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SI.1. Wind direction and speed 

The percentage of time that the wind was sampled from a particular direction during the summer and winter are reported in Table 

SI.1, as a function of the cardinal and intercardinal directions. During the summer and winter at C1 and S1, the winds dominantly 

come from the southwest and south. Minimal time periods were sampled when the wind was coming from the north and northwest. 

 5 

During the summer, C1 and S1 were dominated by winds from southwest at 27.6% and 32.8% of the time, respectively. At C1, 

winds from the east at 14.6% and southeast at 15.0% were the next most dominant directions. At S1, winds from the east were also 

the next highest at 21%, while the southeast wind direction was sampled less often at 8.2%. Winds from the north and northwest 

were the least frequent at C1 and S1: north at 7.3% (C1) and 6.9% (S1), northwest at 6.7% (C1) and 5.6% (S1). 

 10 

In the winter, the wind had an almost equally dominant contributions from the south, at 29.0% (C1) and 30.3% (S1), and southwest, 

at 30.9% (C1) and 30.8% (S1). At C1 the next largest wind directions sampled were from the west at 17.6% and from the southeast 

at 12.6%. S1 differed from C1 in that, while the next most dominant wind direction was from the southeast at 19.4%, the wind 

from the west was significantly less at 7.4%. In contrast to the summer, both sites had a negligible contribution (≤ 12%) from the 

wind directions associated with the direction of the shore that equates to half of the wind rose: northwest, north, northeast, and 15 

east. While these wind directions were also not the dominant wind directions in the summer, the difference was that the winds 

were more equally distributed in the summer at 40.3% (C1) and 41.8% (S1) from the northwest to east. 

 

 
Table SI.1. Percentage of time sampled as a function of wind direction during summer and winter at C1 and S1. 20 

Wind Direction 
Summer Winter 

C1 S1 C1 S1 

N 7.3% 6.9% 2.4% 2.9% 

NE 11.7% 8.0% 2.0% 1.7% 

E 14.6% 21.3% 2.3% 5.6% 

SE 15.0% 8.2% 12.6% 19.4% 

S 6.9% 10.6% 29.0% 30.3% 

SW 27.6% 32.8% 30.9% 30.8% 

W 10.3% 6.5% 17.6% 7.4% 

NW 6.7% 5.6% 3.2% 1.9% 

 

The frequency of wind speed sampled at ENA are shown as a function of wind direction in Fig. SI.1. In general, the surface wind 

speed was higher at C1 than at S1, independent of the season. In the summer (Fig. SI.1a, b), surface wind speed mean values and 

one standard deviations were 4.7 ± 2.3 m s-1 (C1) and 3.2 ± 1.6 m s-1 (S1). The maximum wind speed during the summer came 

from the southwest for both sites: 15.2 m s-1 (C1) and 10.0 m s-1 (S1). 25 

 

In the winter (Fig. SI.1c, d) the mean wind speeds at ENA was approximately double the speeds measured in the summer. The 

mean wind speed and standard deviations recorded were 7.3 ± 2.5 m s-1 (C1) and 5.7 ± 2.0 m s-1 (S1). The peak wind speed 
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measured during the winter was from the same direction as it was in the summer, from the southwest: 21.7 m s-1 (C1), 16.6 m s-1 

(S1). 

 

 

Figure SI.1. Surface wind rose plots during the summer (a, b) and winter (c, d) at C1 and S1. The length of the radial bars is the frequency of 5 
different wind speed ranges shown in colour, as a percentage of the time sampled. 
The mean wind speeds observed at C1 and S1 were within 25% of each other during the summer and winter. The wind speed at 

C1 was higher during both seasons. S1 mean winds were 68% and 78% of C1 in the summer and winter, respectively. The observed 

maximum wind speed coincided with the dominant wind direction at C1 and S1 in both seasons. This observation was most evident 

in the summer when the wind was dominated by winds from the southwest. During the winter, there was a similar fraction of wind 10 

from the south and southwest with higher average wind speeds at both sites. Overall, C1 and S1 experienced similar dominant 

wind directions and mean wind speeds. We, therefore, expect C1 and S1 to exhibit similar trends in the aerosol data with the 

exception of the time periods when they are impacted by local aerosols that are not representative of the region. Those time periods 

should be influenced by the proximity, direction, size and type of the aerosol source in relation to the measurement site.  

 15 

SI.2. Potential local aerosol sources at C1 and S1 

While Graciosa Island and the location for C1 were selected due to the remote location and minimal population, the Graciosa 

regional airport is nearby. The airport regularly hosts two flights a day throughout the year, with one in the late morning or early 

afternoon and the other in the late afternoon. The largest nearby town is Santa Cruz, which is located ~1.8 km to the southeast of 

C1 with a population of ~1000. We identify potential local aerosol and trace gas sources associated with the airport and other local 20 

activities that may be relevant ENA spatially on a satellite image of the northeast section of Graciosa Island (Fig. SI.2). 
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Figure SI.2. Satellite image with potential aerosol sources identified in the area surrounding ENA on Graciosa Island (© Google Earth). 
 

The airport runway is located 116 m north of C1, spanning from the west to the northeast with regards to C1. The terminal building 

with one gate is located to the west. The airport parking lot is southwest of C1 and the aircraft parking area is to the west. The town 5 

of Santa Cruz is connected to the airport through a road to the east and south of C1. 

 

S1 was located on the other side of the airport runway with respect to the location of C1. As such, the runway is located to the 

south of S1, spanning from the southwest to the southeast. A rural road that runs close to the shoreline is located to the north. An 

additional potential source at S1 includes a pasture where cows have been occasionally observed that is located to the east and 10 

southeast. A mobile diary unit with a diesel engine has also been observed on occasion in operation in association with the cows 

and the pasture. When present, the mobile dairy has been observed to operate two times a day for about an hour each time. 

 

Identifying local aerosols at ENA based on proximity and wind direction of the source relative to the measurement site is complex 

since the sources originate over a wide variety of wind directions. We have attempted to summarize the known potential local 15 

aerosol sources in Table SI.2 as a function of their primary wind direction with regard to the locations of C1 and S1. Four nearby 

potential aerosol sources were identified at C1: the airport runway from the west to northeast, the road that connects Santa Cruz to 

the airport from east to south, the airport parking lot to the southwest, the airplane parking area to the west. At S1, the airport 

runway spans from the east to south and the rural road spans from the west to northeast. These were the two closest potential 

aerosol sources at S1. Additional potential sources identified near S1 included the pasture from the southeast to south and the 20 

decommissioned land fill with active vents to the southwest.  

 
Table SI.2. Potential aerosol sources identified at ENA as a function of wind direction at C1 and S1. 

Wind Direction 
Potential Aerosol Sources near ENA 

C1 S1 

N Airport runway Rural road 

NE Airport runway Rural road 

E Road Airport runway, Rural road, Pasture 
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SE Road 
Airport runway, Pasture, Airplane and car 

parking, Road 

S Road Airport runway 

SW Airport parking lot Airport runway, Decommissioned landfill  

W Airport runway, Airplane parking Rural road 

NW Airport runway Rural road 

 

Throughout this study, activities associated with the Graciosa airport that may impact aerosol measurements at ENA are 

collectively referred to as airport operations. Four known potential sources have been identified: aircraft assistance, runway 

maintenance, airport parking lot, road to the airport. While this is by no means an exhaustive list, further details on these known 

potential local aerosol sources at ENA are detailed here. Diesel engine vehicles assist aircraft operations before, during, and after 5 

landing and take-off. They assist with the loading and unloading of passengers and luggage during all stages before, during, and 

after the plane’s time on the ground. Large vehicles with diesel engines are typically driven and parked several times daily in open 

spaces designated for plane loading and unloading to maintain the runway and in front of the airport terminal building. Once a day, 

between approximately 7:45 and 8:30 UTC, three trucks leave the warehouse west of the airport terminal building, and travel the 

length of the runway several times over a period of approximately 20 to 25 minutes before returning to the warehouse. The parking 10 

lot to the southwest of the airport is utilized mostly during times when planes are arriving and departing and to a lesser degree 

throughout the operational period of the airport. External to the airport, but still related, is the road that connects the town of Santa 

Cruz to the airport through an intersection located between the east and south side of the C1 site. While the area is rural, traffic is 

generally low, and there are no stoplights, increased traffic is observed before the arrival and after the departure of aircraft at the 

airport. 15 

 

 

SI.3. Size distribution 

Size distribution can be used to determine the source of high aerosol concentrations since different combustion sources, fuel types, 

and modes of operation produce different particle sizes. For example, depending on the jet fuel composition, aircrafts produce 20 

Aitken mode particles with Dp < 100 nm at number concentrations of ~ 4,000 – 30,000 cm-3 (Moore et al., 2017) that have been 

observed to be even greater during take-off and landing at ≥ 40,000 cm-3 (Campagna et al., 2016). Aerosol from port fuel injection 

gasoline vehicles have been measured to be ~ 10,000 cm-3 with mean Dp between 40 to 80 nm. The Ntot of particles emitted by 

diesel engines can be as high as 104 cm-3 with larger mean aerosol Dp between 60 and 120 nm, larger than those emitted by gasoline 

engines (Harris and Maricq, 2001). In general, combustion engines produce mean aerosol size distributions dominated by the 25 

Aitken mode. Smaller size distributions are attributed to more efficient combustion sources and shorter distances between the 

source and measurement site (Lighty et al., 2000). 

 

In Fig. SI.3, we compare the measured size distributions from the UHSAS at C1 and S1 in the summer and winter. During the 

summer, the size distributions were similar in the number concentration and the mean mode Dp of 150 nm at both sites. A bimodal 30 

size distribution was evident, but the peak of the smaller mode was not able to be determined due to the UHSAS lower Dp limit. 

Despite not being able to size particles below Dp = 70 nm, the combined analysis presented in Section 4.1 enabled us to conclude 

that similar number concentrations of particles observed at C1 and S1 occurred above and below Dp = 70 nm. The main difference 



5 
 

observed between the measured size distributions at C1 and S1 in the summer was that there were 11% more particles from 80 nm 

to 150 nm at C1 than S1 (Fig. SI3.a). 

 

In the winter, the bimodal structure was less evident at C1 and S1 (Fig. SI3.b). C1 had 38% more aerosol with Dp < 150 nm than 

S1. This difference was significantly larger than what was observed in the summer. The peak of the size distribution was also 5 

shifted to slightly smaller sizes than 150 nm at C1 than S1. This could have been due to the presence of more local sources with 

aerosols Dp < 150 at C1 than S1 in the winter and/or to different meteorological conditions than were observed in the summer. 

This difference in season was in agreement with Fig. 3 (Sect. 4.1) where a higher difference between Ntot was observed between 

C1 and S1 in the winter than in the summer.  

 10 

During both summer and winter, C1 had more aerosol than S1 for Dp < 150 nm. This is likely due to the closer proximity of C1 to 

the Graciosa airport and the road to Santa Cruz. While the difference between the size distributions measured at C1 and S1 in the 

summer was minimal for Dp > 70 nm, we expect the difference would be more evident if sizing were available for Dp < 70 nm. We 

base this statement on the comparison of Ntot and NUHSAS in section 4.1.  

 15 

 
Figure SI.3. Aerosol size distributions at C1 (orange) and S1 (pink) during summer (a) and winter (b). 

 

SI.4. Variability with wind direction 

Mean NAt had the highest variability of all modes as discussed above. NAt and NAc had a larger observed variability in the winter 20 

than in the summer. For these reasons we evaluate the dominant submicron size modes as a function of wind direction to assess 

the variability in association with the direction of the known potential local aerosol sources identified in Section SI.2. NAt and NAc 

are plotted in Fig. SI.4 at C1 and S1 during the summer and winter. 
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Figure SI.4. NAt (a,b) in the summer and NAc in the summer (c, d) and in the winter (e, f). Data is plotted as the function of wind direction 
(median red lines, mean x coloured by site) at C1 (orange) and S1 (pink). Box bottom: 25%, box top: 75%, whisker bottom: 10%, whisker 
top: 90%). 
 5 

NAt at C1 (Fig. SI.4 a) had the highest deviation between the mean and median when the wind was coming from the west (mean: 

1007 particles cm-3, median: 185 particles cm-3) and northwest (mean: 623 particles cm-3, median: 148 particles cm-3). NAt at C1 

from the west and northwest are associated with the direction of the airport runway. Aircraft produce submicron aerosol of different 
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mean Dp during different modes of operation. Distinct aerosol size distributions centered at ~ 90 nm from nearby aircraft during 

landing and take–off, while a sub–30 nm mode has been observed to be prevalent during periods when aircraft are idling on the 

ground (Herndon et al., 2005). While we were not able to resolve these differences in the ENA dataset due to the lack of size 

information below 70 nm, we were able to confirm that the largest variability was observed in the smallest mode of particles shown 

here, NAt, when the wind was from the directions associated with the airport and its operation. NAt from the direction of the road to 5 

the airport, east to south, at C1 was not observed to have significantly higher variability that the other directions.  

 

NAt at S1 had less variability between the mean and median when averaged over all wind directions in comparison to C1 in the 

summer (Fig. SI.4d). The highest variability in the data at S1 was associated with wind directions from the east (mean: 507 cm-3, 

median: 294 cm-3) and southeast (mean: 498 cm-3, median: 326 cm-3). The road and pasture were to the east and the airport runway, 10 

terminal and parking lot were to the southeast of S1. 

 

Winter NAt at C1, not shown, exhibited a similar trend in regard to the summer data with the highest NAt coming from the west. NAt 

from the west had the highest mean of all the wind directions at 1650 cm-3 with a corresponding median an order of magnitude 

lower at 170 cm-3. The deviation between the median and the mean was the greatest from the west during the winter, approximately 15 

a factor of two times greater than what was observed in the summer. The deviation in the mean and median when the wind was 

coming from the northwest was smaller than what was observed in the summer at C1. NAt was not available at S1 in the winter for 

comparison with C1, although we expect it would have had less variability.  

 

As was observed in Fig. 4, NAc represented a smaller fraction of the total submicron aerosol at C1 and S1 with a lower variability 20 

between the median and mean NAc. Mean and median NAc, in Fig. SI.4 c, d, had a low variability across all wind directions at C1 

and S1 in the summer. This is in contrast to what was observed for NAt during the same period. Mean NAc were between 92 and 

170 cm-3 at C1, and the median NAc were between 78 and 174 cm-3. Mean NAc were between 118 cm-3and 165 cm-3 at S1 in the 

summer (Fig. SI.4 d). The median number concentrations are between 103 cm-3 and 166 cm-3. 

 25 

The largest variability of NAc at C1 was observed in the winter when the wind was from the southeast (mean: 210 cm-3, median: 

126 cm-3) and south (mean: 164 cm-3, median: 102 cm-3) as is shown in Fig. SI.4 e. This variability was significantly below what 

was observed for NAt as a function of wind direction in the winter. Winter NAc at S1 (Fig. SI.4 f) had more variability between the 

median and mean NAc than what was observed in the summer. It was still significantly less than what was observed in the NAt in 

the summer. The largest variability in NAc at S1 in the winter was observed when the wind was from the east (mean: 123 cm-3, 30 

median: 80 cm-3) and southeast (mean: 140 cm-3, median: 96 cm-3). S1 data when compared to C1 had less variability across all 

wind directions and seasons, similar to what was observed when comparing NAt at C1 and S1. 

 

In summary for the data shown here, NAt exhibited the highest variability represented as a high bias of the mean versus the median 

of all the submicron modes. The highest bias in the mean values in comparison to the medians was associated with the direction 35 

of airport operations at C1 (north and northwest) and S1 (east, southeast and south). At ENA the high NAt variability was most 

likely due to local combustion sources based on the size and the wind directions from which they were observed. This conclusion 

is supported by the fact that combustion sources are known to produce high concentrations of small mode particles with Dp < 200 

nm. The high variability observed at ENA was mostly confined to the NAt, although was also observed in NAc during the winter. 

The main regional sources of NAc at ENA have been attributed to the entrainment of aerosol from the free troposphere and the 40 
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growth of NAt (Zheng et al. 2018). As such, the variability observed here within NAc in the winter likely includes these processes 

and local aerosol sources that were not observed in the summer. Chemical and optical property measurements collected by the 

AOS should be used in the future to further validate the aerosol sources associated with the variability observed here in the summer 

and winter. 

SI.5. Comparison of ENA-AM to a smoothing algorithm 5 

We applied a smoothing algorithm based on the one that Liu et al. (2018) developed for the AOS CPC during AWARE to our data 

at ENA. A 24-hour running median was used to mask the Ntot one-minute data collected during the summer at C1. Figure SI.5 

shows a comparison between ENA C1 data filtered using ENA-AM and the smoothing method. After applying the smoothing 

algorithm 2% of the original data were retained. 

 10 

Figure SI.5. Ntot data at C1 in the summer after applying a 24-hour running median smoothing algorithm (red) and ENA-AM (green). 

 

SI.6. Comparison of ENA-AM to the filter developed by Zheng et al. (2018) 

We recreated the mask developed by Zheng et al. (2018) and we applied it to Ntot one-second data collected during our summer 

period. After applying the filter to the original one-second data, we averaged the data to a one-minute time base, masking the one-15 

minute periods that included any masked data for comparison with ENA-AM. Figure SI.6 shows a time series of masked one-

minute Ntot at C1. We observed that both masks were able to identify the high concentration aerosol events, however ENA-AM 

removed a lower amount of data. 

 



9 
 

 

Figure SI.6. Ntot data at C1 in the summer after applying Zheng et al. (2018) method (blue) and ENA-AM (green). 
 

The two masks agreed 68% of the time of the time and a high correlation between the masked datasets was generated (Fig. SI.7) 

with a slope of 0.976 and R2 of 0.988. In this way, the Zheng et al. (2018) method masked a higher amount of data in the one-5 

minute averaged dataset: 41% against the 26% masked by ENA-AM.  

 

 

Figure SI.7. Scatter plot of Zheng et al. (2018) and ENA-AM masked one-minute Ntot data at C1 in the summer. 
 10 

As hourly averages are often used to study seasonal trends and within models, we also investigated the application of both methods 

to Ntot data mapped onto a one-hour time base. Due to the amount of data points masked in Ntot one-minute, we averaged the 

remaining data points within each hour ignoring the masked data points. Without averaging the remaining data within each one-
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hour time period, 74% of the data for ENA-AM and 96% of the data for Zheng’s method would be removed. A slightly lower 

correlation (R2 = 0.929 with a slope = 0.876 ± 0.005) was found between the masked one-hour Ntot datasets (Fig. SI.8). This larger 

deviation between the masks is a result of the lower percentage of data masked by ENA-AM which leads to higher hourly averages 

in comparison to the other method. The amount of data removed by the Zheng et al. (2018) method in Ntot one-hour masked datasets 

was 4% versus 0.5% removed by ENA-AM. 5 

 

 

Figure SI.8. Scatter plot of Zheng et al. (2018) and ENA-AM masked one-hour Ntot data at C1 in the summer. 
 
 10 
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