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Abstract. A critical step in satellite retrievals of trace gas
columns is the calculation of the air mass factor (AMF) used
to convert observed slant columns to vertical columns. This
calculation requires a priori information on the shape of the
vertical profile. As a result, comparisons between satellite-
retrieved and model-simulated column abundances are influ-
enced by the a priori profile shape. We examine how dif-
ferences between the shape of the simulated and a priori
profiles can impact the interpretation of satellite retrievals
by performing an adjoint-based four-dimensional variational
(4D-Var) assimilation of synthetic NO2 observations for con-
straining NOx emissions. We use the GEOS-Chem adjoint
model to perform assimilations using a variety of AMFs to
examine how a posteriori emission estimates are affected if
the AMF is calculated using an a priori shape factor that is
inconsistent with the simulated profile. In these tests, an in-
consistent a priori shape factor increased root mean square
errors in a posteriori emission estimates by up to 30 % for
realistic conditions over polluted regions. As the difference
between the simulated profile shape and the a priori profile
shape increases, so do the corresponding assimilated emis-
sion errors. This reveals the importance of using simulated
profile information for AMF calculations when comparing
that simulated output to satellite-retrieved columns.

1 Introduction

Satellite observations provide a wealth of information on
the abundance of trace gases in the troposphere (Fishman et
al., 2008). The next generation of satellite instruments, in-
cluding the upcoming geostationary constellation of TEMPO
(Chance et al., 2013; Zoogman et al., 2017), Sentinel-4
(Bazalgette Courrèges-Lacoste et al., 2011; Ingmann et al.,
2012), and GEMS (Bak et al., 2013; Kim, 2012), will pro-
vide information on NO2 and other air-quality-relevant pol-
lutants on unprecedented spatial and temporal scales. Insight
into processes that affect atmospheric composition, includ-
ing emissions (Streets et al., 2013), lifetimes (Fioletov et al.,
2015; de Foy et al., 2015; Laughner and Cohen, 2019), and
deposition (Geddes and Martin, 2017; Kharol et al., 2018),
can be gained by interpreting this information with atmo-
spheric chemistry models.

There are three main stages in retrieving trace gas abun-
dances from ultraviolet and visible solar backscatter radi-
ance measurements: calculating a light-path slant column
by fitting observed spectra to known spectral signatures of
trace gases, removing the stratospheric portion of the col-
umn, and converting the slant column to a vertical column
density using an air mass factor (AMF). AMFs are calcu-
lated using a radiative transfer model and are a function of
viewing geometry, surface reflectance, clouds, and radiative
transfer properties of the atmosphere. AMF calculations also
require an a priori estimate of the trace gas vertical profile
and are sensitive to the profile shape (Eskes and Boersma,
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2003; Palmer et al., 2001). Uncertainties in AMF calcula-
tions are the dominant source of uncertainty in satellite NO2
retrievals over polluted regions (Boersma et al., 2007; Martin
et al., 2002) largely due to sensitivity to surface reflectance,
clouds, aerosols, and a priori profile information (Lorente et
al., 2017).

Boersma et al. (2016) highlighted the issue of represen-
tativeness errors in comparing model-simulated values with
UV–Vis satellite-retrieved columns. Vertical representative-
ness errors arise from the satellite’s altitude-dependent sen-
sitivity due to atmospheric scattering and can degrade the
quality of model–measurement comparisons beyond errors
that arise from either modeling or measurements alone. A
consistent accounting of the altitude-dependent sensitivity is
necessary to limit these errors.

Two common methods are used to account for vertical rep-
resentativeness. In one method, observed slant columns are
converted to vertical columns using an air mass factor calcu-
lated with scattering weights to represent instrument vertical
sensitivity and shape factors to represent the vertical profile
(Palmer et al., 2001). Another commonly used method em-
ploys an AMF provided with the retrieval to convert slant
columns to vertical columns and then applies an averaging
kernel to the simulated profile to resample the simulated
profile in a manner that mimics the satellite vertical sensi-
tivity (Eskes and Boersma, 2003). In this method both the
averaging kernel and the retrieval AMF are calculated us-
ing an a priori NO2 profile that may have a different shape
than the simulated profile, which may introduce errors in the
observation–simulation comparison (Zhu et al., 2016).

A common application of comparisons between satellite-
observed columns and model simulations is to constrain NOx
emissions (e.g., Ding et al., 2018; Ghude et al., 2013; Lam-
sal et al., 2011; Martin et al., 2003; Vinken et al., 2014). One
such approach is the use of four-dimensional variational (4D-
Var) data assimilation, which seeks to minimize a cost func-
tion that accounts for the difference between simulated and
retrieved values. As the cost function is a difference between
observed and simulated NO2 columns, it is susceptible to ver-
tical representativeness errors resulting from inconsistent a
priori vertical profile information.

In this work we examine how a priori profile assump-
tions impact satellite–model comparisons and use the GEOS-
Chem adjoint as a case study to assess how this impact can
affect the interpretation of satellite observations. Section 2
provides the mathematical framework for AMF calculations
and satellite–model comparisons. Section 3 describes the ad-
joint model and synthetic observations for the case study.
Section 4 discusses the results.

2 Mathematical frameworks

2.1 AMFs and averaging kernels

The air mass factor translates the line-of-sight slant column
abundances (�s) retrieved from satellite-observed radiances
into vertical column abundances (�v). An air mass factor is
the ratio of�s to �v and depends on the atmospheric path as
determined by geometry, NO2 vertical profile (n), surface re-
flectance, and radiative transfer properties of the atmosphere.
Here we useM(n) to represent an air mass factor derived us-
ing the vertical number density profile n:

M(n)=
�s

�v
. (1)

In the method described by Palmer et al. (2001), a radia-
tive transfer model is used calculate scattering weights w(z)

(also known as box air mass factors) which characterize the
sensitivity of backscattered radiance IB to the abundance of
a trace gas at altitude z:

w(z)=−
1
MG

αa,z

αeff

∂ln(IB)

∂τ
, (2)

where αa,z is the temperature-dependent absorption cross
section (m2 per molecule), αeff is the effective (weighted av-
erage) absorption cross section (m2 per molecule), and ∂τ is
the incremental trace gas optical depth. MG represents a ge-
ometric path correction accounting for the satellite viewing
geometry:

MG = secθo+ secθ, (3)

where θ is the solar zenith angle and θo is the satellite view-
ing angle. This information is then combined with an a priori
NO2 shape factor (i.e., normalized vertical profile),

S(z)=
n(z)
�v

, (4)

typically calculated with an atmospheric chemistry model to
provide an air mass factor via

M(n)=MG

∫ tropopause

0
w(z)S(z)dz, (5)

where S(z) is calculated using vertical profile n(z). An at-
tribute of the formulation of Palmer et al. (2001) is the inde-
pendence of atmospheric radiative transfer properties w(z)

and the vertical trace gas profile S(z). The AMF definition in
Eq. (1) combined with Eq. (4) indicates that a slant column
can be calculated from a known vertical profile via

�s =

∫ tropopause

0
w(z)n(z)dz. (6)

In an alternative formulation, the air mass factor is rep-
resented as part of an averaging kernel. As formulated by
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Rodgers and Connor (2003), the averaging kernel (A) pro-
vides the information needed to relate the retrieved quantity
n̂ to the true atmospheric profile n:

n̂−na = A(n−na), (7)

where na is an assumed a priori profile of number density.
The elements of the column averaging kernel are related to
the scattering weights by

A(z)=
w(z)
M(na)

, (8)

where M(na) is an air mass factor calculated using a priori
vertical profile information. It is important to note that, unlike
scattering weights, averaging kernels depend on the a priori
assumed vertical profile shape.

A lexicon is given in Table 1 as notation used to describe
these treatments has varied across the literature. We choose
M for air mass factor as a single letter is clearer in equations,
w for scattering weights to maintain the original formula-
tion of Palmer et al. (2001), n for number density following
IUPAC recommendations, and � for column densities as is
common in radiative transfer literature.

Figure 1 shows examples of typical shape factor, scatter-
ing weight, and averaging kernel profiles for a range of atmo-
spheric conditions. NO2 shape factors have significant vari-
ability; shape factors peak near the surface in urban regions
due to local pollution sources but peak in the upper tropo-
sphere in more remote regions due to lightning. The shape
of a scattering weight profile depends strongly on surface re-
flectance and cloud conditions. Sensitivity in the lower tro-
posphere increases over reflective surfaces. Clouds increase
sensitivity above due to their reflectance but shield the satel-
lite from observing the atmosphere below. Averaging ker-
nels have similarities with scattering weights but depend on
both the shape of the prior and the satellite sensitivity. As
AMF calculations are a convolution of the shape factor and
the scattering weight profiles, these shapes affect NO2 re-
trievals. For these examples, the AMF for a clear-sky obser-
vation with surface reflectance of 0.01 can range from 0.7
in an urban region to 1.7 in a remote region. This large dif-
ference demonstrates the importance of the assumed profile
shape to the retrieval process.

2.2 Comparing satellite observations to simulated
values

The following section expresses mathematically how
satellite–model comparisons are made using various a priori
profiles.

2.2.1 Using scattering weights

Following Palmer et al. (2001), a retrieved vertical column
(�̂v,o) is estimated using an observed slant column �s,o and

a simulation-based air mass factorM(nm), which can be cal-
culated with Eq. (5) using the model-simulated NO2 profile
(nm):

�̂v,o =
�s,o

M(nm)
. (9)

The difference 1m between the estimated retrieved col-
umn and the model-simulated vertical column (�v,m) is

1m =�v,m− �̂v,o, (10)

1m =
(∑tropopause

0
nm

)
−

�s,o

M(nm)
. (11)

Equation (11) describes how this comparison is used in
practice. However, we can rearrange this expression in terms
of model (�s,m) and observed (�s,o) slant columns using the
definition of air mass factor:

1m =
�s,m

M(nm)
−

�s,o

M(nm)
, (12)

1m =
1

M(nm)

(
�s,m−�s,o

)
. (13)

2.2.2 Using averaging kernels

Comparison of simulated and retrieved columns using the av-
eraging kernel is described by Eskes and Boersma (2003) and
in the retrieval documentation in Boersma et al. (2011). The
averaging kernel is applied to the simulated profile in order
to sample the simulated column in a manner that reflects the
retrieval sensitivity:

�̂v,m =
∑tropopause

0
Anm. (14)

The resampled simulated column is then compared to the
retrieved vertical column (�v,o) using the a priori-based air
mass factor M(na) supplied with the retrieval dataset:

1a = �̂v,m−�v,o, (15)

1a =
(∑tropopause

i=0
Ainm,i

)
−

�s,o

M(na)
. (16)

Equation (16) describes how this method is used in prac-
tice. To facilitate the comparison with Eq. (13), Eq. (16) can
be rewritten using an alternative formulation relating averag-
ing kernels to scattering weights:

1a =

(∑tropopause
i=0

winm,i

M(na)

)
−

�s,o

M(na)
, (17)

1a =
1

M(na)

(
�s,m−�s,o

)
. (18)

By comparing Eqs. (13) to (18), it is evident that the under-
lying difference between the two approaches is the choice of
a priori profile information used to calculate the AMF, as the
averaging kernel method is not independent of a priori pro-
file assumptions. This bias could be addressed by replacing
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Table 1. Lexicon comparing notation used in this paper to that used in previous studies.

Variable Palmer et al. (2001) Eskes and Boersma (2003) Boersma et al. (2016) Notation used here

Air mass factor AMF M M M
Slant column �S S NS �s
Vertical column �V V NV �v
Scattering weight w(z) Cl ml w(z)

Shape factor Sz(z) S(z)

Averaging kernel A A A

Number density n(z) X xl n(z)

Geometric AMF AMFG MG

Figure 1. (a) Shape factor profiles from a GEOS-Chem simulation for July 2010. Shown are a global average, as well as typical urban
(Beijing), rural (Midwest USA), and remote (tropical Pacific) profiles. (b) Typical Ozone Monitoring Instrument (OMI) scattering weight
profiles for varying surface reflectance and cloud height. (c) Averaging kernels calculated using the same shape factors and scattering weights
(clear-sky surface reflectance is 0.01; cloudy uses a cloud height of 1 km).

the a priori-based AMF in Eq. (18) with a simulation-based
AMF using the following relationship (Boersma et al., 2016;
Lamsal et al., 2010):

M(nm)=M(na)

∑
Anm∑
nm

. (19)

It should be noted that both the averaging kernel and scat-
tering weight methods are equivalent for comparisons that
examine ratios of retrieved and modeled columns:

rm =
�̂v,o

�v,m
=
�s,o/M(nm)∑

nm
=

�s,o∑
nm

∑
nm∑

wnm
=

�s,o∑
wnm

,

(20)

ra =
�v,o

�̂v,m
=
�s,o/M(na)∑

Anm
=
�s,o

/
M(na) )∑

wnm/M(na)
=

�s,o∑
wnm

.

(21)

For ratios, both methods are dependent on geophysical as-
sumptions used to calculate scattering weights but are inde-
pendent of a priori profile information. Lastly, some studies

(e.g., Qu et al., 2017) may directly assimilate slant column
densities rather than vertical column densities using

1s,a = �̂s,m−�s,o (22)

=

(∑tropopause
i=0

winm,i

)
−�s,o. (23)

This approach is also still dependent upon the scatter-
ing weights but not upon external a priori profile informa-
tion. Overall, the choice of approach may be influenced by
whether or not scattering weights are available from either
the NO2 retrieval product or radiative transfer calculations
applied to the model. In contrast, use of Eqs. (11) or (16)
is applicable when these are not explicitly available or pro-
vided.
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3 Tools and methodology

3.1 GEOS-Chem and its adjoint

The GEOS-Chem chemical transport model (http://www.
geos-chem.org, last access: 28 January 2020) is used to
create synthetic NO2 observations and for their analysis.
The GEOS-Chem version used here is version 35j of the
GEOS-Chem adjoint model. GEOS-Chem includes a de-
tailed oxidant–aerosol chemical mechanism (Bey et al.,
2001; Park et al., 2004) and uses assimilated meteorological
fields from the Goddard Earth Observation System (GEOS-
5), with 47 vertical levels up to 0.01 hPa and a horizontal
resolution of 4◦× 5◦. Global anthropogenic NOx emissions
are provided by the Emission Database for Global Atmo-
spheric Research (EDGAR) inventory (Olivier et al., 2005),
with regional overwrites over North America (EPA/NEI99),
Europe (EMEP), Canada (CAC), Mexico (BRAVO, Kuhns
et al., 2005), and East Asia (Streets et al., 2006). Other NOx
sources include biomass burning (GFED2, Van der Werf et
al., 2010), lightning (Murray et al., 2012), and soils (Wang et
al., 1998). This model has been used previously to constrain
NOx emissions (Cooper et al., 2017; Henze et al., 2009; Qu
et al., 2017, 2019; Xu et al., 2013; Zhang et al., 2016).

The GEOS-Chem adjoint (Henze et al., 2007, 2009) is
used here to perform a 4D-Var data assimilation. The adjoint
seeks to iteratively minimize a cost function generally de-
fined by the difference between satellite-retrieved and simu-
lated columns (1, from either Eq., 11, if using a simulation-
based air mass factor or Eq., 16, if using the retrieval a priori-
based air mass factor):

J =
1
2
1TS−1

o 1+
1
2
γR(E−Ea)

TS−1
E (E−Ea), (24)

where E and Ea are the a posteriori and a priori emissions, So
and SE are the retrieval and a priori emission error covariance
matrices, and γR is a regularization parameter that allows for
weighting the cost function towards the retrieved columns
or a priori emissions. Tests performed here required 20–30
iterations to minimize the cost function.

3.2 Experiment outline

In this study we perform 4D-Var data assimilation ex-
periments to infer surface NOx emissions using synthetic
NO2 observations. We use synthetic observations built from
known emission inventories to provide a “truth” that can be
used to evaluate the inversion results. To demonstrate how a
priori profile information can propagate in an assimilation,
we use either the model profile (1m, Eq. 11) or an a priori
profile (1a, Eq. 16) in the cost function. A 1-week spin-up
window at the start of each adjoint iteration is used to al-
low NOx to reach a steady state. Observation error covari-
ances So are described as a relative error of 30 % of the slant
column density plus an absolute error of 1015 molec cm−2,

Figure 2. (a) Anthropogenic NOx emissions for July 2010 used
in GEOS-Chem. (b) Ratio of true emissions used to create Obs5
synthetic observations to a priori NOx emissions.

which is representative of typical satellite-retrieved NO2 col-
umn uncertainties (Boersma et al., 2007; Martin et al., 2002).
We omit the a priori emissions constraint in the cost function
(i.e., set γR = 0) to isolate the impact of the observations.

3.2.1 Synthetic observations

Synthetic observations (Obs5) are created using a GEOS-
Chem simulation where random Gaussian noise with a stan-
dard deviation of 5 % is added to the anthropogenic NOx
emissions. Additional tests using observations where noise
with a standard deviation of 30 % is added (Obs30) are also
used. No additional noise is added to the individual observa-
tions to isolate the impact of AMF errors against additional
sources of uncertainty. Figure 2 shows the standard (a priori)
anthropogenic NOx emissions and the changes used to create
the true emissions for the synthetic observations.

For these tests, we use one observation per hour per 4◦×5◦

grid box for a period of 2 weeks in July 2010. Observations
consist of synthetic slant columns (�s,o) created by apply-
ing scattering weights to the synthetic vertical profiles using
Eq. (6). Scattering weights are calculated using the LIDORT
radiative transfer model (Spurr, 2002) by providing LIDORT
with the observation conditions of OMI observations during
July 2010, which are used to represent typical viewing con-
ditions of low-earth-orbit satellite observations, and aerosol
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profiles from the GEOS-Chem base simulation. To represent
typical conditions, these representative scattering weight pro-
files for each grid box are used to produce the synthetic slant
columns. Tests performed for all 4◦×5◦ grid boxes used here
indicate that the mean relative difference between an air mass
factor calculated using an average scattering weight profile
and the average of air mass factors using observation-specific
scattering weight profiles is less than 4 %.

3.2.2 Shape factors

To test the impact of a priori profile information, seven dif-
ferent tests are performed using seven different NO2 profile
shapes for AMF calculations:

– Case SFM – the GEOS-Chem model-simulated profile
(nm), updated at each iteration of the adjoint run.

– Case SFprior – the a priori GEOS-Chem simulated pro-
file, without updating.

– Case SFn30 – an a priori profile created by a GEOS-
Chem simulation where global anthropogenic NOx
emissions were perturbed with random Gaussian noise
with a standard deviation of 30 %; in cases where this
results in negative emissions, a value of zero is used.

– Case SFdiffem – an a priori profile created by a GEOS-
Chem simulation where regional emission overwrites
are turned off.

– Case SFfiner – an a priori profile created by a GEOS-
Chem simulation run at finer (2◦× 2.5◦) resolution.

– Case SFtrop – an a priori profile that assumes the
NO2 profile shape is uniform from the surface to the
tropopause (∼ 200 hPa).

– Case SFBL: an a priori profile that assumes the NO2 pro-
file shape is uniform from the surface to the boundary
layer (∼ 800 hPa).

An advantage of using scattering weights and the simu-
lated shape factor in a 4D-Var framework is that it allows for
the shape factor, and thus the AMF, to be updated at each
iteration. When a priori profiles from an external source are
used it is not possible for them to update during the inver-
sion. The SFM and SFprior cases test the impact that iterative
updates to the AMF have on a posteriori estimates. The addi-
tional cases test for the impact of using an averaging kernel
based on a priori profile assumptions that are inconsistent
with the model. In practice, averaging kernels and a priori
profiles included in retrieval datasets are generally derived
from chemical transport models that have different physical
processes, emissions, or spatial resolutions. The SFn30 and
SFdiffem tests are representative of inversions that use a priori
profile information from a different chemical transport model
with similar resolution but different emissions. The SFfiner

Figure 3. Global root mean square error (RMSE) values for 4D-Var
estimates of NOx emissions for tests using various shape factors in
AMF calculations.

test represents an inversion that uses a priori profiles from a
chemical transport model with a different horizontal resolu-
tion. The SFBLand SFtrop tests do not represent any modern
retrieval algorithms but are used as extreme examples of an a
priori that assumes no spatial variability. The SFBL profile is
representative of polluted regions as indicated by the typical
urban profile in Fig. 1, while the SFtrop profile is representa-
tive of a typical rural profile. Table 2 provides global mean
AMFs for these test cases, which range from 1.3 to 2.1, and
the resulting global mean observed vertical columns, which
range from 0.9 to 1.5× 1015 molec cm−2. Global mean ob-
served vertical columns are 33 % higher for SF2×25 than for
SFM and up to 66 % higher for SFBL. Global mean observed
vertical columns for SFn30 and SFdiffem are similar to SFM,
although individual observations may differ by up to 18 %
for SFn30 and 28 % for SFdiffem.

4 Results

Figure 3 shows root mean square errors (RMSEs) for the a
posteriori emissions estimated by the 4D-Var assimilations
of Obs5 synthetic observations. All tests successfully reduce
the a priori emission error by an order of magnitude or more.
The SFM has the lowest RMSE, indicating that it can best
estimate the true emissions. The next lowest RMSE is for the
SFprior test, which uses the same initial model shape factor
but does not update during the adjoint iterations, followed by
the SFfiner, SFdiffem, SFn30, SFtrop, and SFBL tests.

Figure 4 shows maps of the difference in RMSE between
the SFM test and the other tests for Obs5 observations.
The SFM test has a lower RMSE than the other tests in
65 %–72 % grid boxes where the difference is nonzero.
Again, the SFprior test is closest to the SFM test with a root
mean square difference of 2.9× 107 molec cm−2 s−1,
followed by SFfiner (3.6× 107 molec cm−2 s−1),
SFn30 (3.8× 107 molec cm−2 s−1), SFdiffem (4.0×

Atmos. Chem. Phys., 20, 7231–7241, 2020 https://doi.org/10.5194/acp-20-7231-2020
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Table 2. Global mean air mass factors and synthetic observation vertical column density for shape factors tested here.

Test name Shape factor source Air mass factor Synthetic observation (Obs5) vertical column
(unitless) density (×1015 molec cm−2)

Global mean Global mean Maximum difference
(×1015 molec cm−2) from SFM (%)

SFM Model 2.1 0.9 –
SFn30 Model with 30 % noise 2.1 0.9 19
SFdiffem Model with different emissions 2.1 0.9 28
SFfiner Model at finer (2◦× 2.5◦) resolution 1.6 1.2 23
SFtrop Uniform in troposphere 1.8 1.0 57
SFBL Uniform in boundary layer 1.3 1.5 27

Figure 4. Difference between root mean square error (RMSE) of adjoint tests for Obs5 synthetic observations. Root mean square differences
between the a posteriori emissions estimates (molec cm−2 s−1) are inset.

107 molec cm−2 s−1), SFtrop, (7.8× 107 molec cm−2 s−1),
and SFBL (9.0× 107 molec cm−2 s−1).

Table 3 summarizes additional error statistics focused on
grid boxes with significant emission sources. Errors in a pos-
teriori emission estimates are correlated with the true emis-
sions in the SFtrop and SFn30 tests, and they are weakly
correlated in the SFBL, SFprior, and SFdiffem tests, indicat-
ing that these tests are not constraining the emissions well.
Differences between tests are more significant over polluted
regions where AMF errors are more influential; for exam-
ple, in the regions with the highest NOx emissions, RMSE
values indicate SFM outperforms SFn30 by 30 % and SFtrop
by > 80 %. Another sign of adjoint inversion quality is a low

variance in errors. While the posterior error is reduced rela-
tive to the a priori error in all tests, error standard deviations
are 30 % higher for SFn30 and 90 % higher for SFtrop com-
pared to SFM. The global maximum error for the SFtrop test
is 30 % higher than for the SFM test. All metrics indicate that
the SFM test best represents the true emissions.

Tests using Obs30 observations and the SFMand SFtrop
shape factors were also performed. Despite the difference be-
tween a priori observed vertical columns using these shape
factors as indicated by Table 2, these assimilations pro-
duced similar a posteriori results, with RMSE of 2.9×
108 molec cm−2 s−1 for SFM and 2.8× 108 molec cm−2 s−1

for SFtrop.
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Figure 5. Scatterplot of adjoint test results. X axis represents the
deviation of the shape factor from the model-simulated shape fac-
tor (root mean square difference). Y axis represents the a posteriori
emissions error from the adjoint inversion.

5 Discussion and conclusions

Accounting for the vertical profile dependence of satellite ob-
servations is essential to accurately interpret those observa-
tions. This work examines how the choice of shape factor
affects differences between simulated and satellite-retrieved
quantities in a data assimilation framework. Examination of
the mathematical frameworks behind two common meth-
ods for comparing simulated and retrieved columns high-
lights how the method introduced by Palmer et al. (2001)
facilitates separation of observation sensitivity (scattering
weights) from the profile shape (shape factor) enabling the
model–retrieval comparison to be independent of a priori
profile assumptions.

In these case studies, vertical representativeness errors
were best reduced by using a shape factor that was consistent
with the model simulation. This was especially true in pol-
luted regions where the AMF errors dominate observation
uncertainties, as deviations between the tests were largest
in these regions. The further the shape factor deviated from
the model state the larger the inversion errors became, as
indicated by Fig. 5. The SFfiner test indicates that although
using a finer-resolution model to generate a priori profiles
is desirable for a more accurate retrieval, consistency be-
tween the simulation profile and the a priori shape factor is of
greater importance explicitly for the purpose of simulation–
observation comparisons to constrain emissions at the simu-
lation resolution. Comparing the SFM and SFprior tests shows
that allowing for the shape factor to update during the itera-
tive adjoint process further reduces the RMSE by 10 %. How-
ever, even without allowing for shape factor updates, using
a shape factor that is consistent with the initial model state
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produces a more accurate inversion result than using other
assumed profile shapes.

The case study presented here demonstrates that the shape
factor source can have a strong influence on adjoint inver-
sion results. However, the magnitude of this influence can
vary. Inversion tests performed using synthetic observations
based on random 30 % perturbations to emissions were in-
sensitive to the AMF, despite large differences in a priori
vertical column densities. In these tests, the cost function was
more sensitive to the larger difference between the observed
and simulated slant columns (i.e.,�s,m−�s,o in Eqs. 13 and
19) than to the AMF. This indicates that while the cost func-
tion is mathematically dependent on the AMF, the inversion
is less sensitive to vertical representativeness errors in cases
where emissions are poorly constrained, as is the case in re-
cent adjoint inversion studies (e.g., Qu et al., 2017). How-
ever, the choice of AMF will become increasingly important
to adjoint inversions as emission inventories improve. Fur-
thermore, omitting the a priori emissions constraint in the
cost function and omitting noise in the observations in these
tests to isolate the impact of the AMF effectively assume
poorly constrained a priori emissions and ideal observations.
In practice, cost function sensitivity to AMF choice may be
buffered when a priori emissions uncertainties and observa-
tional noise are considered.

As it is beneficial for a consistent shape factor to be
used when comparing satellite-retrieved values to model-
simulated results, it will be useful for data products to pro-
vide the information required for this method to the user
community. This is most straightforward when scattering
weights (rather than averaging kernels) are provided along-
side retrieved column data, as scattering weights and shape
factors are independently calculated; however, simulation-
based air mass factors can be calculated using the averaging
kernel and a priori-based air mass factor via Eq. (19).

In summary, when comparing a model simulation to a
satellite-retrieved NO2 column in a data assimilation envi-
ronment utilizing column differences, calculating the AMF
using the simulated shape factor allows for better accuracy
in inversion results. This demonstration can provide general
guidance for other methods of interpreting satellite observa-
tions with models, as using the simulated shape factor assures
consistency in the vertical representativeness between model
and retrieval.

Data availability. The GEOS-Chem chemical transport model
and its adjoint are available at http://acmg.seas.harvard.edu/geos/
(GEOS-Chem, 2017). OMI NO2 data used in this study are avail-
able from the NASA Goddard Earth Sciences Data and Information
Services Center (https://doi.org/10.5067/Aura/OMI/DATA2017,
Krotkov et al., 2019). AMF code (Spurr, 2002; Martin et al.,
2002) used to calculate scattering weights and air mass factors
is available at http://fizz.phys.dal.ca/~atmos/martin/?page_id=129
(Palmer, 2017).
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