an au-
tomated software. This type of measurement yields dust size
distribution with respect to geometric diameters. For the sec-
ond category of instruments, cascade impactors and particle
sizers, aerosol particles are usually accelerated through a jet
outlet and sometimes collected on a substrate. Using these
instruments, the aerosols are sized based on the mass-to-
drag characteristics of the particles. Dust particle sizes mea-
sured using these types of instruments are associated with
the aerodynamic diameter. Finally, the optical particle coun-
ters generally determine particle sizes in optical diameters
based on the amount of light they scatter. Another category
is the imaging probe whereby the particle image is detected
by a linear photodiode array providing a 2-D projection of
the particle (Baumgardner et al., 2017; Ryder et al., 2018).
For many of the studies we use here, these instruments are
sometimes combined to verify the accuracy of the measure-
ments (e.g. Ryder et al., 2013a). For all dust size distribution
measurements, the studies that used aerodynamic or optical
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sizing instruments eventually report the measured size distri-
bution in geometric diameters.

An important consideration is the elevation at which the
dust size distributions are measured. With the exception of
two studies (D’Almeida, 1987; Kandler et al., 2011) that took
measurements at ground stations, most measurements were
performed solely aboard aircrafts with in-cabin or wing-
mounted instruments. Ground stations were equipped with
stationary instruments to collect aerosol samples or station-
ary optical particle counters to measure size distributions di-
rectly. For aircraft measurements, size distributions are of-
ten measured during flight segments at constant altitude –
also called horizontal legs. For the dust size distributions,
our criteria for selection of studies are as follows: (1) the
measured size range of the data should extend into the coarse
dust (D > 5 µm) size range; (2) the study should report the
original in situ measurements, instead of (log-normal) fits to
the actual measurements; and (3) each study’s measurements
should be taken with commonly used instrumentation in or-
der to ensure some consistency with measurements taken by
other studies.

Regardless of the instrument used, most dust size distri-
bution measurements are subject to uncertainties associated
with measurement type or presence of other aerosol species,
such as biomass burning aerosols. The contamination by
other aerosol species is common for fine-mode dust particles,
especially dust particles less than ∼ 0.5 µm (e.g. Dubovik
et al., 2000; Clarke, 2004), since to the instruments these
aerosols are indistinguishable from dust particles of the same
size. This causes a high bias in the fine mode of measured
dust size distributions (e.g. Clarke, 2004). Another important
measurement error arises from assumptions made about the
non-sphericity of dust particles. For example, during the mi-
croscopy analysis, particle diameters are usually determined
as the volume-equivalent geometric diameters based on 2-
D images (Chou et al., 2008). Because of the asphericity
of dust aerosols, this could introduce biases (e.g. Huang et
al., 2020; Okada et al., 2001). Since dust particles have a
small height-to-width ratio (Okada et al., 2001), the result-
ing size distribution may overestimate dust particle diam-
eters. In the case of cascade impactors and particle sizers,
unusual dust particle shapes and the possibility of particle
bouncing off the substrate may lead to significant bias, espe-
cially for coarse-mode particles. For in-cabin measurements,
studies have shown that the loss rate of coarse dust particles
can be substantial due to the aircraft’s instrument inlet, there-
fore leading to lower sampling rate and size bias (e.g. von der
Weiden et al., 2009). For dust measurements that used optical
particle counters, irregularly shaped dust particles are often
assumed to be spherical in order to convert them to volume-
equivalent geometric diameters, but light scattering between
spherical and non-spherical particles is different. In addition,
optical particle counters also make assumptions about the re-
fractive index to derive the dust size distribution and are af-
fected by the non-monotonic increase in the intensity of scat-

tered light with particle size (e.g. Weinzierl et al., 2011; Ry-
der et al., 2018). Unlike the optical particle counters that re-
quire assumption regarding dust refractive index and shape to
convert scattered light intensity to particle size, the imaging
probes are not subject to these uncertainties (Baumgardner
et al., 2017; Ryder et al., 2018). Nevertheless, these assump-
tions often lead to biases that many studies try to account for
to various degrees (e.g. Ryder et al., 2013a, b, 2018).

2.4.2 Mass extinction efficiency measurements

In the literature, the term dust mass extinction efficiency is
sometimes used interchangeably with the mass scattering
efficiency (MSE; e.g. Hand and Malm, 2007). This is be-
cause, for a typical solar wavelength at 550 nm, dust particles
scatter more radiation than they absorb for D ≤ 10 µm. De-
spite the strong scattering by these particles, larger particles
(D ≥ 10 µm) often exhibit substantial absorption relative to
scattering in the visible wavelength (e.g. Ryder et al., 2018).
In order to put all the measurements on the same equal foot-
ing, we convert the reported dust MSE in some of these stud-
ies to dust MEE by using a measured scattering albedo value
of 0.95± 0.03 (e.g. Haywood, 2003; Clarke, 2004; Ryder et
al., 2018).

MEEs that are reported in the literature are generally de-
rived using two methods: regression and theoretical methods
(e.g. Hand and Malm, 2007). The regression method calcu-
lates the dust MEE as the slope between the dust extinction
coefficient (m−1) and the dust mass concentration (g m−3).
In this case, the dust samples are typically collected using fil-
ters, while aerosol extinction is measured using nephelome-
ters. The difficulty, however, is that measured total aerosol
extinction from the nephelometer may be influenced by sev-
eral aerosol species other than dust particles. Some studies
ignore the impact of other aerosol species and derive the
dust MEE using the total aerosol extinction and the collected
dust mass concentration (e.g. Li et al., 1996). Others take
advantage of the linear relationship between the aerosol ex-
tinction and mass concentrations in order to separate the col-
umn MEE into constituents that correspond to each aerosol
species, using a multivariate linear regression method (e.g.
Andreae et al., 2002; Maring et al., 2003). Such calculations
therefore require that all the aerosol species contributing to
the extinction are included. With this in mind, the regression-
derived MEE is therefore subject to several systematic and
random errors, including instrument uncertainties (Hand and
Malm, 2007).

The theoretical method calculates the dust MEE using the
measured size distributions of dust mass or number concen-
tration (Seinfeld and Pandis, 2016). This may take the form
of calculating the dust MEE directly using the dust size dis-
tribution and the estimate of single-particle extinction effi-
ciency or indirectly by first calculating the size-resolved dust
extinction coefficient, using dust size distribution, and then
combining the result with dust mass concentration. In ei-

Atmos. Chem. Phys., 20, 829–863, 2020 www.atmos-chem-phys.net/20/829/2020/



A. A. Adebiyi et al.: Dust Constraints from joint Observational-Modelling-experiMental analysis 843

ther case, the dust density, shape, and index of refraction are
needed. While assumptions of dust density and index of re-
fraction are typically based on previously reported measure-
ments, dust shapes are generally assumed to be spherical,
which is contrary to observations (e.g. Okada et al., 2001;
Kandler et al., 2007). This is a major disadvantage that may
result in an underestimation of the derived dust extinction ef-
ficiency (e.g. Kok et al., 2017). Another source of error is as-
sociated with the instrument used to measure the aerosol size
distribution, which may assume certain mixing properties of
the observed aerosols. For mobility measurements (differen-
tial mobility analyser, DMA), optical measurements (optical
particle counter, OPC), or aerodynamic measurements (aero-
dynamic particle sizer, APS), aerosols are often assumed to
be internally mixed (e.g. Quinn et al., 2002; Clarke, 2004).
In contrast, for an impactor, aerosols are often assumed to be
externally mixed (e.g. Chiapello et al., 1999; Osborne et al.,
2008).

Despite the differences between both methods used to de-
rive dust MEE from observed quantities, previous studies
have highlighted that they both produce similar values within
measurement uncertainties (e.g. Maring et al., 2000; Quinn
et al., 2004). In addition, for measurements where only the
mean dust MEE/MSEs are reported, but not the uncertainty
estimates, we estimate here in this study what the measured
uncertainty estimate could be by assuming that its relative
uncertainty (that is, the ratio of the presumed uncertainty to
the reported mean) is proportional to the mean relative un-
certainty that is calculated from other measurements. While
this estimated uncertainty may likely not be representative
of the specific field campaign from which the measurement
was taken, they are likely representative of the seasonal val-
ues over the region.

3 Results

In this section, we present the DustCOMM products obtained
using the methodology and data described above. We first
present the dust particle size distribution (PSD; Sect. 3.1)
and then the dust MEE (Sect. 3.2). In each case, we eval-
uate the DustCOMM and model ensemble products against
available in situ measurements. We show that DustCOMM
products generally reproduce observations better than model
ensemble estimates. We then compare the spatial variabil-
ity of the DustCOMM products against the model ensemble.
In Sect. 3.3, we compare the atmospheric dust loading ob-
tained from both DustCOMM and the model ensemble, and
we examine the spatial distribution of the uncertainty in all
DustCOMM products in Sect. 3.4.

3.1 Dust size distribution

3.1.1 Evaluation of DustCOMM against measurements

We evaluate DustCOMM and the model ensemble PSD
against available in situ measurements taken during field
campaigns (Figs. 2 and 3). We compare these location-
based measurements against season-averaged DustCOMM
and model ensemble estimates. The reason for using the sea-
sonal averages is justified in Sect. 2.4 above. An additional
justification for the comparison between the individual mea-
surements and the season-averaged DustCOMM and model
ensemble estimates is that the variability of the normalized
dust PSD within each season is relatively small, especially
for dust with D ≤ 10µm (e.g. McConnell et al., 2008; Ma-
howald et al., 2014). Furthermore, most of these measure-
ments are campaign averages often over a variety of cases
that could be representative of the season-averaged size dis-
tribution.

Model simulations of dust PSD generally show substan-
tial errors when compared against measurements. In each
of the 12 studies used in Fig. 2, the model ensemble over-
estimates the observed fine-mode particles (defined here as
D ≤ 2.5µm) and underestimates the coarse-mode particles
(defined here asD ≥ 5µm). In some of the cases, the overes-
timation extends above D = 2.5µm and the underestimation
below D = 5µm. Nevertheless, these differences are appar-
ent in all the comparisons and are consistent with previous
studies indicating more coarse-mode dust particles are in the
atmosphere than models account for (e.g. van der Does et al.,
2016, 2018; Kok et al., 2017; Ryder et al., 2018).

In contrast, the DustCOMM dust PSD shows overall bet-
ter agreement against measurement than the model ensem-
ble (Fig. 2). This improved agreement includes a substan-
tial reduction of the underestimation of coarse-mode dust
as well as a reduction of the overestimation of some fine-
mode particle sizes. Although DustCOMM better reproduces
the measurements for D ≥ 0.5µm, it shows poorer agree-
ment for D ≤ 0.5µm (e.g. Fig. 2e, h, i, j), underestimat-
ing the measurements by about 1 to 2 orders of magni-
tude. For example, during DARPO (Fig. 2e; Wagner et al.,
2009) and BACEX (Fig. 2h; Jung et al., 2013), the differ-
ences between DustCOMM PSD and the measurements are
about 2 orders of magnitude. The D ≤ 0.5µm size range is
also the size range in which measurements of dust PSD are
potentially contaminated by the presence of other aerosol
species (see Sects. 2.3.1 and 4.1). In addition to the dis-
agreement for D ≤ 0.5µm, there is also some disagreement
for D ≥ 10µm (e.g. Fig. 2d, e, h), although for fewer cases.
Overall, the DustCOMM dust PSDs significantly better rep-
resent the measurements in the 0.5≤D ≤ 20µm size range
than the model ensemble.

DustCOMM also shows better agreement than the model
ensemble against measurements of the dust PSD as a func-
tion of altitude (Fig. 3). We highlight here measurements
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Figure 2. Comparison of normalized dust size distributions between published in situ measurements (blue and purple dots; see Table 2) and
season-averaged DustCOMM (black lines) and model ensemble (red lines) estimates. The grey shading shows the 95 % confidence interval
for the DustCOMM dust size distributions, whereas the pink shading shows the range of the model ensemble size distributions. The size
distributions are normalized between 2.5 and 10 µm. The comparisons are made at the nearest model grid points to the representative location
and height level of the measurements.

taken from three campaigns: (1) the ACE-2 campaign (June–
July 1997) in the vicinity of the Canary Islands (Otto et al.,
2007); (2) the Fennec project (June 2011) between the Ca-
nary Islands and Mauritania/Mali (Ryder et al., 2013a); and
(3) the AER-D campaign in August 2015 near Cabo Verde
(Ryder et al., 2018). All three cases show that a significant
fraction of coarse-mode dust particles, including with D ≥
10µm, is transported off the coast of northern Africa. We
compare these measurements at selected altitudes of 2500 m
(2700 m for ACE-2), 4000, 5500, and 6000 m (7000 m for
ACE-2). Similar to Fig. 2 above, the DustCOMM dust PSD
agrees better with the measurements than the model ensem-
ble for these measurements at similar 2-D locations but at dif-
ferent altitudes. For dust particles withD ≤ 0.5µm, the Dust-
COMM size distributions also differ from the measurements
by about an order of magnitude (similar to Fig. 2) for altitude
at 2500 m. However, this difference increases to more than 2
orders of magnitude above ∼ 4000 m altitude.

In summary, the overall differences between the in situ
measurements and DustCOMM are significantly smaller
than the differences between the measurements and the
model ensemble, especially forD ≥ 0.5µm. To quantify this,
we report the log-mean bias in each bin following Eq. (10)
and using all the measurements shown in Figs. 2 and 3. Dust-
COMM shows an overall reduction in the bias relative to the
model ensemble, except for dust particles with D ≤ 0.5µm
(Fig. 4). For D ≤ 0.5µm, the model shows an average (95 %
CI) positive log-mean bias of 0.26 (−0.08 to +0.6), while
DustCOMM shows an average negative log-mean bias of
−0.92 (−1.18 to −0.73). In contrast, DustCOMM shows a
remarkable reduction in the average log-mean bias in the
0.5≤D ≤ 10µm size range; for instance, the bias for the
5–10 µm bin is ∼ 90 % less than it is for the model ensem-
ble. DustCOMM also shows a substantially reduced bias in
the 10≤D ≤ 20µm size range, although the bias here re-
mains substantially negative, indicating a persistent underes-
timation of these coarse particles. On average, DustCOMM
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Figure 3. Same as Fig. 2 above but as a function of height, which increases from bottom to top. The measurements plotted in the left panels
are from Otto et al. (2007) taken during the ACE-2 campaign (June/July 1997) in the vicinity of the Canary Islands; the measurements
plotted in the middle panels are from Ryder et al. (2013a) taken during the Fennec project (June 2011) near the Canary Islands; and the
measurements plotted in the right panels are from Ryder et al. (2018) taken during the AER-D campaign in August 2015 near Cabo Verde.

reduces the log-mean bias for dust particles withD ≥ 0.5µm
by about 46 % relative to the model ensemble.

3.1.2 Global comparison between DustCOMM and the
model ensemble

Considering that the DustCOMM dust PSD agrees better
with in situ measurements than the model ensemble, we now
compare the differences between DustCOMM and model en-
semble PSDs. Specifically, we first compare the differences
in the shape of the globally averaged dust size distribution
between DustCOMM and the model ensemble (Sect. 3.1.2).
Second, we examine the changes in the spatial variability of

the DustCOMM and model dust mass fraction as a function
of particle size range (Sect. 3.1.2).

Differences in dust size distribution

As we already concluded based on in situ measurements, cli-
mate models globally overestimate fine-mode dust particles
(D ≤ 2.5µm) and underestimate coarse-mode dust particles
(D ≥ 5µm), relative to globally averaged DustCOMM dust
PSD (compare black and coloured lines in Fig. 5a). On av-
erage, simulations in our model ensemble overestimate the
dust mass fraction of the fine mode by ∼ 14 % and underes-
timate that of the coarse mode by ∼ 15 %. The degree of this
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Figure 4. Average log-mean bias between measurements and Dust-
COMM (grey) or model ensemble (pink) estimates of dust size dis-
tributions (shown in Figs. 2 and 3) for different particle bins. The
vertical bars represent the 95 % confidence interval.

deviation from DustCOMM depends on the model and can
be as much as 50 % in the fine mode or 37 % in the coarse
mode.

While the globally averaged dust PSDs clearly show
marked differences, it is also important to quantitatively ex-
amine the variability of the dust PSD for all locations. The
variability of dust PSDs in the atmosphere is influenced by
dust emission, transport, and deposition processes, and it can
be assessed by considering metrics such as the volume me-
dian diameter (e.g. Maring et al., 2003; Formenti et al., 2011;
Mahowald et al., 2014). Thus, the probability distributions of
the volume median diameters (VMDs) for the model simula-
tions are generally biased towards smaller VMD values, with
different peak diameters for each model. WRFChem and IM-
PACT show the lowest VMD at ∼ 1.9 µm, and ARPEGE-
Climat shows the highest VMD at∼ 5.5 µm (Fig. 5a). In con-
trast, the DustCOMM VMD peaks around 5 µm. The proba-
bility distribution also shows that the DustCOMM VMD lies
between approximately 2.5 and 6.5 µm at most heights and
locations (Fig. 5b). This range is consistent with the range
of measured VMDs (3–6 µm) for coarse-mode dust particles
generally reported in the literature and compiled by Reid et
al. (2003; see their Table 1). It also falls within the range
of values measured at near-source regions and farther down-
wind. For instance, the VMD calculated from dust particle
size distributions measured at Cabo Verde, off the coast of
northern Africa (Ryder et al., 2018), is about 5.5 µm. Far-
ther downstream where dust particles are likely to deposit
after long-range transport, the VMD value near Puerto Rico
is approximately 4 µm (Maring et al., 2003). It is noteworthy
however that some studies (e.g. Carlson and Caverly, 1977;
Weinzierl et al., 2009) have reported measured VMD values
that exceed 13 µm, but these studies often include giant-mode
dust particles with D ≥ 20µm, whereas we limited our anal-
ysis to dust with D ≤ 20µm (see Sect. 2.3.1). Overall, Dust-

COMM shows better consistency with observations of VMD
than model simulations.

Changes in spatial variability of dust mass fraction

Although coarse-mode particles dominate the dust mass frac-
tion near source regions and fine-mode particles dominate the
dust mass fraction in the far remote regions, there are consid-
erable changes in the spatial variability of the dust mass frac-
tion between DustCOMM and the model ensemble (left and
middle panels of Fig. 6). As highlighted above in Sect. 3.1.2,
there is a general decrease in DustCOMM dust mass frac-
tion for particles between 0.2–2.5 and 2.5–5 µm, relative to
the model ensemble (right panel of Fig. 6). In contrast, there
is an overall increase in DustCOMM dust mass fraction for
particles between 5–10 and 10–20 µm. These changes cause
DustCOMM to produce generally better agreement against
in situ measurements than the model ensemble, as shown in
Sect. 3.1.1 above. Overall, the most significant changes in
DustCOMM dust mass fraction, relative to the model ensem-
bles, are near dust-dominated regions, resulting in a decrease
of up to 26 % and an increase of up to 29 % for dust particles
between 2.5–5 and 10–20 µm, respectively.

These changes in the dust mass fraction gradually de-
crease away from the dust-dominated regions. This is evi-
dent, for example, over the North Atlantic basin, where dust
from the Sahara is transported to the Caribbean and South
America. Models generally simulate fewer large dust parti-
cles (D ≥ 5 µm) and thus transport only a small fraction to
the Caribbean. But observational evidence shown earlier in
Fig. 2h and l indicates that dust in Barbados includes a sig-
nificant fraction of coarse dust. Thus, the east–west gradient
and the overall increase in the DustCOMM dust mass frac-
tion over the North Atlantic help resolve the underestimation
of long-range transported coarse particles, such as near Bar-
bados (Fig. 6; e.g. Weinzierl et al., 2017).

The vertical distribution of the DustCOMM dust mass
fraction shows differences with the model ensemble that are
consistent with the globally averaged differences (Fig. 7) –
that is, DustCOMM dust mass fractions are lower than for
the model ensemble for particles between 0.2–2.5 and 2.5–
5 µm and higher for particles between 5–10 and 10–20 µm.
It is noteworthy here that vertical changes in the dust PSD in
DustCOMM are based on model simulations, causing a simi-
larity in the shape of the vertical profile of the dust mass frac-
tion between DustCOMM and the model ensemble. Finally,
similar changes in the spatial variability of the annually av-
eraged dust mass fraction are apparent in the seasonally av-
eraged values.
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Figure 5. (a) Comparison between DustCOMM (black line) and model simulations (coloured lines) of the globally averaged dust particle
size distribution (PSD). The grey shading denotes the 95 % confidence interval for the DustCOMM product. (b) The probability distribution
of the volume median diameter (µm) of the PSD for DustCOMM (black line) and the individual model simulations (coloured lines) over all
locations and height levels.

Figure 6. Differences in the spatial variability of the dust mass fraction between DustCOMM and the model ensemble. Shown are the spatial
distributions of the vertically integrated dust mass fractions for different particle bins for DustCOMM (left panel), the model ensemble
(middle panel), and the difference between the two (right panel; DustCOMM−model ensemble).

3.2 Dust mass extinction efficiency

3.2.1 Evaluation of DustCOMM against measurements

We evaluate the dust MEE (m2 g−1) of DustCOMM and
the model ensemble against measurement (Fig. 8). These
measurements span from those taken near dust source re-
gions such as the Saharan, Middle East, and Asian deserts to

those taken farther downwind from source regions (Table 2).
Higher values of dust MEE are expected where fine-mode
dust particles dominate, because smaller dust particles scat-
ter light more efficiently per unit mass at visible wavelengths.
In contrast, dust MEE decreases as the coarse-mode fraction
increases. Thus, observed dust MEE values generally range
between ∼ 0.3 and 0.8 m2 g−1 at approximately 550 nm.
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Figure 7. Vertical distributions of dust mass fractions as a function
of particle size for the individual model simulation (coloured lines)
and DustCOMM (black lines) estimates. The grey shading shows
the 95 % uncertainty confidence interval for DustCOMM.

DustCOMM shows better agreement with measurements
of dust MEE than the model ensemble (Fig. 8). DustCOMM
dust MEE estimates are within the measurement uncertainty
range for most of the 11 studies used here. Notable excep-
tions are the comparison at Sde Boker, Israel (Andreae et al.,
2002), and Qinghai Province, China (Li et al., 2000), where
both DustCOMM and the model ensemble underestimate
the measured MEE. Nevertheless, the DustCOMM estimates
better reproduce the lower values of dust MEE near dust
sources, and the higher values farther downstream. For ex-
ample, lower dust MEE values near the Sahara, between Ni-
amey and the Canary Islands (generally below 0.6 m2 g−1),
and higher values farther downstream, such as over Barba-
dos, are better reproduced by DustCOMM. DustCOMM dust
MEE also compares well against measurements at the same
location but for different seasons. An example is the mea-
surements over Cabo Verde, off the coast of northern Africa
(Haywood et al., 2003; Ryder et al., 2018), taken in Septem-
ber 2000 and August 2015. For both cases, DustCOMM esti-
mates compare better with the observed dust MEE, while the
model ensemble overestimates the values in both cases.

DustCOMM also reproduces the observed dust MEE val-
ues with a strong spatial gradient, measured during the same
campaign (INDOEX) over the Arabian Sea and Indian Ocean
(Quinn et al., 2002). Dust particles emitted from Middle East
deserts can get transported over the Arabian Sea and are de-
posited over the Indian Ocean, where strong precipitation oc-
curs year-round (e.g. Kulshrestha et al., 1996). Since dust

Figure 8. Comparison of measurements (blue dots) of dust MEEs
(m2 g−1) against column-integrated DustCOMM (black bars) and
model ensemble (red bars) estimates. Vertical bars on the mea-
surements represent reported uncertainty. For the DustCOMM and
model ensemble estimates, the black and red boxes show 1 standard
error, whereas the vertical dotted lines show the 95 % confidence in-
terval; the middle horizontal bar and star show the median and mean
values, respectively. The DustCOMM and model ensemble values
are season-averaged values corresponding to the observation time
period (see Table 2 for details). These seasons are labelled DJF –
Dec–Feb, MAM – Mar–May, JJA – Jun–Jul, and SON – Sep–Nov;
ANN represents an annually averaged value. The model ensemble
MEE is calculated from the ratio between individual model dust
aerosol optical depth and the dust mass loading, while the Dust-
COMM MEE is calculated using the constrained dust size distribu-
tions and single-particle extinction efficiency that takes into account
the asphericity of dust aerosols. χ2

ε is the reduced chi-squared value
(Eq. 10b) and quantifies the performance of a model in representing
observations (e.g. Andrae et al., 2010).

MEE increases with distance from source regions due to de-
position of larger dust particles, the measured dust MEE val-
ues increase from 0.5 m2 g−1 measured in the Arabian Sea to
0.75 m2 g−1 in the Indian Ocean, south of the Equator. Dust-
COMM captures much of this gradient and is in better quan-
titative agreement than the model ensemble estimate (Fig. 8).

DustCOMM also shows better agreement than the model
ensemble against the observed dust MEE averaged over all
measurements (see the last column of Fig. 8). DustCOMM
shows a very small difference with the mean of the measure-
ment estimates (0.007 m2 g−1; 95 % CI is −0.04 to −0.08),
whereas the model ensemble mean (95 % CI) overestimates
the measurements by 0.12 (−0.17–0.4) m2 g−1 – that is,
about a 94 % reduction in the mean bias. We further as-
sess DustCOMM performance by calculating the reduced chi
square (χ2

ε ; Eq. 11); a value of χ2
ε > 1 highlights the degree

that a model does not fit the observations within the uncer-
tainty range (e.g. Andrae et al., 2010). DustCOMM shows a
χ2
ε value of 1.19, in comparison to the model ensemble with

Atmos. Chem. Phys., 20, 829–863, 2020 www.atmos-chem-phys.net/20/829/2020/



A. A. Adebiyi et al.: Dust Constraints from joint Observational-Modelling-experiMental analysis 849

χ2
ε value of 8.70 (Fig. 8), thereby showing a substantial im-

provement.

3.2.2 Global comparison between DustCOMM and
model ensemble

After showing that DustCOMM better reproduces measure-
ments of dust MEE than the model ensemble, we now com-
pare the spatial variability of the DustCOMM and model
ensemble dust MEE. To do so, we estimate the column-
integrated dust MEE for DustCOMM and model ensembles
over each location (Fig. 9a and b). Both DustCOMM and
model estimates show smaller values of dust MEE over dust-
dominated regions and higher values farther downwind – like
over the Inter-Tropical Convergence Zone (ITCZ), the east-
ern Pacific Ocean, and the polar regions. Although Dust-
COMM and model ensemble estimates are thus spatially
similar, important differences exist. Near dust-dominated re-
gions, DustCOMM dust MEE values are lower than model
ensembles, but farther downstream, DustCOMM values are
higher than model ensembles. This regional difference in
dust MEE values corresponds to a similar difference in dust
mass fraction, with a fractional increase in coarse-mode dust
over dust-dominated regions than farther downstream (com-
pare Figs. 9 and 6). In addition, there is also a gradual east-to-
west change in the dust MEE values as coarser dust particles
are deposited away from dust sources, consistent with simi-
lar changes in dust mass fraction shown earlier in Fig. 6. The
globally averaged DustCOMM dust MEE values are lower
than predicted by the model ensemble. The global mean val-
ues of dust MEE for DustCOMM and model ensembles are
0.68 (min–max: 0.22–1.1) m2 g−1 and 0.95 (min–max: 0.30–
1.98) m2 g−1, respectively.

3.3 Global comparison of atmospheric dust load
between DustCOMM and models

After obtaining the DustCOMM dust MEE as described in
the previous section, we combine this with the reanalysis-
derived dust AOD (Eq. 9; see also Sect. 2.3.3) to obtain the
atmospheric dust loading. We find that the DustCOMM dust
column loading is generally larger than the model ensemble
estimate (Fig. 10a and b). DustCOMM shows substantially
larger dust column loading than the model ensemble over
desert regions, such as the Middle East and Asian deserts.
The relative increase in dust load in DustCOMM over the
Asian desert is more than twice the increases over the Mid-
dle East desert. DustCOMM also shows larger dust column
loading over most parts of the northern African desert, ex-
cept some parts that include the north-western section and
the coastal regions, which show smaller dust column loading
than the model ensemble. Although reanalysis-derived mean
dust AOD over northern Africa is substantially lower than
the model ensemble, it is within the uncertainty estimates,
which is higher over this region (see Supplement Fig. S4;

Figure 9. Spatial distributions of column-integrated dust MEE
(m2 g−1), weighted by the dust vertical distribution, for (a) Dust-
COMM, (b) the model ensemble, and (c) the difference between
the two (DustCOMM−model ensemble).

see also Ridley et al., 2016). In addition, DustCOMM esti-
mates over the Australian deserts show a lower dust column
loading than the model ensemble, similarly corresponding to
lower reanalysis-derived dust AOD (Figs. 10c and S4). Over-
all, globally averaged DustCOMM dust column loading is
about 46 % higher than the model ensemble.

3.4 Spatial distribution of DustCOMM relative
uncertainty

We examine here the spatial distribution of the DustCOMM
relative uncertainty – that is, the uncertainty characterizing
68 % of the distribution of each variable over each location
divided by the mean value of that variable at that location. We
do this for the dust mass fraction for the particle bins shown
in Figs. 6 and 7, the dust MEE, and the dust load (Fig. 11).

The relative uncertainties in the DustCOMM fine-mode
fraction (D = 0.2–2.5 µm) are higher mostly near emission
regions (Fig. 11a), while the relative uncertainties in the
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Figure 10. Spatial distributions of the atmospheric dust col-
umn loading (g m−2) for the (a) DustCOMM and (b) model
ensemble estimates and (c) the difference between the two
(DustCOMM−model ensemble).

coarse-mode fractions are higher over remote regions, es-
pecially for D = 10–20 µm (Fig. 11d). These uncertainties
are, in part, directly associated with the uncertainties in the
measurement constraints. The globally averaged constrained
dust size distribution (Eq. 1) has a higher relative uncertainty
for the D ≤ 1µm and D ≥ 10µm diameter range than for
the 1≤D ≤ 10µm diameter range (see Fig. 2 in Kok et al.,
2017), and we propagate these uncertainties over every loca-
tion. In addition, the spatial distribution for the relative un-
certainties in the dust mass fraction is similar to that of the
model ensembles (Supplement Fig. S5), which is also prop-
agated into the DustCOMM product.

The relative uncertainties in DustCOMM dust MEE are
mostly higher over dust-dominated regions (Fig. 11e). The
dust MEE is influenced by the uncertainty in the constrained
globally averaged extinction efficiency, which in turn is par-
tially due to uncertainties in the in situ emission measure-
ments of the index of refraction and dust particle shapes (see
Fig. 1b in Kok et al., 2017), all of which are propagated into
the DustCOMM dust MEE. In addition, the relative uncer-
tainties in the dust MEE are also affected by the uncertainty
in the dust size distribution. Thus, the spatial distribution of
dust MEE relative uncertainty is particularly informed by the
uncertainties in the fine-mode and coarse-mode dust particles
(compare Fig. 11a and d with e). For the most part, uncer-
tainties in the fine-mode dust fraction appear to dominate the

uncertainties in dust MEE, more than the uncertainties in the
coarse-mode dust fractions.

The relative uncertainties in the DustCOMM dust column
loading are mostly higher over remote regions, where the
mean dust load is small (Fig. 11f). Though the dust column
loading is influenced by the uncertainties in dust MEE, the
spatial distribution of the relative uncertainties in dust load
is largely informed by the uncertainties in the reanalysis dust
AOD (see Supplement Fig. S4).

4 Discussion

We presented the DustCOMM products in the previous sec-
tion, where we showed that both the dust PSD and the dust
MEE are reproduced more accurately than by an ensemble
of model simulations. Despite the overall agreement with
observations, there are some disagreements highlighting po-
tential limitations of our methodology. In this section, we
discuss these disagreements between DustCOMM and mea-
surements and provide possible insights into these discrep-
ancies (Sect. 4.1). We also discuss the impact of dust sizes
and asphericity on DustCOMM dust mass extinction effi-
ciency (Sect. 4.2), and we highlight the limitations in us-
ing modelling constraints as part of DustCOMM estimates
(Sect. 4.3). We end by highlighting how our constrained
DustCOMM products can be used by the research commu-
nity to potentially improve estimates of dust impacts on the
Earth system (Sect. 4.4).

4.1 Cause of discrepancy between DustCOMM and
size distribution measurements

The evaluation of the DustCOMM PSD shows an underesti-
mation of dust with D ≤ 0.5µm and D ≥ 10µm (Figs. 2, 3,
and 4). This is in contrast to the ensemble of model simula-
tions overestimating the dust mass fractions for D ≤ 0.5µm
and underestimating the dust mass fraction substantially
more than DustCOMM for D ≥ 10µm. Although the com-
parison between date-specific individual measurements and
season-averaged DustCOMM dust PSD is expected to induce
errors, this difference cannot explain the apparently system-
atic difference between measurements and the DustCOMM
dust PSD for both D ≤ 0.5µm and D ≥ 10µm (Fig. 4). We
provide here possible reasons for this disagreement between
DustCOMM and observations.

First, DustCOMM’s underestimation of dust with D ≤

0.5µm may be caused by contamination of the measured size
distributions by other aerosol species for D ≤ 0.5µm. Stud-
ies have shown that a substantial fraction of aerosols with
D ≤ 0.5µm are not mineral dust, even in dust-dominated re-
gions (Chou et al., 2008; Kandler et al., 2009; Weinzierl et
al., 2009). For example, during the Saharan Mineral Dust
Experiment (SAMUM) over southern Morocco, Kandler et
al. (2009) showed that more than 50 % of the measured par-
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Figure 11. Spatial distributions of DustCOMM relative uncertainties for (a–d) the dust mass fraction in the diameter ranges of 2–25, 25–5,
5–10, and 10–20 µm; (e) the dust MEE; and (f) dust load. The relative uncertainties are calculated as the ratio of the uncertainty characterizing
68 % of the distribution of each variable, divided by the mean value.

ticles with D ≤ 0.5µm are ammonium sulfates or a mix-
ture of sulfate and dust. Even when strict measurement tech-
niques are used to separate other non-mixing aerosol com-
ponents, the aerosol mixing state for D ≤ 0.5µm often leads
to outer coating of available dust particles, thus leading to a
higher particle volume that overestimates the true dust size
(Weinzierl et al., 2009). In addition, campaign logistics of-
ten require that some measurements of dust properties are
taken close to major cities, where contaminations by other
aerosol species, such as biomass-burning aerosols or urban
pollutions, are possible (e.g. McConnell et al., 2008; Wag-
ner et al., 2009). For example, Clarke (2004) highlighted that
the presence of biomass-burning aerosols (e.g. soot) led to
a variability of about 2 orders of magnitude for measured
size distributions with diameters less than D ≤ 0.6µm dur-
ing the ACE-Asia campaign. This variability is consistent
with the average difference between our estimates and the
observations for D ≤ 0.5µm. After separating out the con-
tamination of the soot mode from the dust size distribution,
their resulting dust PSD generally agrees with our estimate
within the uncertainty range (Fig. 2f). Thus, the large vari-
ability of the measured size distribution is indicative of the
potential problems with the representation of dust particles
with D ≤ 0.5µm.

Second, the constraint on the globally averaged dust size
distribution could also underestimate the contribution from
dust with D ≤ 0.5 µm. A key input to this constraint is the
emitted dust size distribution, but there is a dearth of mea-
surements of the mass fraction of emitted dust with D ≤

0.5µm, leading to uncertainty in constraining the globally av-
eraged emitted dust size distribution with D ≤ 0.5µm (Kok
et al., 2017). Moreover, the measurements of emitted dust
size distribution withD ≤ 0.5µm that do exist (e.g. Fratini et
al., 2007; Sow et al., 2009; see Fig. 1c in Kok et al., 2017)
indeed show a larger dust mass fraction than represented in
the constraint on the globally averaged emitted dust size dis-
tribution. Therefore, more measurements of the size distribu-
tion of emitted dust particles extending to very fine sizes are
needed.

Third, the underestimation of dust withD ≥ 10µm by both
DustCOMM and the model ensemble might be caused by bi-
ases in both global model simulations and the constraints on
the global dust size distribution used by DustCOMM. Simi-
lar toD ≤ 0.5µm, the experimental constraint on the emitted
dust size distribution with D ≥ 10µm also has a large un-
certainty because of limited available measurements (Kok,
2011a). In addition, since spatial and temporal variabilities
of large dust particles (D ≥ 10µm) strongly depend on the
model simulation of dust emission and deposition processes,
uncertainties in these processes will influence the constraints
on DustCOMM dust size distribution. For example, if the
giant mineral dust particles are transported far away from
the source regions as suggested by observations (e.g. van der
Does et al., 2018), the lack of this mechanism would result
in a negative bias of the simulated dust atmospheric lifetime
(e.g. Huneeus et al., 2011). And since modelling constraints
of globally averaged dust lifetime are used to constrain the
globally averaged size distribution (Eq. 1), such systematic
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negative bias may have contributed to the underestimation
of dust particles with D ≥ 10µm. Although our methodol-
ogy partly constrains dust deposition globally, it does not
constrain regional variability in dust deposition, and we ex-
pect that such uncertainties may increase as a function of dis-
tance away from dust-dominated regions. We note here that
regional observational constraints on dust lifetime are cur-
rently not available, and stronger modelling constraints that
may account for the underestimation of coarse dust particles
in the atmosphere are a subject for future work.

4.2 Impacts of dust sizes and asphericity on
DustCOMM dust mass extinction efficiency

The dust MEE is partially determined by the dust size distri-
bution (Eq. 8). Despite the good agreement between Dust-
COMM and the measurements of dust MEE (Fig. 8), the
size discrepancies in the dust size distribution for particles
with D ≤ 0.5µm and D ≥ 10µm (Figs. 2, 3, and 4) affect
the estimation of dust MEE. Dust with D ≤ 0.5µm has a
large single-particle MEE, whereas dust withD ≥ 10µm has
a small single particle MEE (see Supplement Fig. S6). Con-
sequently, errors due to the possible overestimation of both
size fractions at least partially cancel each other.

In addition to the impact of dust sizes, dust asphericity
also has a substantial impact on the dust MEE. The Dust-
COMM constraint on dust MEE leverages measurements of
dust shape to represent dust particles as an ensemble of tri-
axial ellipsoids (Meng et al., 2010; Kok et al., 2017). In con-
trast, most models use Mie theory, which approximates dust
as spherical particles. Thus, the difference between single-
particle dust MEE used in DustCOMM and calculated using
Mie theory shows the impact of dust asphericity is substantial
for both small and lager dust particles, increasing extinction
for particles with D ≥ 1µm (Supplement Fig. S6). This im-
plies that in typical global model simulations, which contain
too many fine-mode dust particles and approximate dust as
spherical, the overestimation of the dust extinction due to the
fine size bias could (partially) cancel out the underestima-
tion of the dust extinction due to the treatment as dust spheri-
cal shapes, leading to nonetheless reasonable agreement with
measured dust MEE. However, for DustCOMM, both the
size bias and dust asphericity are accounted for, thereby pro-
ducing better agreement with measurements (Fig. 8). In ad-
dition, accounting for dust asphericity could allow dust parti-
cles to stay longer in the atmosphere because asphericity re-
duces dust settling speed (Ginoux, 2003), which may in turn
lead to a more accurate estimation of dust deposition mass
fluxes onto land and ocean ecosystems (e.g. van der Does et
al., 2016, 2018).

4.3 Limitations in using modelling constraints

We used modelling constraints in DustCOMM where obser-
vational constraints were either not available or insufficient.

For example, modelling constraints are used for the regional
differences in dust size distribution and extinction efficiency
because the measurements to constrain these parameters on
a regional basis across the different dust source regions are
currently insufficient. To further reduce the uncertainty asso-
ciated with using modelling constraints, we used an ensem-
ble of six model simulations. In addition to the uncertain-
ties associated with model simulations of dust emission and
deposition processes that may influence the constraints on
dust size distributions as highlighted in Sect. 4.1, there are
other limitations in the modelling constraints that can influ-
ence DustCOMM estimates.

First, one such limitation is the uncertainty in the dust
mass spatial distribution of the model ensemble, which di-
rectly determines the spatial distribution of dust mass for
DustCOMM estimates. Variability in dust emission rates in-
fluences the distribution of simulated size-resolved atmo-
spheric dust loading and consequently the 3-D dust mass
fractions. In addition, ensemble model simulations of dust
emission and transport are driven by different meteorologi-
cal datasets (Table 1), which represent the actual historical
meteorology with various degrees of accuracy (e.g. Evan,
2018). Dust transport is also influenced by model resolu-
tion and sub-grid parameterizations of wind and turbulence,
which differ between models (e.g. Zender et al., 2003; Cak-
mur et al., 2004). Although averaging over multiple models
and over long time periods reduces random errors, system-
atic errors that affect different models similarly would affect
the model ensemble (e.g. Ridley et al., 2012) and would im-
pact the spatial distribution of dust mass (e.g. Johnson et al.,
2012; Ridley et al., 2016). In addition, uncertainties in the
vertical distribution of size-resolved dust mass fractions di-
rectly affect DustCOMM dust size distributions. Since we
use the globally averaged size-resolved extinction efficiency
to constrain the dust MEE over every location (Eq. 8), the
spatial distribution of dust MEE is thus partially determined
by the dust size distribution, effectively propagating any un-
certainty in model simulations of the spatial distribution.

Second, some errors may have been introduced while scal-
ing and fitting the different model dust size distributions to a
common diameter range (Sect. 2.3.1). For the scaling proce-
dure (Sect. 2.3.1), the variances of the dust mass fraction in
all the bins, including the newly created ones, are of similar
orders of magnitude, and thus errors introduced through this
process are small relative to the magnitude of errors in the
dust mass fraction. In addition, the resulting dust size dis-
tributions are dependent on the specific function and set of
parameters used in the fitting procedure (Sect. 2.3.1), which
may also introduce some errors.

Third, our constraints on the dust atmospheric loading use
ensemble estimates of reanalysis-derived dust AOD, which
depends in part on the assimilated aerosol observations, in
part on the numerical simulation of dust sources and sinks,
and in part on the numerical simulation of other aerosol
species. Although some of the reanalysis products try to con-
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strain these dust processes using space-based observations
(e.g. Lynch et al., 2016; see Supplement), the impact of
the uncertainties associated with each process on the Dust-
COMM estimates of the atmospheric dust loading is beyond
the scope of the study.

Finally, this study primarily uses climatologies of mod-
elled dust size distribution between 2004 and 2008, except
for WRF-Chem and IMPACT (see Table 1), and it also scales
dust mass loading using the 2004–2008 reanalysis prod-
ucts (see Sects. 2.3.3 and 2.2). Thus, any application of our
methodology to a different time period is expected to have
some errors. While these errors are expected to be small for
the dust size distribution and dust mass extinction efficiency,
they may have a substantial impact on the dust mass loading,
depending on the inter-annual variability in the reanalysis-
derived products and also on the assimilated observations.

4.4 Possible use of DustCOMM to improve estimates of
dust impacts on the Earth system

Given that DustCOMM estimates of dust aerosol properties
are in better agreement with measurements than the model
ensemble, DustCOMM could be used to obtain improved
constraints on dust impacts on the Earth system than is pos-
sible from current global models. Specifically, DustCOMM
dust properties could be used as an alternative to global
model simulations in constraining dust impacts, such as the
dust direct radiative impact or dust impacts on biogeochem-
istry and human health. For instance, dust radiative heating
rates in the atmosphere strongly depend on the ability of
dust particles to absorb shortwave and longwave radiation
(e.g. Perlwitz and Miller, 2010). In turn, such absorption de-
pends on the dust size distribution, which strongly influences
the optical parameters like the dust absorption optical thick-
ness (e.g. Tegen and Lacis, 1996). With improved constraints
on the dust size distribution and therefore the dust optical
properties, DustCOMM could be used to determine the dust
(shortwave and longwave) heating rates in the atmosphere
more accurately than is possible with current global model
simulations. As a result, our constraints on dust size distribu-
tion could be used to better quantify radiative effects of dust,
especially in the longwave spectrum, which have remained
very uncertain (Dufresne et al., 2002; Di Biagio et al., 2017a;
Kok et al., 2017; Song et al., 2018). Furthermore, since recent
studies associate much of the biases in dust properties, such
as the dust aerosol optical depth, deposition fluxes, and sur-
face dust concentration, with model biases in dust size distri-
bution (Evan et al., 2014; Huneeus et al., 2011), DustCOMM
estimates can therefore serve as a better alternative. For ex-
ample, DustCOMM’s improved constraints on atmospheric
dust loading and dust size distribution could contribute to
better estimates of size-resolved dust concentration near the
surface (e.g. Whicker et al., 2018). Over the ocean, such con-
straints on size-resolved dust concentration could potentially

be used for constraints on dust deposition fluxes that are more
accurate than is possible from global model simulations.

In addition to being used as an alternative to global model
simulations, DustCOMM could also be used to improve the
simulation of dust aerosol properties in global models. Incor-
porating DustCOMM products into the simulation process
can potentially be achieved when the aerosol module is cou-
pled with the global model in either the so-called online or
offline modes (e.g. Tegen, 2003; Pérez et al., 2011; Han et al.,
2012). In the online mode, the simulated dust size distribu-
tions could be adjusted (“nudged”) to match the DustCOMM
constraints on dust size distribution, similar to what is of-
ten done with meteorological fields (e.g. Kooperman et al.,
2012). Alternatively, the 3-D dust size distribution could also
be corrected offline after the simulated size distribution is ob-
tained but before dust impacts such as on radiation are esti-
mated (e.g. Weaver et al., 2002). Specifically, the modelled
dust size distribution can be corrected by minimizing the dif-
ferences between the DustCOMM and modelled size distri-
butions for a specific timescale (see Sect. 2.3.5). Whether
simulated dust properties are corrected in the online or of-
fline modes, using DustCOMM to bias-correct global model
simulations could produce better estimation of dust impacts,
such as dust impacts on radiation, clouds and precipitation,
biogeochemistry, and human health.

An example of dust impacts that can be substantially im-
proved by the DustCOMM product are dust radiative effects.
These radiative effects are sensitive to dust particle sizes and
shapes, which are both constrained substantially more accu-
rately in DustCOMM than in models (Figs. 2–6). Smaller
dust particles (D ≤ 2.5µm) scatter more shortwave radiation
and cool the climate, while larger dust particles (D ≥ 5µm)
absorb more longwave radiation and warm the climate. Thus,
correcting both biases of too much fine dust and not enough
coarse dust in models (Figs. 4 and 5), as we do here in Dust-
COMM, decreases the shortwave cooling and increases the
longwave warming (e.g. Otto et al., 2011; Kok et al., 2017).
Using the 3-D DustCOMM size distribution to correct mod-
elled dust properties could yield more accurate estimates of
dust radiative effects.

In addition, simulated dust impacts on clouds and precip-
itation can also be improved using DustCOMM dust aerosol
properties. For the interactions of dust particles with clouds,
it is important to know the number of particles that are acti-
vated above a given particle size as cloud condensation nuclei
or ice nuclei (e.g. Andreae and Rosenfeld, 2008; DeMott et
al., 2015). Therefore, in regions with significant dust load-
ing, accurate estimates of dust size distribution can be key to
accurate simulations of precipitation initiation and aerosol–
cloud interactions, including dust aerosol indirect and semi-
direct effects (e.g. Sassen, 2003; Doherty and Evan, 2014).
Since DustCOMM represents the dust size distribution more
accurately than model simulations, it could be used to im-
prove the simulated dust impacts on clouds, precipitation,
and aerosol–cloud interactions.
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Another key advantage of DustCOMM over global model
simulations is that it propagates many observational, experi-
mental, and modelling uncertainties of dust properties, which
can be propagated into the calculation of dust impacts on the
Earth system. For instance, experimental uncertainties asso-
ciated with the emitted dust size distributions are propagated
into the DustCOMM 3-D dust size distribution, and experi-
mental uncertainties in the dust index of refraction and dust
particle shapes are propagated into the DustCOMM mass
extinction efficiency at 550 nm wavelength (e.g. Kok et al.,
2017). In addition, our methodology propagates the uncer-
tainty due to the spread in model predictions of the dust spa-
tial distribution, although substantial biases in the model en-
semble might exist (see Sect. 4.3 for example).

Finally, it is worth noting that DustCOMM can be readily
updated as more accurate constraints on dust properties and
abundance become available. Current constraints in Dust-
COMM can also be expanded to include more information
about dust properties. For instance, a next step could be to
include constraints on the dust vertical concentration profile
over every location, in order to more accurately estimate dust
deposition, and dust concentration at the surface and in 3-
D. For this, lidar-based retrieval of vertical dust extinction
profiles from Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) can be combined with the
corresponding constraints on dust mass extinction efficiency
from this study to obtain constraints on the dust vertical con-
centration profile. Another addition could be constraining the
relative contribution of each dust source region to the 3-D
dust load, which can be combined with constraints on opti-
cal properties of dust emitted from each region (Di Biagio
et al., 2017b, 2019; Green et al., 2018) to obtain more ac-
curate quantifications of dust radiative impacts. Given that
dust particles withD ≥ 20 µm can contribute substantially to
dust extinction in both the shortwave and longwave spectra
(Ryder et al., 2019), future versions of DustCOMM could be
extended to a diameter range beyond 20 µm as more mea-
surements of dust size distribution with D ≥ 20 µm become
available.

5 Summary and conclusions

In this study, we presented a new dataset of atmospheric
dust aerosol properties called Dust Constraints from joint
Observational-Modelling-experiMental Analysis – Dust-
COMM. DustCOMM combines observational and experi-
mental constraints on dust properties and abundance with
an ensemble of global model simulations of dust spatial dis-
tribution to obtain more accurate 3-D annual and seasonal
climatologies of dust properties and abundance than is pos-
sible with global model simulations alone. Here, we pre-
sented three DustCOMM products: the three-dimensional (3-
D) dust size distribution, 3-D dust mass extinction efficiency,
and two-dimensional (2-D) dust loading. First, we obtained

constraints on the 3-D dust size distribution by combining
constraints on the globally averaged dust size distribution
with an ensemble of model simulations of the spatial variabil-
ity of the dust size distribution. Second, we combined the re-
sulting 3-D dust size distribution with constraints on the size-
resolved globally averaged dust extinction efficiency, which
accounts for the substantial asphericity of dust aerosols, to
constrain the 3-D dust mass extinction efficiency. Finally, we
used the resulting column-integrated dust mass extinction ef-
ficiency with an ensemble of reanalysis-derived dust aerosol
optical depth to constrain the atmospheric dust column load-
ing.

By comparing DustCOMM estimates of dust size distribu-
tion and dust mass extinction efficiency against independent
in situ measurements, we showed that DustCOMM repro-
duces observations substantially better than an ensemble of
model simulations (Figs. 2–4 and 8). Models generally over-
estimate the contribution of fine-mode dust (D ≤ 2.5µm) and
underestimate the contribution of coarse-mode dust (D ≥
5µm), consistent with previous studies (e.g. Mahowald et al.,
2014; Kok et al., 2017). In contrast, the DustCOMM size dis-
tribution is in substantially better agreement with measure-
ments for different locations, heights, and seasons over the
0.5≤D ≤ 20µm size range. However, there remain some
discrepancies between DustCOMM and measurements, no-
tably an underestimation of dust with D ≤ 0.5µm. Poten-
tial reasons for these discrepancies include contamination of
measured dust size distribution by other aerosol species for
D ≤ 0.5µm and biases in observational and modelling con-
straints forD ≤ 0.5µm (Sect. 4.1). Because DustCOMM un-
derestimates the measurements for D ≤ 0.5µm, it shows a
more negative bias (∼ 50 % more) over the full size range
(betweenD = 0.2 and 20 µm), although the error is markedly
lower (∼ 15 %) when compared to the ensemble of model
simulations. Overall for D ≥ 0.5µm, DustCOMM shows a
bias against measured size distributions that is significantly
less (about 46 % less) than for an ensemble of global model
simulations.

DustCOMM similarly shows better agreement against
measurements of the dust mass extinction efficiency (MEE)
than an ensemble of model estimates. Because DustCOMM
predicts a coarser dust size distribution, as supported by the
comparison against in situ size distribution measurements, it
yields a global-mean dust MEE that is about 28 % lower than
that from the model ensemble, driven by large reductions in
MEE over dust-dominated regions, where coarse particles
dominate. For specific locations and seasons, DustCOMM
estimates consistently show smaller errors relative to dust
MEE measurements than an ensemble of model results, in-
cluding in regions with strong spatial gradients in dust load-
ing. On average, there is a negligible difference (∼ 1 %) be-
tween DustCOMM and measurements of MEE, while the
model ensemble overestimates MEE by about 23 % relative
to measurements.

Atmos. Chem. Phys., 20, 829–863, 2020 www.atmos-chem-phys.net/20/829/2020/



A. A. Adebiyi et al.: Dust Constraints from joint Observational-Modelling-experiMental analysis 855

DustCOMM estimates of spatially varying dust properties
and abundance can be used to constrain various dust im-
pacts on the Earth system in a manner that is more robust
than possible with current global models. This is because
DustCOMM reproduces dust properties more accurately than
global model simulations and also because DustCOMM ex-
plicitly propagates uncertainties in experimental, observa-
tional, and modelling constraints used in obtaining the Dust-
COMM products, and these uncertainties can be propagated
in calculations of dust impacts on global climate, biogeo-
chemistry, and human health.
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Appendix A: List of some acronyms

GISS Goddard Institute for Space Studies (GISS) ModelE atmospheric general circulation model
WRF-Chem Weather Research and Forecasting model coupled with Chemistry
CESM Community Earth System Model
GEOS-Chem Goddard Earth Observing System coupled with Chemistry
IMPACT Integrated Massively Parallel Atmospheric Chemical Transport
INDOEX Indian Ocean Experiment Intensive Field Phase
SHADE Saharan Dust Experiment
ACE-Asia Asian Pacific Regional Aerosol Characterization Experiment
TRACE-P Transport and Chemical Evolution over the Pacific
ACE-2 Aerosol Characterisation Experiment
DABEX Dust and Biomass-burning Experiment
AMMA African Monsoon Multidisciplinary Analysis
DODO Dust Outflow and Deposition to the Ocean project
SAMUM Saharan Mineral Dust Experiment
DARPO Desert Aerosols over Portugal
BACEX Barbados Aerosol Cloud Experiment
SALTRACE Saharan Aerosol Long-Range Transport And Aerosol–Cloud-Interaction Experiment
AER-D AERosol Properties – Dust
MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2
NAAPS Navy Aerosol Analysis and Prediction System
JRAero Japanese Reanalysis for Aerosol
CAMSiRA Copernicus Atmosphere Monitoring Service interim Reanalysis
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