
Atmos. Chem. Phys., 20, 7645–7665, 2020
https://doi.org/10.5194/acp-20-7645-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

On the relationship between cloud water composition and cloud
droplet number concentration
Alexander B. MacDonald1, Ali Hossein Mardi1, Hossein Dadashazar1, Mojtaba Azadi Aghdam1, Ewan Crosbie2,3,
Haflidi H. Jonsson4, Richard C. Flagan5, John H. Seinfeld5, and Armin Sorooshian1,6

1Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
2Science Systems and Applications, Inc., Hampton, VA, USA
3NASA Langley Research Center, Hampton, VA, USA
4Naval Postgraduate School, Monterey, CA, USA
5Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
6Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA

Correspondence: Armin Sorooshian (armin@email.arizona.edu)

Received: 13 March 2020 – Discussion started: 19 March 2020
Revised: 28 May 2020 – Accepted: 7 June 2020 – Published: 2 July 2020

Abstract. Aerosol–cloud interactions are the largest source
of uncertainty in quantifying anthropogenic radiative forc-
ing. The large uncertainty is, in part, due to the difficulty
of predicting cloud microphysical parameters, such as the
cloud droplet number concentration (Nd). Even though rigor-
ous first-principle approaches exist to calculateNd, the cloud
and aerosol research community also relies on empirical ap-
proaches such as relating Nd to aerosol mass concentration.
Here we analyze relationships between Nd and cloud wa-
ter chemical composition, in addition to the effect of envi-
ronmental factors on the degree of the relationships. Warm,
marine, stratocumulus clouds off the California coast were
sampled throughout four summer campaigns between 2011
and 2016. A total of 385 cloud water samples were col-
lected and analyzed for 80 chemical species. Single- and
multispecies log–log linear regressions were performed to
predict Nd using chemical composition. Single-species re-
gressions reveal that the species that best predicts Nd is to-
tal sulfate (R2

adj = 0.40). Multispecies regressions reveal that
adding more species does not necessarily produce a bet-
ter model, as six or more species yield regressions that are
statistically insignificant. A commonality among the multi-
species regressions that produce the highest correlation with
Nd was that most included sulfate (either total or non-sea-
salt), an ocean emissions tracer (such as sodium), and an or-
ganic tracer (such as oxalate). Binning the data according to
turbulence, smoke influence, and in-cloud height allowed for

examination of the effect of these environmental factors on
the composition–Nd correlation. Accounting for turbulence,
quantified as the standard deviation of vertical wind speed,
showed that the correlation between Nd with both total sul-
fate and sodium increased at higher turbulence conditions,
consistent with turbulence promoting the mixing between
ocean surface and cloud base. Considering the influence of
smoke significantly improved the correlation withNd for two
biomass burning tracer species in the study region, specif-
ically oxalate and iron. When binning by in-cloud height,
non-sea-salt sulfate and sodium correlated best with Nd at
cloud top, whereas iron and oxalate correlated best with Nd
at cloud base.

1 Introduction

To assess the degree to which humans have altered Earth’s
climate, it is necessary to quantify the effect that particles
in the air (i.e., aerosols) have on clouds. Some fraction of
aerosols (called cloud condensation nuclei, CCN) activate
into cloud droplets, thus impacting the cloud droplet num-
ber concentration (Nd). For warm marine boundary layer
(MBL) clouds at fixed liquid water, higherNd values result in
(i) higher cloud albedo (thus cooling the Earth and counter-
acting the greenhouse effect) (Twomey, 1977), (ii) delayed
and/or reduced precipitation (Albrecht, 1989), and (iii) en-
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hanced entrainment at cloud top (Ackerman et al., 2004).
The complex interactions and feedback mechanisms between
aerosols, meteorology, and clouds leads to aerosol–cloud in-
teractions as the largest source of uncertainty in climate mod-
els (IPCC, 2013; Bellouin et al., 2020).

It is indispensable to know the value of Nd, but this is a
difficult parameter to accurately simulate and retrieve (Foun-
toukis and Nenes, 2005). There is a need to improve Nd re-
trievals from satellite remote sensors, which provide broad
spatial and temporal coverage in contrast to surface sites and
airborne research flights. Currently, Nd retrievals are limited
to inferred values based on values of cloud optical depth,
cloud droplet effective radius, and temperature, along with
assumptions such as vertical homogeneity of Nd and mono-
tonic increases in liquid water content at a constant fraction
of its adiabatic value (Grosvenor et al., 2018). Ultimately,
measurements are needed to better inform climate models
about the cloud droplet activation process and better con-
strainNd values. Current general circulation models (GCMs)
calculate Nd using the properties of aerosol particles in one
of two ways (Ghan et al., 1997; Menon et al., 2002). First,
there is a rigorous approach that is based on physical princi-
ples that predicts Nd based on aerosol properties and mete-
orological conditions (Abdul-Razzak and Ghan, 2000). Sec-
ond, there is an empirical approach that parameterizesNd us-
ing either the number concentration of aerosols, Na (cm−3);
the number concentration of CCN,NCCN (cm−3); or the mass
concentration of chemical species that comprise the aerosols
(Ghan et al., 1997).

The rigorous approach predicts Nd by considering aerosol
properties (e.g., size distribution and chemical composition),
microphysical processes (e.g., the seeding of cloud droplets
by particles, droplet growth, and droplet evaporation), and
meteorological parameters (e.g., relative humidity and the
vertical updraft velocity transporting aerosols to cloud base)
(e.g., Chuang et al., 1992; Chuang and Penner, 1995; Nenes
and Seinfeld, 2003; Partridge et al., 2012). This method is
based on the physical principle that an aerosol particle needs
to be a cloud condensation nucleus in order to seed a cloud
droplet; consequently, the input for this approach is Na, from
which to calculateNCCN, and subsequentlyNd. The requisite
information for these calculations may not be readily avail-
able for GCMs. A limitation is that the spatial resolution of
a GCM may be too coarse to capture the small-scale spatial
variation of updraft velocity (Ghan et al., 2011; West et al.,
2014).

The empirical parameterization approach of interest in the
present study uses the mass concentration of one or several
chemical species and correlates it directly to NCCN or Nd.
Aerosols containing the sulfate ion (SO2−

4 ) have long been
known to serve as effective CCN (Andreae and Rosenfeld,
2008; Charlson et al., 1992; Lance et al., 2009; Medina et
al., 2007). Sulfate is both contained in sea salt and is a prod-
uct of the oxidation of gaseous sulfur dioxide (SO2) (Hegg
et al., 1981; Quinn et al., 2017), so it is customary to isolate

the anthropogenic contribution to total SO2−
4 by considering

its non-sea-salt fraction (NSS-SO2−
4 ). Therefore, most stud-

ies choose either total SO2−
4 (denoted hereafter as Tot-SO2−

4 )
or NSS-SO2−

4 to predict NCCN and Nd (e.g., Leaitch et al.,
1992; Novakov et al., 1994; Saxena and Menon, 1999). Us-
ing the mass concentration of SO2−

4 or any other chemical
species to predict Nd (i) circumvents the complex interme-
diate microphysical steps to go from an aerosol particle to
a cloud droplet and implicitly accounts for such meteoro-
logical variables like updraft velocity, (ii) is based on actual
measurements, and (iii) can be compared directly to the mass
concentration of different species produced by aerosol trans-
port models (e.g., Boucher and Lohmann, 1995; Chen and
Penner, 2005). The limitations of using an empirical param-
eterization are (i) assuming a mass size distribution of the
aerosols, (ii) assuming that one or a few chemical species are
responsible for all CCN, and (iii) uncertainty in generalizing
field data from one region (or a few regions) under specific
conditions to the entire globe for all conditions (Pringle et
al., 2009). Despite these drawbacks, empirical correlations
of Nd and the mass concentration of different species are
valuable. For example, of the 20 studies addressing the cloud
albedo effect considered in the IPCC Fourth Assessment Re-
port (IPCC, 2007), half relied on empirical relationships to
calculate Nd (Pringle et al., 2009).

Several studies have developed empirical correlations be-
tween NCCN and the mass concentration of SO2−

4 (e.g.,
Adams and Seinfeld, 2003; Hegg et al., 1993; Matsumoto
et al., 1997). However, the present objective is to focus on
improving the prediction of Nd, not NCCN, using the mass
concentration of SO2−

4 in addition to other species. A log–
log relation is often used to correlate the mass concentration
of SO2−

4 to Nd with an equation of the following form (e.g.,
Lowenthal et al., 2004):

log(Nd)= a0+ a1 log
([

SO2−
4

])
, (1)

where SO2−
4 is the mass concentration in air (µg m−3), and

a0 and a1 are fitting parameters. A log–log relation is cho-
sen to accommodate large ranges in Nd and SO2−

4 and to re-
duce sensitivity of results to the measurement accuracy of
each individual parameter (Boucher and Lohmann, 1995).
The mass concentration of SO2−

4 can be obtained by ana-
lyzing either aerosol particles or cloud water. When analyz-
ing cloud water, the mass concentration of SO2−

4 dissolved
in droplets (mg L−1) is converted to the air-equivalent mass
concentration (µg m−3) by multiplying by the liquid water
content, LWC (g m−3), in a cloud. The data used to create
Nd–SO2−

4 empirical parameterizations are typically derived
from field campaigns, which differ in the region of analysis,
sampling platforms (aircraft or ground-based), measurement
approach (e.g., in particle form or dissolved in cloud water),
and number of species analyzed. While the literature evalu-
ating relationships between cloud water composition and Nd
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is limited and largely from aircraft studies from more than a
decade ago, there is a growing number of data sets character-
izing Nd and cloud water composition that are of interest to
continue this line of research. Examples include the recently
completed Cloud, Aerosol, and Monsoon Processes Philip-
pines Experiment (CAMP2Ex), the North Atlantic Aerosols
and Marine Ecosystems Study (NAAMES) (Behrenfeld et
al., 2019), and the current multiyear Aerosol Cloud meTe-
orology Interactions oVer the western ATlantic Experiment
(ACTIVATE) (Sorooshian et al., 2020). A summary of rele-
vant past field work follows.

Leaitch et al. (1986) sampled continental stratiform and
cumuliform clouds over Ontario, Canada, and showed a
roughly linear relationship between Nd and SO2−

4 at low
SO2−

4 concentrations (below 5 µg m−3), and they showed that
the relationship leveled out at higher concentrations (No-
vakov et al., 1994). Leaitch et al. (1992) suggested that the
low R2 values for the linear regression between Nd and
SO2−

4 for both continental stratiform and cumuliform clouds
(0.30 and 0.49, respectively) stemmed from factors such as
(i) other chemical species besides SO2−

4 and variability in
both (ii) updraft wind speed and (iii) temperature. Pueschel et
al. (1986) sampled clouds originating from marine and con-
tinental air masses at a ground-based observatory at White-
face Mountain, New York. They found that emissions con-
tributed strongly to SO2−

4 and that a significant portion of
SO2−

4 -containing particles acted as CCN and thus likely im-
pacted Nd. Novakov et al. (1994) sampled marine cumulus
and stratocumulus clouds by El Yunque peak in Puerto Rico.
Although they showed thatNCCN and SO2−

4 were highly cor-
related in both cumulus and stratocumulus clouds, they also
found thatNd and SO2−

4 were weakly correlated for stratocu-
mulus clouds and not correlated for cumulus clouds. They
attributed this difference to the effect of entrainment and
mixing on cloud microphysics. Leaitch et al. (1996) sam-
pled marine stratus clouds over the Gulf of Maine and the
Bay of Fundy during the North Atlantic Regional Experi-
ment (NARE) and showed that SO2−

4 was better correlated
withNd than nitrate (NO−3 ) (with R2 values of 0.30 and 0.12,
respectively). The R2 between Nd and SO2−

4 increased when
the data were stratified into bins of low and high turbulence,
which was quantified as the standard deviation of vertical
wind speed. They found that in situations with lower super-
saturations, Nd was more influenced by turbulence than by
either SO2−

4 or Na. Menon and Saxena (1998) and Saxena
and Menon (1999) sampled orographic clouds at a ground-
based station at Mt. Mitchell, North Carolina. They found
that SO2−

4 was the main contributor to cloud water acidity
and a reliable tracer for anthropogenic pollution. Log–log re-
gressions of SO2−

4 –Nd were binned according to the level of
SO2−

4 , with not much difference observed between the dif-
ferent levels of pollution. Borys et al. (1998) and Lowenthal
and Borys (2000) sampled warm marine stratiform clouds on
the island of Tenerife in the Canary Islands. They found that

Nd was influenced by NSS-SO2−
4 , NO−3 , pollution-derived

trace elements, and elemental carbon (EC), signifying that
species other than SO2−

4 influencedNd. Despite the sampling
site proximity to African deserts, the mass concentration of
crustal elements contained in dust was found to have little
correlation with Nd. Also, the sea salt tracer sodium (Na+)
was found to have little correlation with Nd. Several studies
(e.g., Boucher and Lohmann, 1995; Lowenthal et al., 2004;
Menon et al., 2002; Van Dingenen et al., 1995) have com-
bined field data, such as those mentioned above, in addition
to other data sets, with the intention of producing a robust
empirical prediction of Nd. Menon et al. (2002) provided a
log–log multispecies prediction of Nd using SO2−

4 , organic
matter, and sea salt. Organic carbon has been shown to in-
crease Nd, as it affects the surface tension of cloud droplets
(e.g., Facchini et al., 1999; Nenes et al., 2002). Additionally,
nitric acid (HNO3) has been linked with increased CCN ac-
tivity and Nd based on modeling studies (Hegg, 2000; Kul-
mala et al., 1993; Xue and Feingold, 2004).

McCoy et al. (2017) used Nd data from the Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite in-
stead of in situ measurements. Second, aerosol mass con-
centration data were obtained from the Modern-Era Retro-
spective analysis for Research and Applications version 2
(MERRA-2; Gelaro et al., 2017) reanalysis product and vari-
ous aerosol transport models instead of in situ measurements.
Third, the study region was more global in nature (albeit
focusing on marine stratocumulus clouds) instead of a spe-
cific region. Fourth, since reanalysis data were used, a multi-
species, multi-variable linear regression was performed:

log(Nd)=a0+ a1 log
(

SO2−
4

)
+ a2 log(SS)

+a3 log(BC)+ a4 log(OC)+ a5 log(DU) , (2)

where SS is sea salt, BC is black carbon, OC is organic car-
bon, and DU is dust. McCoy et al. (2017) found that SO2−

4
was predominantly correlated with Nd, with sea salt, black
carbon, organic carbon, and dust accounting for smaller con-
tributions. A caveat to consider when comparing the findings
of McCoy et al. (2018) to other aircraft studies is that McCoy
et al. (2018) used mass concentrations retrieved exclusively
at the 910 hPa model level (∼ 915 m) and only considered
mass concentrations pertaining to submicron SS/DU and hy-
drophilic BC/OC.

The field studies cited above still leave a series of unan-
swered questions that the current study aims to address there:
(i) how is the SO2−

4 –Nd relationship affected by vertical wind
speed (Leaitch et al., 1992), turbulence (Leaitch et al., 1996),
and entrainment (Novakov et al., 1994); (ii) why do species
such as sea salt and dust play such a minor role in influencing
Nd, even when located over the ocean and near a desert (Bo-
rys et al., 1998; McCoy et al., 2017, 2018); (iii) what is the
relationship between organic matter and Nd (McCoy et al.,
2018; Nenes et al., 2002); and (iv) can the SO2−

4 –Nd correla-
tion be improved by considering other chemical species (e.g.,
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Figure 1. Flight paths for each of the four campaigns used in this
study. Markers indicate the average location at which the cloud wa-
ter samples were collected. Smoke- and non-smoke-influenced sam-
ples are indicated with filled and open markers, respectively.

Hegg et al., 1993; Leaitch et al., 1992; Novakov and Penner,
1993). The present study will examine these questions using
a data set comprised of in situ aircraft measurements col-
lected off the California coast during four field campaigns.
In addition to meteorological and aerosol and cloud micro-
physical measurements, a total of 385 cloud water samples
were collected and analyzed for 80 chemical species (ions
and elements). Even though measurements were collected in
only one localized region, it is expected that the variety of
conditions encountered over four summers, together with the
large number of chemical species analyzed, will help address
the questions noted above. The results of this work have im-
plications for simulations and retrievals of Nd, in addition to
studies examining relationships between atmospheric chem-
istry and cloud microphysics.

2 Methodology

2.1 Aircraft campaigns and study region

This work reports results relevant to warm marine stratocu-
mulus clouds off the California coast based on field measure-
ments from four field campaigns between 2011 and 2016,
each during the months of July and August. The persis-
tent summertime stratocumulus cloud deck located off the
California coast offers the ideal natural laboratory to study
aerosol–cloud–precipitation–meteorology interactions (Rus-

sell et al., 2013; Sorooshian et al., 2018). For all field cam-
paigns, the Center for Interdisciplinary Remotely-Piloted
Aircraft Studies (CIRPAS) Twin Otter was deployed out of
Marina, California, with an almost identical instrumentation
payload. The four campaigns addressed in this study are
the Eastern Pacific Emitted Aerosol Cloud Experiment (E-
PEACE) (Russell et al., 2013; Wonaschütz et al., 2013), the
Nucleation in California Experiment (NiCE) (Crosbie et al.,
2016; Maudlin et al., 2015), the Biological and Oceanic At-
mospheric Study (BOAS) (Wang et al., 2016), and the Fog
and Stratocumulus Evolution (FASE) experiment (Dadas-
hazar et al., 2017; MacDonald et al., 2018). Research flight
information and tracks are shown in Table 1 and Fig. 1, re-
spectively.

Previous studies have used back-trajectory analysis to
show that air in the MBL in the study region is predominantly
influenced by air mass transport from the north and northwest
(Schlosser et al., 2020; Wang et al., 2016; Wonaschütz et al.,
2013). Thus, the cloud water in this study was influenced by a
variety of local and long-range sources such as ship exhaust
(Chen et al., 2012; Coggon et al., 2012), biomass burning
(Prabhakar et al., 2014; Mardi et al., 2018), ocean emissions
(Dadashazar et al., 2017; MacDonald et al., 2018), continen-
tal pollution (Ma et al., 2019; Wang et al., 2016), and dust
(Mardi et al., 2019; Wang et al., 2014).

2.2 Aircraft instrumentation

Aircraft instrumentation used in each campaign is described
in detail in Sorooshian et al. (2018). The relevant instrumen-
tation used in the present study is as follows: aerosol size dis-
tribution was measured using a passive cavity aerosol spec-
trometer probe (PCASP; particle diameter (Dp) of ∼ 0.1–
2.6 µm; Strapp et al., 1992); cloud droplet size distribution
was measured using a forward scattering spectrometer probe
(FSSP; Dp of ∼ 2–45 µm; Gerber et al., 1999) and a cloud
and aerosol spectrometer – forward scattering (CASF; Dp of
∼ 1–61 µm; Baumgardner et al., 2001); rain drop size distri-
bution was measured using a cloud imaging probe (CIP; Dp
of ∼ 25–1600 µm; Baumgardner et al., 2001); cloud liquid
water content (LWC) was measured using a particulate vol-
ume monitor (PVM-100A;Dp of∼ 3–50 µm; Gerber, 1994);
and three-dimensional wind speeds were calculated by com-
bining the pressure measurements from a five-hole Radome
gust probe plumbed into the aircraft nose together with the
aircraft velocity and altitude measurements provided by the
aircraft’s Global Positioning System and inertial navigation
system (GPS/INS).

Since LWC played a critical role in converting aqueous
concentration to air-equivalent concentration, the size range
used to calculateNd was bracketed to resemble the size range
of the PVM-100A. Therefore,Nd was defined in this study to
be equivalent to the integration of the cloud droplet size dis-
tribution betweenDp of∼ 3–50 µm and was calculated using
CASF (for E-PEACE) and FSSP (NiCE, BOAS, and FASE).
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Table 1. Summary of field campaign data sets used in this study and statistics related to cloud water sample collection. Smoke-influenced
research flights (RFs) were NiCE RFs 16–23 and FASE RFs 3–11 and 13–15.

Field campaign Dates No. of No. of No. of fire-
(mm/dd/yyyy) RFs samples impacted

samples

Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) 07/08/2011–08/18/2011 30 82 0
Nucleation in California Experiment (NiCE) 07/08/2013–08/07/2013 23 119 31
Biological and Oceanic Atmospheric Study (BOAS) 07/02/2015–07/24/2015 15 29 0
Fog and Stratocumulus Evolution experiment (FASE) 07/18/2016–08/12/2016 16 155 136

For the NiCE campaign, LWC measurements from the PVM-
100A instrument were unreliable; therefore, the LWC for
NiCE was calculated instead using FSSP data between Dp
of ∼ 3–50 µm.

2.3 Cloud water collection and chemical analysis

A total of 385 cloud water samples were collected through-
out the four campaigns using a modified Mohnen slotted-rod
collector, reported to collect droplets with Dp of ∼ 5–35 µm
(Hegg and Hobbs, 1986). The cloud water was collected in
polyethylene bottles and stored at ∼ 5◦ C for subsequent of-
fline chemical analysis. The spatially averaged location of
each cloud water sample is shown in Fig. 1. Cloud water
samples were chemically analyzed post-flight for ions us-
ing ion chromatography (IC; Dionex ICS-2100) and for el-
ements using inductively coupled plasma mass spectrometry
(ICP-MS; Agilent 7700 Series) for E-PEACE, BOAS, and
NiCE or triple quadrupole inductively coupled plasma mass
spectrometry (ICP-QQQ; Agilent 8800 Series) for FASE.
The limit of detection (LOD) for each ion and element mea-
sured is shown in Table S1 in the Supplement. The concen-
tration of non-sea-salt (NSS) species was calculated using
the relative abundance of a NSS species to Na+ in natu-
ral sea salt (Seinfeld and Pandis, 2016). Cloud water sam-
ple acidity was quantified by measuring pH (the aqueous
concentration of hydrogen ions, H+) using a Thermo Sci-
entific Orion 9110DJWP Combination Semi-Micro pH elec-
trode for E-PEACE, NiCE, and BOAS and a Thermo Scien-
tific Orion 8103BNUWP Ross Ultra Semi-Micro pH probe
for FASE. Aqueous concentrations (i.e., mass concentrations
in the droplets, mg L−1) were converted to air-equivalent
concentrations (i.e., mass concentrations in the air, µg m−3

air )
by multiplying aqueous concentrations by the LWC and di-
viding by the mass density of water. This study uses air-
equivalent concentrations for all species with the exception
of H+ (pH) that uses aqueous concentration.

A total of 80 species (29 measured ionic species, 46 mea-
sured elemental species, measured pH, and 4 NSS calculated
species; Table 2) were considered in this study as an initial
pool of candidate species that could potentially be used to
predict Nd. To facilitate the statistical analysis in this study,
the amount of chemical species were filtered from 80 to only

9. The steps used in this filtering process are summarized in
the next section.

2.4 Filtering of chemical species

A focus in this study is to identify appropriate chemical
species to use as predictors in a linear regression model (ad-
dressed in Sect. 2.5). Good statistical practice (e.g., Freund
et al., 2010) recommends that two conditions must be met to
produce a meaningful multivariable regression: (1) the inde-
pendent/predictor variables must not be redundant, i.e., they
must not be highly correlated among themselves (the prop-
erty of high correlation is called collinearity), and (2) each
independent/predictor variable must have some correlation
with the dependent/response variable. There is no universal
rule to define what is “highly” correlated; rather, it depends
on the nature of the data and the user’s judgment.

As using all 80 species is impractical in terms of providing
results that could be tested and/or used by others, a filtering
method was used to reduce the number of species. The fil-
tering method consisted of seven steps (Fig. 2), the objective
of which was to trim the total number of species by an order
of magnitude, leaving just a few that exhibited the following
conditions: (1) the highest data quality and quantity, (2) the
least redundancy among themselves, (3) the highest correla-
tion with Nd, and (4) the most physical meaning. The deci-
sion to remove a species becomes less objective and quantifi-
able towards the last steps in Fig. 2. Each step is described
below.

Step 1 removed species with less than 70 % of data points.
A species could have a low amount of points because it was
not analyzed in a field campaign or because the data qual-
ity from the IC or ICP (ICP-MS or ICP-QQQ) was inade-
quate. Step 2 removed duplicate species that were measured
by both IC and ICP. Step 3 addressed condition (2) by remov-
ing species that were collinear (i.e., correlated among them-
selves). The criterion for a “high” correlation was to have
a correlation coefficient (R)> 0.6 and a p value< 0.05. For
example, if a fixed number of five species were all highly cor-
related between each other, then only one of the five species
was kept and the rest were removed. This procedure is to con-
solidate “families” of three or more highly correlated species
to a single species and does not apply to pairs of highly con-
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Figure 2. Algorithm used to filter the number of species from 80 to 9. The four species in bold font are the ones used in Sect. 3.3. ICP
represents ICP-MS+ ICP-QQQ.

solidated species. Step 4 addressed condition (3) by remov-
ing species that were not correlated to Nd. The criterion for
a “low” correlation was to have a coefficient of determina-
tion (R2)< 0.1. Notice that step 3 uses R, whereas step 4
uses R2; this is because collinearity is determined not only
by the value of R but also the sign of R. Step 5 removes all
but one organic species, oxalate (Ox), since this species gen-
erally had the highest mass concentration of all the organic
species and was considered to be representative of all other
organic species. Step 6 removed species that could not easily
be attributed to a physical process or chemical source. Step
7 added back into the analysis four species that had been re-
moved. This was done for the sake of having species that
are known to have relevant sources in the study region. Even
though pH plays an important role in the partitioning of gases
into particles and droplets, in addition to influencing aqueous

reactions in droplets (e.g., Pye et al., 2020), pH was filtered
out in step 4 for being a poor predictor of Nd.

The nine species that survived the filtering scheme in
Fig. 2 are methanesulfonic acid (MSA), ammonium (NH+4 ),
NO−3 , Ox, Tot-SO2−

4 , NSS-SO2−
4 , Fe, Na, and vanadium (V).

These species have known sources as follows. MSA: ocean
biogenic (Sorooshian et al., 2009); NH+4 : agriculture (Bauer
et al., 2016), marine emissions (Bouwman et al., 1997), and
wildfires (Reid et al., 1998); NO−3 and Ox: fire (Prabhakar et
al., 2014; Maudlin et al., 2015); Tot-SO2−

4 : sea salt (Seinfeld
and Pandis, 2016), ocean biogenic (Charlson et al., 1987),
and shipping (Coggon et al., 2012), with NSS-SO2−

4 missing
the sea salt contribution; Fe: dust (Jickells et al., 2005) and
fire (Maudlin et al., 2015); Na: sea salt (Seinfeld and Pan-
dis, 2016); and V: shipping (Wang et al., 2014). Note that
we retained both Tot-SO2−

4 and NSS-SO2−
4 ; this is to eval-
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Table 2. Summary of chemical species analyzed in this study.
IC= ion chromatography; ICP represents ICP-MS or ICP-QQQ.
Note: NSS species, with the exception of NSS-SO2−

4 , were cal-
culated using elements, not ions, hence they have no superscript
charge.

Elements (ICP)

1 Ag
2 Al
3 As
4 B
5 Ba
6 Br
7 C
8 Ca
9 Cd
10 Cl
11 Co
12 Cr
13 Cs
14 Cu
15 Fe
16 Ga
17 Hf
18 I
19 K
20 Li
21 Mg
22 Mn
23 Mo
24 Na
25 Nb
26 Ni
27 P
28 Pb
29 Pd
30 Rb
31 Rh
32 Ru
33 S
34 Sb
35 Se
36 Si
37 Sn
38 Sr
39 Ta
40 Te
41 Ti
42 V
43 W
44 Y
45 Zn
46 Zr

uate which correlates more with Nd, as some studies have
used Tot-SO2−

4 (e.g., Leaitch et al., 1992; Saxena and Menon,
1999), whereas others have used NSS-SO2−

4 (Novakov et al.,

Table 2. Continued.

Inorganic ions (IC)

47 Ammonium (NH+4 )
48 Bromide (Br−)
49 Calcium (Ca2+)
50 Chloride (Cl−)
51 Fluoride (F−)
52 Lithium (Li+)
53 Magnesium (Mg2+)
54 Methanesulfonic acid (MSA)
55 Nitrate (NO−3 )
56 Nitrite (NO−2 )
57 Potassium (K+)
58 Sodium (Na+)
59 Sulfate (SO2−

4 )

Amines (IC)

60 Diethylamine (DEA)
61 Dimethylamine (DMA)

NSS species (calculated)

62 NSS calcium (NSS-Ca)
63 NSS potassium (NSS-K)
64 NSS magnesium (NSS-Mg)
65 NSS sulfate (NSS-SO2−

4 )

Organic ions (IC)

66 Acetate
67 Adipate
68 Butyrate
69 Formate
70 Glutarate
71 Glycolate
72 Glyoxylate
73 Lactate
74 Maleate
75 Malonate
76 Oxalate
77 Propionate
78 Pyruvate
79 Succinate

Acidity (pH)

80 Hydrogen ion (H+)

1994; Boucher and Lohmann, 1995). Section 3.1 and 3.2 will
discuss these nine species, and the rest of Sect. 3 will fo-
cus on only four species to be explained later. These species
were analyzed by a multivariable regression model, which is
described in the next section.
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2.5 Mathematical model

This study examines the relationship between cloud water
mass concentration and Nd with a multivariable linear model
similar to that of McCoy et al. (2017, 2018):

log(Nd)=a0+ a1 log(M1)+ a2 log(M2)

+. . .+ an log(Mn) , (3)

where Mi is the air-equivalent mass concentration of species
i (µg m−3), ai represent fitting parameters, and n is the num-
ber of species being considered. Nd is the dependent (or re-
sponse) variable andM1,M2, . . .,Mn are the independent (or
predictor) variables. The logarithmic forms of Nd and Mi

were correlated to account for a numerically large range of
several orders of magnitude and because a log–log model
is commonly used to correlate chemical composition to Nd
(e.g., Boucher and Lohmann, 1995; Menon et al., 2002; Mc-
Coy et al., 2017).

The MATLAB software package was used to obtain mul-
tivariable linear regressions of the form of Eq. (3) using the
method of ordinary least squares. The performance of a re-
gression was quantified using the coefficient of determination
(R2). However, when comparing the performance of correla-
tions between regressions using a different number of pre-
dictor variables, it is necessary to use the adjusted coefficient
of determination (R2

adj), which is subscripted to distinguish it
from the ordinary R2, and is adjusted by using the number
of predictors (P ) and the number of data points (N ) via the
formula R2

adj = 1− (1−R2)(N − 1)/(N −P − 1) (Kahane,
2008). For a large number of data points, R2

adj ≈ R
2; how-

ever, for the sake of rigor and consistency, R2
adj is used in-

stead of the ordinary R2, except when reporting values from
the literature. The statistical significance of correlations was
quantified using the p value obtained by doing a two-tailed
Student’s t test. Both R2

adj and p values were given by the
MATLAB software after regression. p values were obtained
for both the overall regression and each individual coefficient
in the regression, e.g., if a regression has three predictors,
there are a total of five p values: one for the overall regres-
sion, three for the slope of each individual predicting vari-
able, and one for the intercept. In this study, a regression was
considered to be statistically significant if all the p values
were< 0.05.

The correct functioning of the method of ordinary least
squares requires that the set of n predicting variables in
Eq. (3) not be collinear. Multicollinearity is defined by a
set of three or more predicting variables being collinear.
Using a set of multicollinear predictors can produce unre-
liable estimates in both magnitude and sign of the coeffi-
cients (ai) (Kahane, 2008). There is no universal marker for
multicollinearity. Furthermore, multicollinearity can only be
addressed when analyzing all predictors together. For ex-
ample, for a given set of three predictors (P1,P2, and P3),

even though the pairs P1−P2, P1−P3, and P2−P3 are not
collinear, there is no guarantee that the P1−P2−P3 set is
not multicollinear. When considering a complex system such
as the chemical composition of cloud water, it is reasonable
to assume that as more species are used to predict Nd, the
higher the probability that the set of species is multicollinear.
We did not test for multicollinearity in this study; the conse-
quences of not doing so are explored in Sect. 3.2.

2.6 Calculation of turbulence

Similar to Leaitch et al. (1992) and Feingold et al. (1999),
this study analyzes the effect of turbulence on the ability to
predict Nd. Turbulence was considered to be represented by
the standard deviation of the vertical wind speed (w) and is
represented as σw. Also similar to Leaitch et al. (1992), this
study classified conditions into turbulent and smooth regimes
by considering the upper and lower 33rd percentile of σw, re-
spectively. Although the rigorous approach to calculate σw
uses w from below the cloud (Twomey, 1959), this study
used vertical wind speed data collected throughout the sam-
pling time (i.e., mostly inside the cloud but also outside the
cloud). This was mainly because not all cloud water samples
had an accompanying measurement of w below the cloud.
To justify using σw from the sampling time instead of below-
cloud σw, consider Fig. S1 in the Supplement, which shows
a representative time series of altitude, w, and σw for a cloud
water sample that was collected minutes before a below-
cloud leg, which collected measurements of w. It can be
seen that the plots of w and σw are similar and that an av-
erage σw calculated either way is still in the bottom 33rd per-
centile. Therefore, for the purposes of this study, we consider
in-cloud turbulence to reasonably approximate below-cloud
turbulence.

2.7 Determination of smoke influence

One of the objectives of this study is to analyze the extent to
which the presence of smoke from wildfires affects the cor-
relation between Nd and cloud water chemical composition.
Thus, it was important to identify cloud water samples that
were influenced by smoke. Only the NiCE and FASE cam-
paigns were affected by wildfires. Mardi et al. (2018) iden-
tified vertical soundings in the NiCE and FASE campaigns
that were influenced by smoke by establishing smoke influ-
ence to have a total aerosol number concentration (Na)≥

1000 cm−3, as measured by the PCASP, in addition to vi-
sual and olfactory detection of smoke by flight scientists. In
this study, a cloud water sample was considered to be influ-
enced by smoke if it was collected during a research flight
(RF) that contains a vertical sounding identified by Mardi et
al. (2018) to be influenced by smoke, even if the cloud water
sample was not necessarily collected near the sounding la-
beled as smoke influenced; this is a valid assumption based
on the work of Mardi et al. (2019). The RFs considered to
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Table 3. Summary of one-predictor models for Nd based on using
any of nine of the final chemical species that were identified after
applying the filtering scheme shown in Fig. 2. The coefficients cor-
respond to a linear model of the form log(Nd)= a0+ a1 log(Mi ),
where Mi is the mass concentration of species i.

Coefficients

Species R2
adj a0 a1

Tot-SO2−
4 0.40 2.05 0.32

NH+4 0.34 2.33 0.25
NSS-SO2−

4 0.29 2.13 0.28
MSA 0.26 2.37 0.31
NO−3 0.24 2.12 0.25
Na 0.19 2.03 0.13
Ox 0.15 2.26 0.18
V 0.14 2.61 0.15
Fe 0.05 2.26 0.09

be smoke influenced in this study were NiCE RFs 16–23 and
FASE RFs 3–11 and 13–15.

3 Results and discussion

With the refined list of nine physically meaningful species
from Sect. 2.4, we now proceed to address the following
questions: (1) what single species best predicts Nd; (2) how
many species are sufficient to predict Nd; (3) what is an ef-
fective combination of species to predict Nd; and (4) how do
several factors (i.e., turbulence, smoke-influence, and loca-
tion along cloud depth) affect the ability to reliably predict
Nd. These questions are addressed in order in Sect. 3.1–3.4.

3.1 Single-variable prediction of Nd

In this section, we analyze which of the nine species filtered
out in Sect. 2.4 best predicts Nd by itself without binning by
external factors. These single-predictor regressions with no
binning are important, as they provide a baseline for subse-
quent sections in which multi-predictor regressions and bin-
ning are used. Table 3 and Fig. 3 display the ability of each
of the nine species to predict Nd. To have consistency with
subsequent sections, R2

adj is used instead of the ordinary R2.
The regression and the individual coefficients were all statis-
tically significant.

Some previous studies predicted Nd using Tot-SO2−
4 (e.g.,

Leaitch et al., 1992; Saxena and Menon, 1999), whereas
other studies used NSS-SO2−

4 (e.g., Novakov et al., 1994;
Lowenthal et al., 2004). We find that Tot-SO2−

4 is the best
predictor and that it is better correlated to Nd (R2

adj = 0.40)

than NSS-SO2−
4 (R2

adj = 0.29). This is likely because Tot-

SO2−
4 encompasses both sea salt particles and non-sea-salt

particles and thus gives a better approximation to the to-

tal number concentration of CCN. In addition, Tot-SO2−
4

also had the largest slope (a1 = 0.32), suggesting that Nd is
more sensitive to changes in Tot-SO2−

4 than other chemical
species. Although HNO3 has been observed to increase Nd
(e.g., Xue and Feingold, 2004), NO−3 was found to be only
moderately correlated with Nd (R2

adj = 0.24). The species
with the lowest correlation was Fe (R2

adj = 0.05). This low
correlation with Nd was also presented by other crustal met-
als like Al (R2

adj = 0.01) and Ti (R2
adj ∼ 0) (not shown in Ta-

ble 3). The low influence of crustal metals on Nd is consis-
tent with the findings of Lowenthal and Borys (2000). Some
physical meaning can be extracted from the intercept of the
regression (a0). If Nd is insensitive to the mass concentration
of a species, then the slope (a1) should be zero, andNd would
be constant with a value ofNd = 10a0 . These intercepts yield
a range of Nd of 108–412 cm−3. These values are not unre-
alistic in clouds in this study region (e.g., Chen et al., 2012;
Lu et al., 2009; Wang et al., 2016).

To contrast with results of this work, Table 4 shows the
regression parameters from other studies when correlating
Nd and SO2−

4 . For the sake of completeness, Table 4 shows
regressions that analyzed non-marine stratocumulus clouds,
but in this comparison, we focus only on those regressions
that analyzed stratocumulus clouds. Our results (i.e., ai co-
efficients and R2) for Tot-SO2−

4 reasonably match the results
of Leaitch et al. (1992), suggestive of commonality between
two coastal regions with differing meteorological conditions
(i.e., northeast Pacific vs northwest Atlantic) (Sorooshian et
al., 2019). Our results for NSS-SO2−

4 also reasonably match
those of McCoy et al. (2017), which is noteworthy as McCoy
et al. (2017) used satellite retrievals and model aerosol con-
centrations for several stratocumulus decks around the world,
whereas our analysis used in situ data from a relatively small
region. However, our NSS-SO2−

4 results differ significantly
from those of Novakov et al. (1994), which is understandable
since the regression presented by Novakov et al. (1994) has
a p value> 0.05. Our data set does not achieve the degree of
correlation achieved by Lowenthal et al. (2004), who report
the highest correlation for marine clouds (R2

= 0.82). The
studies that analyzed stratocumulus clouds all report inter-
cept values (a0) of ∼ 2.0, which is consistent with our data.

3.2 Multi-variable prediction of Nd

When previous studies correlated Nd (or NCCN) and the air-
equivalent concentration of chemical species and obtained a
poor correlation, it was suggested that taking more chemi-
cal species into consideration would improve the correlation
(e.g., Leaitch et al., 1992; Novakov et al., 1994). In this sec-
tion we address the following issue: “How many chemical
species are necessary to adequately predict Nd”. To answer
this question, we use the nine filtered species from Sect. 2.4.
Regressions of the form of Eq. (3) are performed for every
combination of species. The number of predictors in the re-
gressions are varied from one up to eight. The number of
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Figure 3. Scatter plot for the nine filtered species from Fig. 2. The lines are linear regression models of the form log(Nd)= a0+a1 log(Mi),
where Mi is the mass concentration of species i.

Table 4. Comparison of coefficient values for studies that correlateNd to SO2−
4 (total or non-sea-salt). The coefficients correspond to a linear

model of the form log(Nd)= a0+ a1 log(SO2−
4 ).

Reference a0 a1 SO2−
4 R2 Cloud type

Leaitch et al. (1992)a 1.95 0.257 Tot 0.3 Continental stratocumulus
2.33 0.186 Tot 0.49 Continental cumulus

Novakov et al. (1994) 2.323 0.091 NSS 0.50b Marine stratocumulus
2.43 −0.056 NSS 0.03 Marine cumulus

Van Dingenen et al. (1995)c 2.33 0.4 NSS 0.42 All cloud types combined

Boucher and Lohmann (1995)c 2.24 0.257 NSS d Continental stratus
2.54 0.186 NSS d Continental cumulus
2.06 0.48 NSS d Marine
2.21 0.41 NSS d All cloud types combined

Saxena and Menon (1999) 0.67 0.66 Tot d Continental orographic clouds

Lowenthal et al. (2004) 2.32 0.74 NSS 0.82 Marine
2.38 0.49 NSS 0.66 Continental
2.39 0.5 NSS 0.81 Combined

McCoy et al. (2017) 2.11 0.41 NSS 0.36 Marine stratocumulus

a The units of SO2−
4 for this regression are nanoequivalents per cubic meter (nEq m−3). All other studies report SO2−

4 in units of
micrograms per cubic meter (µg m−3). However, the value of the slope (a1) is not affected by the units of concentration. b The R2 has a
p > 0.05 due to having few data points. c These regressions were made using data compiled from several studies and assume that
NCCN ≈Nd. d Study does not report R2.
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Figure 4. Plot showing which of the 383 regressions are statis-
tically significant. This plot ignores the regressions that use both
NSS-SO2−

4 and Tot-SO2−
4 simultaneously.

combinations (C) that can be made with P predictors se-
lected from S species is C = S!/(P !(S−P)!). Combina-
tions that include Tot-SO2−

4 and NSS-SO2−
4 together are not

considered, thus leaving a total of 383 regressions.
Of the total 383 regression, only 67 were considered sta-

tistically significant. Figure 4 shows the R2
adj as a function

of the number of predictors for both statistically significant
and insignificant regressions; the percentage of regressions
that were statistically significant is shown in Table S2. These
results show that adding more predictors does not necessar-
ily improve the correlation, as all correlations that use six or
more predictors are statistically insignificant. This behavior
is perhaps because the new species being added are redun-
dant with respect to the species that are already in the model
(i.e., the new species is mathematically collinear with the
old species). It is also interesting to note how R2

adj increases
asymptotically to ∼ 0.6; this further makes the point that ad-
ditional species do not necessarily improve predictability of
Nd. The same asymptotic behavior is also exhibited with R2,
as R2 and R2

adj for these regressions differ by only ∼ 2 %.
We examined the best regressions produced by a given

number of predictors to explore the factors that contribute
to a respectable multivariable regression. Table 5 shows the
three statistically significant regressions that had the high-
est R2

adj for a given number of predictors (one to five). The
predictors are ordered horizontally according to the value of
their coefficient in order to show qualitatively which species
is more dominant in a regression. Eight of the nine chemical
species considered appear at least once in a regression, with
the most common species being NH+4 , a form of SO2−

4 (total
or non-sea-salt), Na, Ox, and MSA. Sulfate (total or non-sea-

salt) appears in 12 of the 15 regressions, and in eight regres-
sions it has the largest coefficient; this speaks to the impor-
tance of SO2−

4 in predicting Nd. However, the appearance of
Na and Ox and their non-negligible slope also highlights the
importance of considering them as well in a correlation; this
is clearly observed in the increase of R2

adj when Na and Ox

are added to a regression that contains only NSS-SO2−
4 (Ta-

ble 6). We believe that the ingredients that yield the higher
R2

adj in Table 5 are (1) a form of SO2−
4 (such Tot-SO2−

4 or

NSS-SO2−
4 ), (2) a sea emissions tracer (such as Na), and

(3) an organic tracer (such as Ox). NH+4 was present in all
the regressions; however, given that it comes from diverse
sources such as agriculture (ApSimon et al., 1987; Bauer et
al., 2016), marine emissions (Bouwman et al., 1997; Paulot
et al., 2015), and wildfires (Maudlin et al., 2015; Reid et al.,
1998), it is difficult to assess if it contributes to the CCN
budget or simply accompanies all types of CCN. In other
words, we suspect that NH+4 appears in all correlations be-
cause it generally accompanies the three ingredients we pro-
pose make a good correlation: a form of SO2−

4 , a marine
emissions tracer, and an organic tracer.

It is of interest to note that combining a sea salt tracer
(such as Na) with NSS-SO2−

4 in a two-predictor model has
about the same performance (R2

adj = 0.41; Table 6) as a one-

predictor model using Tot-SO2−
4 (R2

adj = 0.40; Table 3). We

believe this is because Tot-SO2−
4 encompasses the sea salt

and the non-sea-salt contribution to CCN about the same as
the artificial mathematical separation of the two. Also of in-
terest is that when only looking at the statistically significant
regressions, only 17 regressions have species with negative
coefficients (i.e., negative slopes). The species with negative
coefficients are NO−3 , Fe, and V (not shown); more specifi-
cally, NO−3 , Fe, and V have negative coefficients when they
are accompanied by NH+4 in the same regression. The physi-
cal reason as to why these species have negative coefficients
when mixed with NH+4 is not clear; perhaps the reason is
due to the mathematics of the regression and not physically
rooted, as multicollinearity can lead to unexpected magni-
tudes and signs for predictor coefficients (Kahane, 2008).
In addition, multicollinearity will become more likely as
more predictors as considered. Therefore, it is not surpris-
ing that unexpected negative coefficients only appear when
considering many (five) predictors. Lastly, a correlation ma-
trix among the nine predicting species (Fig. S2) shows a
strong correlation for some pairs of species (NH+4 -NO−3 :
R2

adj = 0.48; NO−3 -V: R2
adj = 0.49) and moderate correlation

for other pairs (NH+4 -V: R2
adj = 0.27; NO−3 -Fe: R2

adj = 0.22),
thus strengthening the argument that the negative coefficients
are due to mathematical multicollinearity and not a physical
or chemical reason.

When considering a multispecies model to predict Nd, it
is worthwhile to examine the coefficient of sea salt. Even
though it is well established that more CCN leads to more
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Table 5. The top three statistically significant regressions with the highest R2
adj for a given number of predictors. The coefficients correspond

to a linear model of the form log(Nd)= a0+6ai log(Pi).

Predictors (Pi ) and their respective coefficients (ai )

No. of a0 a1 P1 a2 P2 a3 P3 a4 P4 a5 P5 R2
adj

Predictors

1 2.05 0.32 Tot-SO2−
4 0.40

2.33 0.25 NH+4 0.34
2.13 0.28 NSS-SO2−

4 0.29

2 2.18 0.22 Tot-SO2−
4 0.12 NH+4 0.48

2.43 0.21 MSA 0.15 NH+4 0.44
2.25 0.19 NH+4 0.09 Na 0.42

3 2.25 0.13 NSS-SO2−
4 0.13 NH+4 0.10 Na 0.50

2.24 0.19 Tot-SO2−
4 0.10 Ox 0.07 NH+4 0.49

2.25 0.17 Tot-SO2−
4 0.11 NH+4 0.08 MSA 0.49

4 2.32 0.21 Tot-SO2−
4 0.20 Ox 0.09 NH+4 −0.15 NO−3 0.52

2.29 0.11 NSS-SO2−
4 0.10 Ox 0.09 Na 0.08 NH+4 0.51

2.31 0.11 NH+4 0.10 NSS 0.10 MSA 0.08 Na 0.51

5 2.10 0.13 Na 0.12 Ox 0.11 NSS-SO2−
4 0.08 NH+4 −0.05 V 0.56

2.40 0.23 Ox 0.13 NSS-SO2−
4 0.10 NH+4 0.09 Na −0.17 NO−3 0.55

2.36 0.14 NH+4 0.14 MSA 0.12 NSS-SO2−
4 0.07 Na −0.08 NO−3 0.52

Table 6. Comparison of regressions containing NSS-SO2−
4 , Na, and Ox.

Predictors (Pi ) and their respective coefficients (ai )

No. of a0 a1 P1 a2 P2 a3 P3 R2
adj

Predictors

1 2.13 0.28 NSS-SO2−
4 0.29

2 2.12 0.23 NSS-SO2−
4 0.12 Na 0.40

2.26 0.24 NSS-SO2−
4 0.12 Ox 0.34

3 2.22 0.22 NSS-SO2−
4 0.10 Na 0.08 Ox 0.42

droplets, the effect of giant CCN (GCCN), such as sea salt,
is not as clear. Cloud microphysics studies suggest two mech-
anisms by which more sea salt leads to less Nd. (1) The
large size and highly hygroscopic nature of sea salt causes
these particles to activate into droplets before other smaller
particles. This reduces the amount of available water vapor
and creates unfavorable conditions for smaller particles to
nucleate into droplets (e.g., Andreae and Rosenfeld, 2008).
(2) GCCN nucleate into larger droplets as compared to CCN,
which in turn are more likely to collide and coalesce with
surrounding droplets. This combination of droplets creates
larger but fewer droplets and ultimately leads to the forma-
tion of rain drops and precipitation (e.g., Feingold et al.,
1999; Jung et al., 2015). Therefore, it is expected that the

negative correlation between GCCN and Nd should translate
into a negative coefficient for Na (the sea salt tracer) in a
multi-predictor regression equation. However, this behavior
was not observed in this study. A plausible explanation for
this discrepancy is that the effect of GCCN on Nd is highly
dependent on conditions like LWC and Nd itself (e.g., Fein-
gold et al., 1999) and that this study did not capture the ap-
propriate conditions to observe this effect. However, McCoy
et al. (2017) did observe a negative coefficient for sea salt and
ascribed it to a simulation artifact caused by the intimate link
between sea salt generation and wind speed (i.e., turbulence).
An attempt to isolate the effects of sea salt and turbulence on
Nd is provided in Sect. 3.1.1.
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Table 7. Results of multivariable regressions from previous studies that have correlated Nd to mass concentrations. The regression cor-
responds to a model like Eq. (3). OM represents organic matter, SS represents sea salt, BC represents black carbon, and DU represents
dust.

Predictors (Pi ) and their respective coefficients (ai )

Reference a0 a1 P1 a2 P2 a3 P3 a4 P4 R2 Cloud type

Menon et al. (2002)∗ 2.41 0.50 NSS-SO2−
4 0.13 OM Continental

2.41 0.50 NSS-SO2−
4 0.13 OM 0.05 SS Marine

McCoy et al. (2017) 1.78 0.31 NSS-SO2−
4 −0.19 SS 0.057 BC 0.031 DU 0.44 Marine stratocumulus

(global average)

McCoy et al. (2018) 2.03 0.2 NSS-SO2−
4 −0.04 SS −0.03 BC 0 DU 0.08 Marine stratocumulus

(just Californian coast)

∗ This study obtains data from other studies and calculates organic matter.

Menon et al. (2002) and McCoy et al. (2017, 2018) are
among the few studies that have used multiple species to pre-
dictNd (Table 7). Menon et al. (2002) used three species (sul-
fate, organic matter, and sea salt). McCoy et al. (2017, 2018)
used five species (sulfate, sea salt, black carbon, organic car-
bon, and dust), but the 2017 study found the contribution of
organic matter to be negligible. In order to intercompare re-
sults with previous studies, we selected species homologous
to those of McCoy et al. (2017, 2018). We select NSS-SO2−

4
for sulfate, Na for sea salt, oxalate for organic carbon, and
Fe for dust. We did not measure a species analogous to black
carbon. The subsequent analysis examines only these four
species using single-predictor regressions.

3.3 Analysis of meteorological factors through binning

Historically, the effect that meteorological factors have on the
composition–Nd (or composition–NCCN) empirical relation-
ship has been examined by analyzing regressions after bin-
ning by turbulence (Leaitch et al., 1996), cloud type (Leaitch
et al., 1992; Novakov and Penner, 1993), and region (McCoy
et al., 2018). The following sections address the effects of
turbulence, smoke influence, and location along cloud depth.

3.3.1 Effect of turbulence

Building upon the work of Leaitch et al. (1996), who stud-
ied how turbulence affects the correlation between Tot-SO2−

4
and Nd, this study extends that analysis to examine four ad-
ditional species. Similar to Leaitch et al. (1996), this study
quantified turbulence by the standard deviation of vertical
wind speed (σw). Our range of σw was 0.10–0.51 m s−1.
Low turbulence was considered to be in the bottom 33rd per-
centile (≤ 0.27 m s−1), whereas high turbulence was taken to
be values in the top 33rd percentile (≥ 0.33 m s−1). Leaitch
el al. (1996) considered low and high turbulence to be σw <
0.17 m s−1 and σw > 0.23 m s−1, respectively, and it is worth
noting that only 5 of our 385 samples are considered low tur-

Figure 5. Effect of turbulence (quantified using σw) on the ability
of a single species to predictNd. For NSS-SO2−

4 ; the high (red) and
low (blue) σw data points overlap. NotSig represents not statistically
significant according to the definition in Sect. 2.5.

bulence according to the criterion of Leaitch et al. (1996).
Figure 5 and Table 8 show how R2

adj depends on the predict-
ing species and the turbulence regime; the scatterplots from
which the R2

adj values are taken are shown in Fig. S3.

For NSS-SO2−
4 , there is no significant difference in R2

adj
when comparing all the points or by binning by σw. How-
ever, this is not the case for Tot-SO2−

4 , in which there is a
large difference in the degree of correlation (R2

adj = 0.27 and
R2

adj = 0.55 for low σw and high σw, respectively). This is in
agreement with Leaitch et al. (1996), in which the correla-
tion (albeit, not log–log) between Tot-SO2−

4 and Nd yielded
an R2

= 0.53 and R2
= 0.91 for low and high σw, respec-

tively. The difference in the behavior between Tot-SO2−
4 and

NSS-SO2−
4 hints that the sea salt contributions to SO2−

4 (i.e.,

https://doi.org/10.5194/acp-20-7645-2020 Atmos. Chem. Phys., 20, 7645–7665, 2020



7658 A. B. MacDonald et al.: Cloud chemistry and droplet number concentration

Table 8. Summary of the R2
adj obtained when correlating mass con-

centration of a species to Nd under different atmospheric condi-
tions.

R2
adj

Binning Data points NSS- Na Ox Fe
criterion considered SO2−

4

None All 0.29 0.19 0.15 0.05

Turbulence High σw 0.27 0.26 0.09 0.02a

Low σw 0.27 0.09 0.30 0.07

Smoke No smoke 0.36 0.24 0.07 0.04
influence Smoke 0.22 0.17 0.42 0.15

NiCEb 0.36 0.46 0.60 0.28
FASEb 0.18 0.13 0.41 0.12

Normalized Top third 0.33 0.33 0.08 0.03
cloud height Middle third 0.29 0.16 0.16 0.03

Bottom third 0.17 0.10 0.29 0.20

a This R2
adj has a p value> 0.05. b Only smoke-influenced samples in this

campaign were considered.

ocean-derived species) are the ones affected by turbulence
and hence explains the insensitivity that NSS-SO2−

4 has to
turbulence.

For Ox, the correlation improves at low turbulence
(R2

adj = 0.30) but not at high turbulence (R2
adj = 0.09). We

believe Ox behaves differently than Na, because it does not
necessarily just enter the cloud from below via updrafts but
rather it enters the cloud from above via entrainment of air
from the free troposphere that can at times be enriched with
organic species in the study region (Coggon et al., 2014;
Crosbie et al., 2016; Hersey et al., 2009; Sorooshian et al.,
2007). For Fe, all turbulence scenarios yield a low correla-
tion between Fe and Nd, indicating that, overall, Fe is not a
good predictor for Nd.

For Na, there is a better correlation at high turbulent condi-
tions than at smooth conditions (R2

adj = 0.26 and R2
adj = 0.09

for high and low σw, respectively). This further strengthens
the argument that turbulence plays an important role in the
vertical transport of sea salt (and other ocean emissions) from
the ocean surface to the cloud base. The present data set al-
lows for deeper analysis into the entangled effects of sea salt
and turbulence on Nd. More specifically, aerosol reanalysis
products like those from MERRA-2 calculate the mass con-
centration of sea salt via parameterizations that link wind
speed to sea salt emissions (Gong et al., 2003; Randles et
al., 2017). Since wind speed affects turbulence, it follows
that sea salt concentrations are not independent from tur-
bulence, as turbulence is used to calculate sea salt concen-
trations. Subsequently, these sea salt concentrations are used
to predict Nd (e.g., McCoy et al., 2017, 2018). The present
study measured both sea salt (quantified by Na) and turbu-

lence (quantified by σw) and thus offers an opportunity to try
to isolate the effects of both factors on Nd (Fig. 6). Two re-
sults emerge. First, more turbulence is correlated to more sea
salt, which is consistent with what the models predict (Ran-
dles et al., 2017). Second, at a fixed concentration of Na, Nd
does not vary significantly with σw, as evidenced by a weak
change in color. However, at a fixed value of σw, Nd does
vary significantly with Na, as evidenced by the noticeable
change in color. Therefore, the independent measurement of
both variables reveals that Nd is more sensitive to changes
in Na than to changes in σw. We caution that σw is not ob-
tained from below the cloud but from within the cloud during
sampling time (Fig. S1).

3.3.2 Effect of smoke influence

The clouds in the study region are affected by the smoke from
wildfires (e.g., Dadashazar et al., 2019; Maudlin et al., 2015;
Schlosser et al., 2017). As mentioned in Sect. 2.7, Mardi et
al. (2018) used the same data set as this study and identified
research flights (RFs) that contained smoke-influenced cloud
soundings, namely, NiCE RFs 16–23 and FASE RFs 3–11
and 13–15. In this study, we considered that all cloud water
samples collected during the aforementioned RFs were influ-
enced by smoke. Furthermore, we did not distinguish if the
smoke was above or below the cloud; this is an important
caveat, as cloud microphysical properties seem to depend
on the surrounding smoke vertical profile (e.g., Diamond et
al, 2018; Koch and Del Genio, 2010). The correlation be-
tween Nd and composition as a function of smoke influence
is shown in Fig. 7 and Table 8, and the scatterplots from
which the R2

adj values are taken are shown in Fig. S4. Species
that are produced during wildfires exhibited an improvement
in R2

adj when considering only the smoke-influenced cases.
The opposite is true for species not produced during wild-
fires. More specifically, Ox and Fe showed an increase in
correlation for smoke-influenced conditions (R2

adj = 0.42 and
R2

adj = 0.15 for Ox and Fe, respectively) and a small decrease
for smoke-free conditions (R2

adj = 0.07 and R2
adj = 0.04 for

Ox and Fe, respectively). This is most likely because Ox and
Fe concentrations increase during wildfires (e.g., Maudlin
et al., 2015) and thus contribute appreciably to the regional
CCN during the summertime when wildfires are prevalent.

NSS-SO2−
4 and Na showed a decrease in correlation

for smoke-influenced conditions (R2
adj = 0.22 and R2

adj =

0.17 for NSS-SO2−
4 and Na, respectively) and an increase

for smoke-free conditions (R2
adj = 0.36 and R2

adj = 0.24 for

NSS-SO2−
4 and Na, respectively). We suspect this is because

even though wildfires can produce NSS-SO2−
4 (e.g., Reid et

al., 1998) and Na (e.g., Hudson et al., 2004; Silva et al.,
1999), these species are not produced as effectively as Ox
or Fe. For example, Maudlin et al. (2015) measured aerosol
mass concentration in the study region during both smoke-
influenced and non-smoke-influenced conditions. They re-
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Figure 6. Heatmap showing the dependence of Nd on both σw and Na. The lower and upper bounds for the x axis, y axis, and color bar
cover the entire range of σw , Na, and Nd, respectively. To assist in physical interpretation, the tick markings on the x axis and color bar
show two numbers: those without parenthesis correspond to log(Na) or log(Nd) and those within parenthesis correspond to Na or Nd, in their
respective units.

Figure 7. Effect of the influence of smoke on the ability of a single
species to predict Nd.

ported an increase in mass concentration for NSS-SO2−
4 , Na,

Ox, and Fe to be 30 %, 120 %, 220 %, and 408 %, respec-
tively, for submicron particles, and −2 %, −28 %, 164 %,
and 97 %, respectively, for supermicrometer particles. Con-
sequently, Ox and Fe are produced more in wildfires in the
study region than NSS-SO2−

4 and Na.

The NiCE (2015) and FASE (2016) campaigns were in-
fluenced by smoke originating from different sources. NiCE
was influenced by the Big Windy, Whiskey Complex, and
Douglas Complex forest fires near the California–Oregon
border, with a transport time of approximately 2 d to reach
the base of aircraft operations in Marina and adjacent areas
where most samples were collected (Maudlin et al., 2015). In
contrast, FASE was influenced by the Soberanes Fire approx-
imately 30 km southwest of the aircraft hangar (Braun et al.,
2017). Hence, analyzing each campaign separately may pro-
vide some insights into the sensitivity of Nd to smoke from
both different fuel types and with varying transport trajecto-
ries. NiCE fire data were linked to timber, grass, and shrub
models, whereas those from FASE were associated with cha-
parral, tall grass, and timber (Braun et al., 2017; Mardi et al.,
2018). The results are shown in Table 8 and Fig. S4. When
comparing FASE to both campaigns combined, the predic-
tion ofNd using NSS-SO2−

4 , Na, Ox, and Fe is not improved,
resulting in 1R2

adj values of −0.04, −0.04, 0.01, and −0.03,
respectively. However, when comparing NiCE to both cam-
paigns combined, the prediction ofNd using NSS-SO2−

4 , Na,
Ox, and Fe is significantly improved, resulting in 1R2

adj val-
ues of 0.14, 0.29, 0.18, and 0.13, respectively. The differ-
ence between NiCE and FASE could be because different
forest fires produce aerosols with varying aerosol chemical
signatures and size distributions, as studies in the region have
shown (Ma et al., 2019; Mardi et al., 2019). Alternatively, the
difference could be due to the small sample size of NiCE (31
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Figure 8. Effect of the influence of normalized cloud height on the
ability of a single species to predict Nd. For Fe, the top third of
cloud (red) data point overlaps with the middle and bottom thirds of
cloud (green and blue) data points.

samples) as compared to FASE (136 samples) (Table 1). Cer-
tainly more research, including larger data sets, is warranted
to investigate how different fuel types and plume aging times
impact aerosol–cloud interactions.

3.3.3 Effect of in-cloud height

MacDonald et al. (2018) used the same data set as this study
to show that the chemical composition of cloud water varies
with height within a cloud. It is therefore reasonable that the
Nd–chemical-composition relationship also varies with in-
cloud height. The correlation between Nd and composition
as a dependence of in-cloud height is shown in Fig. 8 and Ta-
ble 8, and the scatterplots from which the R2

adj are taken are
shown in Fig. S5.

Ox and Fe exhibit a better correlation when focusing on
the bottom third of the cloud (R2

adj = 0.29 and R2
adj = 0.20

for Ox and Fe, respectively). When focusing on the top third
of the cloud, the correlation decreased for Ox (R2

adj = 0.08)
and remained unchanged for Fe (R2

adj = 0.03). One possible
hypothesis to explain why Ox and Fe are better predictors of
Nd at cloud base is that smokes affects cloud microphysics
(Nd and effective radius) more at cloud base that at cloud
top, regardless of whether the smoke was above or below the
cloud (Diamond et al., 2018; Mardi et al., 2019).

NSS-SO2−
4 and Na exhibit a better correlation with Nd

when focusing on the top third of the cloud (R2
adj = 0.33

and R2
adj = 0.33 for NSS-SO2−

4 and Na, respectively). The
correlation decreases when focusing on the bottom third of
the cloud (R2

adj = 0.17 and R2
adj = 0.10 for NSS-SO2−

4 and

Na, respectively). Tot-SO2−
4 also follows this pattern (R2

adj =

0.56 and R2
adj = 0.22 for top and bottom, respectively).

It is not entirely clear why NSS-SO2−
4 and Na would be

better correlated with Nd in the top third of clouds. Mac-
Donald et al. (2018) noted that the concentration of chemical
species varies as a function of in-cloud height and is not the
same for all species; the concentration of Na is greatest at
cloud base, whereas that of NSS-SO2−

4 and Ox are greatest
mid-cloud. It would be expected that the vertical profile of
concentration is related to the ability to predict Nd (i.e., that
a larger concentration of a species leads to a better correlation
withNd), but that expectation is not observed in these results.
It is also interesting to point out that there is not much dif-
ference in R2

adj when considering all cloud thirds versus only
the middle third; this makes sense, as almost half of the cloud
water samples (46 %) were collected in the middle third of
the cloud.

The dependence of the correlation between chemical com-
position and Nd on in-cloud height is of relevance to remote
sensing, which relies on satellite measurement of cloud-top
properties such as cloud-top temperature to then calculate a
constant Nd throughout the cloud depth (e.g., Grosvenor et
al., 2018).

4 Conclusions

This study used a 4-year data set of airborne measurements
collected in warm marine stratocumulus clouds off the Cal-
ifornia coast and analyzed the extent to which the chemical
composition of cloud water can be used to predict Nd. A to-
tal of 80 species were filtered to 9 to examine the prediction
of Nd using a single-species model, and then using a multi-
species model. The nine species were subsequently filtered to
four to examine how the four single-species models were af-
fected by environmental factors, namely, turbulence, smoke
influence, and vertical location within a cloud. The most im-
portant findings of this paper are the following.

The species that best predicted Nd is Tot-SO2−
4 with

R2
adj = 0.40, followed by NH+4 (R2

adj = 0.34), NSS-SO2−
4

(R2
adj = 0.29), MSA (R2

adj = 0.26), and NO−3 (R2
adj = 0.24).

The prediction of Nd can be improved by using a multi-
species model. However, increasing the number of species
caused the R2

adj to asymptotically approach ∼ 0.6. Further-
more, the regressions with six or more species became statis-
tically insignificant.

Analyzing the three best correlations for each of the n
species models (where n= 1–5) shows that the factors that
constitute a good regression are a form of SO2−

4 (total or non-
sea-salt), an ocean emissions tracer, and an organic tracer.

Greater turbulence (approximated as the standard devia-
tion of vertical wind speed) improves the ability of ocean-
derived species to predict Nd, as observed when comparing
regressions using turbulent data points versus all data points
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for Tot-SO2−
4 (1R2

adj = 0.15) and Na (1R2
adj = 0.07) but not

for NSS-SO2−
4 (1R2

adj =−0.01) or Ox (1R2
adj =−0.06).

The influence of smoke significantly affects those species
that best predict Nd. Ox (a species known to be produced
during biomass burning) was best correlated withNd (R2

adj =

0.42) under smoke-influenced conditions.
Vertical location within the cloud affects the ability to

predict Nd. The species that are best correlated with Nd
at cloud top are Tot-SO2−

4 (R2
adj = 0.56) and NSS-SO2−

4

(R2
adj = 0.33); those best correlated withNd at cloud base are

fire tracers such as Ox (R2
adj = 0.29) and Fe (R2

adj = 0.20), as
it has been reported that the base of a cloud is more sensitive
to the influence of smoke.
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