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Supplement Information 

1.1 Experimental setup of isothermal evaporation experiments 

SOA was formed via combined photooxidation and ozonolysis of -pinene in a potential aerosol mass reactor (PAM, 

Aerodyne Research Inc., Kang et al., 2007; Lambe et al., 2011). The -pinene concentration (190 ppb), relative humidity 

(RH = 40%) and temperature (27 °C) in the PAM reactor were held constant throughout the experiments, but three 5 

different oxidative settings were chosen to create three types of -pinene SOA characterised by their oxidative age (Table 

S 2). The gas phase was monitored with a high-resolution time-of-flight proton transfer reaction mass spectrometer (PTR-

MS, Ionicon, model 8000) while the particles were characterised with a scanning mobility particle sizer (SMPS, TSI Inc., 

model 3082+3775), a high resolution time-of-flight aerosol mass spectrometer (AMS, Aerodyne Research Inc., DeCarlo 

et al., 2006), and a filter inlet for gases and aerosols sampling unit (FIGAERO, Aerodyne Research Inc., Lopez-Hilfiker 10 

et al., 2014) in combination with a chemical ionisation mass spectrometer (CIMS, Aerodyne Research Inc., Lee et al., 

2014) using iodide as reagent ion. 

Two types of particles samples were collected with the FIGAERO-CIMS: “fresh” particles (labelled tevap = 0.25h) were 

collected directly after size selection with a nano differential mobility analyser (NanoDMA, TSI Inc., model 3085, 80 nm 

electro mobility size) and “RTC” particles (labelled tevap = 4h) which were left to evaporate at ~20 °C for 3 - 4 h in a 15 

residence time chamber (RTC) prior to collection on the FIGAERO filter. The isothermal evaporation method has been 

described previously in detail (Buchholz et al., 2019; Yli-Juuti et al., 2017). The NanoDMA was operated with an open 

loop sheath flow (dry: 10 L min-1,  wet: 8  L min-1) which together with the extremely short residence time inside the 

NanoDMA (≤ 0.3 s) limited the diffusion of gaseous compounds into the selected sample flow (1  L min-1). This created 

a sudden shift in the gas-particle equilibrium which initiates the particle evaporation at the NanoDMA outlet. For 20 

evaporation experiments, this monodisperse particle sample was filled for 75 min into a 100 L stainless steel RTC, that 

was then closed off. After 3 – 4 h of isothermal evaporation, the RTC was reopened and the remaining particles sampled 

onto the FIGAERO filter. In addition, filter blank measurements were conducted on each experiment day to quantify the 

instrument background. 

Generally, a mass loading of several 10s of ng is needed on the FIGAERO filter to achieve a sufficiently high signal-to-25 

noise ratio in CIMS. In this study, 20 or 30 min of collection time were necessary to accumulate enough particular mass 

on the FIGAERO filter. The mass loadings in the RTC at the beginning of the evaporation experiment and on the 

FIGAERO filter estimated from AMS measurements are given in Table S 1. It has to be noted that in this specific setup, 

particles already collected on the FIGAERO filter will continue to evaporate during the remaining collection time as no 
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new gas-particle equilibrium can be reached after the dilution in the NanoDMA. Thus, the “fresh” particles on the 

FIGAERO filter actually represent particles with an average evaporation time of 15 min and may have lost some of the 

very volatile compounds before the thermal desorption begins. In Principle, particles sampled after hours of evaporation 

in the RTC exhibit the same behaviour. But as the majority of particle evaporation occurs within the first 1 h, the additional 

residence time on the FIGAERO filter does not contribute significantly to the overall evaporation (Buchholz et al., 2019).  5 

1.2 PLerror calculation 

The error for mass spectra data consists of two parts: the counting statistic error and instrument noise (electronic 

background noise). Assuming a Poisson type distribution of the counting error, the total error Sij for each ion i at time j 

can be described as (same as Eq. 7 in the main text): 

𝑺𝑖𝑗 = 𝑎 ∙ √
𝑿𝑖𝑗

𝑡𝑠
+ 𝜎𝑛𝑜𝑖𝑠𝑒,𝑖 (𝑆1) 10 

with Xij signal intensity of the ion i, ts sampling (averaging) interval in s, noise,i the electronic noise for ion i, and the 

empirically derived parameters a. Yan et al. (2016) suggested a method to derive a from a data set of CIMS gas-phase 

measurements utilising that real changes were much slower than the noise in the data for most parts of their data set. The 

problem with FIGAERO data is that the changes in signal due to temperature are fast, and it is difficult to separate the 

noise/error from these changes. However, most ion traces reach a steady state in the last minutes of the measurements as 15 

most of the material has evaporated already, and background signals are stable or changing slowly. Additionally, the 

temperature ramp reaches a plateau (“soak” period). Thus, we modified the method from Yan et al. (2016). The last 20 

data points of each thermogram (400 sec, Tdesorp = ~195 – 205 ○C) are considered to be in steady state. To account for still 

persisting trends in the data, a linear fit (LineFit) is performed to these points for each ion trace. The residual between the 

data and this fit, resij, is calculated for each ion (20 values per ion): 20 

𝑟𝑒𝑠𝑖𝑗 = 𝑑𝑎𝑡𝑎𝑖𝑗 − 𝐿𝑖𝑛𝑒𝐹𝑖𝑡𝑖𝑗 (𝑆2) 

Yan et al. (2016) showed that the analytical uncertainty in gas-phase CIMS measurements is independent of the m/z range 

of the instrument and the specific ion. Thus, the values of all ions can be combined for further analysis. noise is calculated 

as the median of the standard deviation of resij for one ion (Figure S 8). 

𝜎𝑛𝑜𝑖𝑠𝑒 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑠𝑡𝑑𝑒𝑣(𝑟𝑒𝑠𝑖𝑗)) (𝑆3) 25 

These noise values are used in the CNerror scheme (Eq. 8 in main manuscript). Note that the values are higher for ions 

which have a higher plateau value, i.e. which show higher desorption during the end of the soak period. As this is an 

indication for a stronger impact of background compounds from the instrument/filter, it seemed justified to apply this 
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higher error value for the whole thermogram of these ions, decreasing their weight in the PMF optimisation algorithm. 

To account for the minimum error needed in the PMF algorithm, noise values smaller than the median of all noise values 

(min = 0.013) were set to the min value. 

Similar to the method in Yan et al. (2016), the resij values are grouped by signal strength (Xij) into 12 classes. The intervals 

were chosen to have at least 30 values in each class and the lowest concentration class starts at ~1 ct s-1 (i.e. Xij >60% of 5 

max signal, 50%-60%, 40%-50%, 30%-40%, 25%-30%, 20%-25%, 15%-20%, 10%-15%, 5%-10%, 2%-5%,1%-2%,0-

1%). Note, that this is the average signal strength for the last 400 sec of the thermogram. The peak values during 

desorption may be much higher. A histogram is calculated for each class and the data are fitted with a gaussian function 

(examples in Figure S 9b and c). The half-width of that function (fit: “width” in plots) is considered to be the overall 

measurement error Sij.  10 

To gain the factor a for equation 1, fit is plotted against the average signal intensity of each class (Iclass) and a power law 

is fitted: 

𝑆𝑖𝑗 = 𝜎𝑓𝑖𝑡 = 𝑎′ ∙ (𝐼𝑐𝑙𝑎𝑠𝑠)
𝑐 + 𝑏 𝑆4 

With 𝑎’ = 𝑎/√(𝑡𝑠) , 𝑏 = 𝜎𝑛𝑜𝑖𝑠𝑒, and c should be 0.5 (i.e. the square root for the case where the error is following a Poisson 

distribution). The 95th percentile of fit is used as “one-sigma-standard-deviation” to weight the data points. Figure S 9 15 

shows the combined Sij data set for all thermograms for all samples (4*12 points per SOA type). The parameters yielded 

by freely fitting Eq. S4 (black line in Figure S 9) and fitting with c = 0.5 (grey line) are given in Table S3. Note that the 

value for c is >0.5 in the unconstrained case. This may be caused by some random error on the data or the fact that the 

error does not follow a Poisson style distribution. Having very few points with good quality above a signal strength of 

10 ct s-1 may also contribute to not very well constraining the fitted function. To avoid assumptions about the exact shape 20 

of the error distribution, we decided to use the parameters of the unconstrained fit in Eq. S4 to calculate the error values 

labelled PLerror. In addition, we apply the same minimum error criterium as in the CNerror case.  

As a test case not shown in the manuscript, PMF analysis was also conducted with error values calculated according to 

Eq. S1 with noise = 0.013 and a = 1 or a = 1.28 (value typically used for AMS data). The results were very similar to the 

ones with the PLerror scheme. 25 

1.3 Drivers controlling the grouping of compounds into PMF factors 

When analysing a FIGAERO-CIMS thermal desorption data set containing multiple samples with PMF, there are two 

driving forces for the grouping of compounds into factors: their volatility and their “source” in the 

atmosphere/chamber/OFR (biomass burning, oxidation of different precursors, day-time/night-time chemistry, etc.). To 
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investigate the competition between these two drivers, we create simple artificial data sets (Figure S 10). We combine 4 

compounds A, B, C, and D (with nominal ion masses of 1, 2, 3, and 4) to form 4 SOA types (SOA1, SOA2, SOA3, 

SOA4). A, B, and C have the same volatility. A has the same thermogram in each SOA type. 

In scenario X, we investigate as an extreme case the combination of SOA1 (containing A, B, and D) and SOA2 (containing 

A, C, and D). This scenario can be interpreted as one source/process creating A and B at the same time for SOA1, but 5 

than a different pathway created A together with C in the case of SOA2. The 3-factor solution PMF result for this scenario 

(SOA1 and SOA2) is shown in Figure S 11. The common compound A has exactly the same thermogram behaviour in 

both samples. But as it once correlates with B (in SOA1) and once with C (SOA2), A is explained with Factor 1 (black) 

for the SOA1 sample and with Factor 2 (red) for the SOA 2 sample. Even increasing the number of factors does not create 

a “common” factor which contains only A. For this scenario, the different “source” for A (which lead to different 10 

compounds correlating with it) dominates the factor identification and not the fact that A, B, and C have the same 

volatility. Note that compound D which also does not change between SOA1 and SOA2 is separated into its own factor. 

Here the difference in volatility (from A, B, and C) is the driving force for the factor grouping. 

In scenario Z, SOA3 and SOA4 each contain all 4 compounds. The concentration of A is the same in both types while 

the contribution of C is higher in SOA4 than in SOA3 and that of B is lower. The 3-factor solution for this scenario is 15 

depicted in Figure S 12. Again, we find two factors explaining the behaviour of the three compounds with the same 

volatility. But now factor 2 (red, dominated by A and C) has a considerable contribution to both SOA types. Figure S 13 

shows how the thermograms of A are explained by the two factors. Similar to scenario X, we can interpret the factor 

grouping by changes in the processes/sources producing the compound A, B, and C. Factor 1 (black) stands for process 

1 creating the majority of C and some A. Process 2 creates mostly A and B and is explained by factor 2. Again, factor 3 20 

(containing D) is differentiated by the different volatility of D. Integrating the factor thermograms shows that the more 

volatile fraction of SOA4 is formed by process 2 while that the fraction of SOA3 with the same volatility is formed by 

both processes 1 and 2 (Figure S 14).  

This Scenario Z is very similar to comparing, e.g., samples of low- and medium-O : C SOA. Many ions occur in both 

SOA types, but the ratios between them change. Many products of similar volatility can be formed via different pathways 25 

in the oxidation of -pinene, but depending on the reaction path, they will correlate with different other products. The 

change in the oxidation field (increase of [O3] and [OH]) probably affected the HO2/RO2 chemistry which has a strong 

influence on, e.g., highly oxygenated material (HOM) and dimer formation, i.e. we changed the ratio between reaction 

paths. Note that compounds of significantly different volatility will be grouped into different factors even if they were 

produced by the same process/pathway (see behaviour of compound D). When investigating ambient aerosol samples, 30 

this behaviour may impact the identification of SOA sources and/or types. One SOA source/type that would be identified 
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as a factor in a PMF analysis of FIGAERO-CIMS data integrated over each thermogram scan, may be split into multiple 

factors when analysing the thermal desorption data with PMF. This needs to be investigated in future studies comparing 

results for the two methods with ambient data sets and more extensive chamber and/or flow tube measurements. 

 

1.4 PMF analysis of a data set combining different SOA types 5 

To study if the different SOA types are really as different as the factors identified in section 3.1 suggest or if this was 

artificially introduced by pre-grouping the data, we conduct a PMF analysis with the data grouped by sampling conditions. 

The dry, t = 4 h set was chosen for detailed analysis as we did not want to introduce the added complication of aqueous 

phase chemistry and the dry low-O : C sample at t = 0.25 h had a large contamination unique to that sample. In the 

following, we will refer to this as the “combined data set”. The analysis conducted with data pre-grouped by the SOA 10 

type will be labelled “pre-grouped”.  

The 8- and 13 factor solutions for the combined data set are shown in Figure S 15 and Figure S 16. Based on the change 

in Ratioexp values and the residual time series, 8 was the minimum number of factors need to capture the thermograms of 

all 3 SOA types equally well. But to reach residuals as low as in the pre-grouped data sets, 13 factors were needed. 

Especially the lower Tdesorp regions in the low- and high-O : C case and the high Tdesorp part of the medium-O : C sample 15 

improved (Figure S 17). Note that with the same criteria applied in the section 2.3.3, we would not select the 8-factor 

solution as a “best” solution. 

There are no factors in the 8-factor solution which are unique to one SOA type. 4 factors (FV1, FV4, FV7, and FB/D1) 

occur in all SOA types explaining 80% of the signal of the medium-O : C sample and 50% of the low- and high-O : C 

samples. The other 50% of the signal are explained with two factors each (low O : C - FV2 and FV5, high O : C - FV3 20 

and FV7) which also occur in the medium-O : C sample.  

The 8-solution suggests very strong similarities between the three SOA types with a gradual shift in composition with 

increasing oxidation. But this solution does not capture the detailed thermogram behaviour of single ions very well as the 

high residuals suggest (Figure S 18 for the example ion also discussed in sections 3.2 and 3.3). When this is improved in 

the 13-factors solution, the degree of similarity between the SOA types decreases. Here, 20% - 25% of the signal in each 25 

SOA type is explained by factors common to all SOA types (FD1, FB1, and FV1). There are some factors with significant 

contribution to two SOA types (e.g. FV2 and FV10 for low- and medium-O : C cases; or FV3, FV6 and FV11 for medium- 

and high – O : C cases). 

To compare the factor mass spectra derived with the combined and the pre-grouped data sets, we use the spectral contrast 

angle, .  is derived from the dot product of two mass spectra (Wan et al., 2002): 30 



6 

 

𝑐𝑜𝑠𝜃 =
∑ 𝑎𝑖𝑏𝑖𝑖

√∑ 𝑎𝑖
2 ∙𝑖 ∑ 𝑏𝑖

2
𝑖

 

where ai and bi are the intensities of ion i in mass spectrum 1 and mass spectrum 2. Two mass spectra are considered to 

be similar if  is between 0° and 15°, somewhat similar but with important differences if  is between 15° and 30°, and 

different with  values >30° (Bougiatioti et al., 2014).  

The results from the pairwise comparison of each factor identified in the pre-grouped data sets with all factors from the 5 

combined data set are shown in Figure S 19. All type-V factors identified in the pre-grouped data set have a (at least 

somewhat) similar counterpart in the combined data set (e.g. LV4 and FV7, MV4 and FV8, HV2 and FV6). This shows 

that the missing similarities between factors identified in the pre-grouped data set are not artificially induced by the pre-

grouping but rather stem from the shifts in SOA composition with increasing oxidation. The changes in the groups of 

correlating ions will cause compounds that occur in all SOA types to be grouped into different factors as explained with 10 

the simplified data set in SI section 1.3. The factors FV2, FV3, and FV4 show similarities to two factors within the 

corresponding SOA types. This suggests that either more factors are needed in the combined data set to resolve the 

thermogram behaviour of the compounds represented by these factors, or that there was “factor-splitting” in the pre-

grouped data set (i.e. too many factors). Also, the combined data set uses only the information from the dry (tevap = 4 h) 

sample while the pre-grouped ones contain all 4 sample types. Thus, behaviour unique to a different sample type cannot 15 

be correctly captured (e.g. LC1 and 2, or HV3). 

This case study shows that the same overall conclusions can be drawn by using pre-grouping of the data according to the 

information of the sampling conditions (here the SOA type) or the combined data set. With the combined data set, a higher 

number of factors (here at least 13) has to be chosen to cover all details in the data set equally well. For ambient data, a 

combined data set approach is favourable as limited information are available for any pre-grouping, and such an extra 20 

step is not desirable. For a detailed study of, e.g., particle phase processes with designed SOA types (as presented in this 

paper), a pre-grouping can be beneficial to highlight the fine details hidden in the data set. 
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1.6 SI Tables 

Table S 1: Mass concentration in RTC after filling and estimated collected sample mass on FIGAERO filter. 

OH exposure condition mass conc in RTC  sampled mass / ng 

  after filling / ug m-3 tevap=0.25h tevap=4 h 

low dry 0.67 178 33 

 RH80% 0.52 186 22 

medium dry 1.0 239 72 

 RH80% 1.1 258 50 

high dry 0.69 138 46 

 RH80% 0.98 172 30 

 

Table S 2: Overview on oxidation condition and oxidative state of formed SOA. 

 low O : C medium O : C high O : C 

[O3]inlet / ppm 6.6 25 25 

[O3]outlet / ppm 6.4 22.2 16 

OH exposure / cm-3 s  2.54e11 6.85e11 2.45e12 

photochemical age / days 2.0 5.3 18.9 

O : C(AMS) 0.53 0.69 0.96 

O : C(FIGAERO-CIMS) 0.66 0.75 0.84 

 5 

Table S 3: Fitting parameters for fitting Eq. S4 to the Sij data presented in Figure S 9. 

 a’ b c 

free fit 0.260 ± 0.003 0.056 ± 0.002 0.726 ± 0.009 

square root fit 0.303 ± 0.002 0.009 ± 0.001 0.5 
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1.7 SI Figures 

 

Figure S 1: Single ion thermogram (a) and time series of errors (Sion, b), relative error (Sion / signal, c), and signal-to-noise-ratio (SNR, 

d) for C5H5O6
-. Values calculated for CNerror are marked in red and those for PLerror in dark blue. Note that panels b, c, and d have 

logarithmic y axis scaling. 5 
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Figure S 2: Fraction of explained variance (Ratioexp, red, left axis) and Q/Qexp values (black, right axis) for all PMF solutions with seed 

values varying from 1 to 6 (a, b, c) and fpeak values varying from -1.0 to +1.0 (d, e, f) for all SOA types (low (a&d), medium (b&e), 

and high O : C (c&f)). 
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Figure S 3: Full data set of factor thermograms for samples (I - IV) and 1 or 4 filter blank measurements (V - VIII) for low- (a), 

medium- (b) and high-O : C (c) cases plotted  against the data index. Note that factors are different between SOA types (i.e. factor V1 

in panel a and b have different factor mass spectra, see Figure 5 and Figure 6 in main text). Colour code for the factors is the same as 

in main text figures.  5 
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Figure S 4: Factor thermograms for the 9-factor solution for the low-O : C case same as in main manuscript Figure 5 but stacked to 

highlight reconstruction of measured total thermogram signal. The colour code is the same for all panels. Background colours indicate 

volatility classifications according to Donahue et al. (2006) derived from Tmax-𝑪𝒔𝒂𝒕
∗  calibrations (green: SVOC, red: LVOC, grey: 

ELVOC). Note the different scaling for y-axes in panels a-d. 5 
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Figure S 5: Factor thermograms for the 7-factor solution for the medium O : C case same as in main manuscript Figure 6 but stacked 

to highlight reconstruction of measured total thermogram signal. The colour code is the same for all panels. Background colours 

indicate volatility classifications according to Donahue et al. (2006) derived from Tmax-𝑪𝒔𝒂𝒕
∗  calibrations (green: SVOC, red: LVOC, 

grey: ELVOC). Note the different scaling for y-axes in panels a-d. 5 
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Figure S 6 Factor thermograms for the 7-factor solution for the high-O : C case same as in main manuscript Figure 7 but stacked to 

highlight reconstruction of measured total thermogram signal. The colour code is the same for both panels. Background colours indicate 

volatility classifications according to Donahue et al. (2006) derived from Tmax-𝑪𝒔𝒂𝒕
∗  calibrations (green: SVOC, red: LVOC, grey: 

ELVOC). Note the different scaling for y-axes in panels a-d. 5 
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Figure S 7: Absolute contribution of type-V factors to the measured signal for low- (a), medium- (b), and high-O : C cases (c). Factors 

are sorted by their Tmax values from V1 to V5. Colour code of the factors is the same as in main text.  

 

Figure S 8: Standard deviation of residual for one thermogram (one point for each ion). Colour code is the average signal strength in 5 
the last 400 sec. Horizontal line indicates the median of the values which is defined as noise.  
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Figure S 9: (a) Sij from gaussian fits to histograms plotted against the average signal strength for all thermograms for all O : C cases. 

Symbol colour stands for low-, medium-, and high-O : C cases. (b) and (c) histograms and gaussian fit for 2 of the 12 classes defined 

for calculation of Sij. The fitted Sij values in panel (a) are the halfwidth of these gaussian fits and the error bars are the 95th percentile 

ranges. 5 
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Figure S 10: Artificial thermogram data for four SOA types. (a) SOA1, (b) SOA2, (c) SOA3, (d) SOA4. SOA1 and SOA2 are combined 

in one data set for PMF analysis and so are SOA3 and SOA4. Note that the thermograms are plotted against data index. Compounds 

A, B, and C have the same Tmax values in all SOA types. 
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Figure S 11: Factor thermogram (left) and factor mass spectra (right) for the 3-factor solution for scenario X. For plotting, the nominal 

MZ values 1, 2, 3, and 4 are assigned to the compounds A, B, C, and D, respectively. 
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Figure S 12: Factor thermogram (left) and factor mass spectra (right) for the 3-factor solution for scenario Z. For plotting, the nominal 

MZ values 1, 2, 3, and 4 are assigned to the compounds A, B, C, and D, respectively. 

 

Figure S 13: Stacked factor thermograms for compound A in scenario Z. 5 
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Figure S 14: Absolute contribution of factors to the signal of SOA3 and SOA4 in the scenario Z. Black: factor 1, red: factor 2, green: 

factor 3. 
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Figure S 15: Factor thermograms (left) and factor mass spectra (right) for the 8-factor solution for the combined data set for dry, t = 4 h 

samples. Each factor mass spectrum is normalised. The colour code is the same for both panels. Background colour in the left panel 

indicates volatility classification derived from Tmax-𝑪𝒔𝒂𝒕
∗  calibrations (green: SVOC, red: LVOC, grey: ELVOC). 

 5 



22 

 

 

Figure S 16: Factor thermograms (left) and factor mass spectra (right) for the 13-factor solution for the combined data set for dry 

(t = 4 h) samples. Each factor mass spectrum is normalised. The colour code is the same for both panels. Background colour in the left 

panel indicates volatility classification derived from Tmax-𝑪𝒔𝒂𝒕
∗  calibrations (green: SVOC, red: LVOC, grey: ELVOC). 
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Figure S 17: Time series of residuals for the 8-(black) and 13-factor (red) solutions for the combined data set and the corresponding 

pre-grouped data sets (blue). 
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Figure S 18: Time series of residuals of the ion [C8H12O5 + I ]- for the 8-(black) and 13-factor (red) solutions for the combined data 

set and the corresponding pre-grouped data sets (blue). 
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Figure S 19: Contrast angle plot comparing the factor mass spectra from the separate PMF analysis of each SOA type (y-axis) with 

those from the combined analysis with 13 factors (x-axis). Grey areas indicate no similarity (contrast angle > 30°) while shapes of red 

indicate decreasing degree of similarity from dark to light. 

 5 


