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1 Robustness of the trends 

 

Figure S1: Annual trends of PNCs and eBC mass concentration for expanding time intervals starting from 2009, using 

the customized Sen’s estimator. The x-axis shows the starting and ending year. The dots denote the mean slope and 

the whiskers denote the 75th and 25th percentiles. The trend evolution for each site category is illustrated: roadside 

(RS), urban background (UB), regional background (RB), low mountain range and high Alpine (LMT&HA). 

 

For the time series of a climate parameter, the determination of its long-term trend might be sometimes 

influenced by inhomogeneous “break points” such as site relocation, inlet change, and new pollution 

sources (Collaud Coen et al., 2013). The break points not only make the time series inhomogeneous but 

also result in a poor representativeness of the trend. Normally, only the trends of homogeneous time series 

are considered to be robust and trustable. Another important factor affecting the trend is the length of the 

time series. To evaluate if the time span of our dataset is long enough to provide a robust trend, the evolution 

of trend was analyzed. Fig. S1 shows the Sen’s slopes (annual relative changes) of the PNCs and eBC mass 

concentration for expanding time intervals starting from 2009. The average slopes for each site category 

are illustrated. It can be seen that the trends tend to be stable without strong variation after time interval 

2009-2016, indicating the time span of our observation is long enough for the detection of trustable long-

term trends. 

Gaps in time series may also bias the observed trends. Generally, it is difficult to quantify clearly the 

influence of data gaps on the trend results. In this study, since the influences of periodicity and outliers are 



diminished by applying customized Sen’s estimator, the evaluated trends are less sensitive to data gaps than 

those derived by other methods. 

 

Table S1: Number of sites used in trend analysis. 

Parameters Number of stations analysed Excluded stations 

eBC 14 MST, LAN 

N[20−800] 16 -- 

N[10−30] 14 MST, ZSF 

N[30−200] 16 -- 

N[200−800] 16 -- 
 

 

2 Emission change on sectors 

 

Figure S2: The long-term changes of total emissions of BC, PM2.5 and precursors on sectors during 2009-2017 in 

Germany (UBA, 2020). For each species, the left panel gives the total absolute emissions in different sectors; and the 

right panel shows their trends. 

 



3 Back trajectory cluster method (BCLM) 

Air mass classification is a powerful tool to assess the influence of meteorological conditions on long-term 

atmospheric observations. In this work, air masses were classified on a daily basis for the period 2009-2018 

using a Back Trajectory and Temperature Profile (BTTP) cluster method.  

Basic description 

The Back Trajectory and Temperature Profile (BTTP) cluster method classifies air masses based on 

their meteorological back trajectories in combination with experimental radiosoundings recorded during 

the same period. The meteorological back trajectories provide information on the spatial origin and 

pathways of air pollutants measured at a receptor site, while the radiosounding profiles characterize the 

vertical stability of atmosphere and the effect of dilution of pollutants emitted near the surface (Stull, 2012). 

The BTTP cluster algorithm is a variant of algorithm versions previously used for the analysis of 

atmospheric particle number size distributions (Birmili et al., 2010; Engler et al., 2007; Engler et al., 2012; 

Heintzenberg et al., 2011) and aerosol scattering coefficients (Ma et al., 2014). In contrast to the previous 

versions, the current BTTP method is extended to represent the whole Germany as a receptor area, 

encompassing a total of nine sites for numerical back trajectories and seven sites for experimental 

radiosoundings. The use of multiple sites makes the air mass classification scheme representative not just 

for a single observation site but for the entire German ultrafine aerosol network (GUAN).  

Data resources 

For the BTTP cluster algorithm, 3D-backward trajectories were calculated for 2009-2018 using a PC 

version of HYSPLIT, a trajectory model provided by the National Oceanic and Atmospheric Administration 

(NOAA) Air Resources Laboratory (Stein et al., 2015). Back trajectories were computed based on the 

Global Data Assimilation System (GDAS) analysis set which provides meteorological fields every 3 h, at 

a horizontal resolution of 1°, and at numerous standard pressure levels. 96-hour backward trajectories 

reaching at the receptor site were computed daily for a starting time of 12:00 UTC and a starting altitude of 

500 m above ground for the nine following locations: Augsburg (latitude: 48.36° N, latitude: 10.91° E), 

Bösel (53.00° N, 7.96° E), Fulda (50.55° N, 9.68° E), Melpitz (51.54° N, 12.93° E), Mülheim (51.45° N, 

6.87° E), Schauinsland (47.91° N, 7.91° E), Waldhof (52.80° N, 10.76° E), Zingst (54.44° N, 12.68° E), 

and Zugspitze (47.42° N, 10.98° E). Seven of these sites coincide with GUAN sites, two additional locations 

(Fulda, Zingst) were introduced to cover the area of Germany (roughly 1000 × 700 km) more evenly.  

Vertical profiles of pseudopotential temperature θv were retrieved from radiosounding data provided in 

the Upper Air section of the University of Wyoming Weather Web (University of Wyoming, Department 

of Atmospheric Science, Laramie, WY, USA). As in the case of the back trajectories, we strived to cover 

the area of Germany comprehensively. Radiosounding data from the following sites at 12:00 UTC were 

used: Bergen (WMO station code 10238, latitude: 52.81° N, longitude: 9.93 °E, altitude: 69 m), Essen 



(WMO 10410, 51.40° N, 6.97° E, 147 m), Lindenberg (WMO 10393, 52.21° N, 14.12° E, 112 m), 

Meiningen (WMO 10548, 50.56° N, 10.38° E, 450 m), München-Oberschleissheim (WMO 10868, 48.25° 

N, 11.55° E, 492 m), Schleswig (WMO 10035, 54.53° N, 9.55 °E, 47 m), and Stuttgart (WMO 10739, 48.83° 

N, 9.20° E, 321 m). These profiles of θv characterise the vertical structure of the atmosphere daily around 

mid-day. To represent the boundary layer, profile information was used between ground level and a height 

of 3300 m above ground. Importantly, it is not the absolute value of θv that matters for the likelihood of 

vertical air exchange but its vertical gradient (Stull, 2012). To make the profiles comparable throughout all 

seasons, all profiles were normalized to 0°C at a fixed height above ground. To avoid interference with 

surface-related phenomena such as local overheating, this height was set to 300 m above ground level at 

each site. Radiosounding profiles were re-gridded in order to match the length of the back trajectory vectors. 

Cluster algorithm 

Our cluster algorithm follows the k-means approach for clustering meteorological back trajectories 

(Dorling et al., 1992). In k-means clustering a fixed number k of clusters is defined prior to analysis. The 

algorithm aims at minimizing the distances between each object (3D-trajectory, and θv profile) to its cluster 

mean while maximizing the distances among different cluster means. In other words, trajectories are to be 

clustered in bundles as narrow as possible, with the difference among bundles being as large as possible. 

As a measure for the distance D between two objects, the following expression was used. 

𝐷 = ∑ [𝑙𝑖 ∗ ((𝜔𝛽 ∗ ∆𝛽𝑖)
2
+ (𝜔𝑧 ∗ ∆𝑧𝑖)

2 + (𝜔𝜃 ∗ ∆𝜃𝑖)
2)]𝑖                                                      (1) 

where, ωβ is the distance between two trajectory points in degrees in spherical coordinates. ωz is the 

distance between trajectories in the vertical dimension (height z). And ωθ is the difference between two 

corresponding points in the vertical profiles of θv. All squared distances are summed over the entire length 

of the trajectory vector (index i), weighted with a distance factor li. The distance factor li was set to unity at 

the start of the trajectory, and 0.2 at the end of each 96 h-trajectory, linearly interpolating in between. For 

the θv profiles, this corresponds to a weighing factor of 1 near the surface, and 0.2 aloft. The distance factor 

ensures that distances between trajectories and θv profiles far from the receptor point are not 

overemphasized. To make horizontal and vertical trajectory distances as well as distances in θv comparable 

both in magnitude and units, each parameter was scaled by appropriate weights.  

For the first step, the k-means cluster algorithm assigns all trajectories to k pre-defined clusters based 

on the minimum distance D between the trajectories and θv profiles. The pre-defined clusters involve 

straight trajectories radiating from the nine sites listed above in different directions, thereby sharing equal 

segments of the 360° horizon. Once all objects are allocated to their appropriate seed trajectory by the 

principle of the minimum distance D, new cluster mean values are calculated from all objects (3D-trajectory, 

and θv profile) within each cluster. Then, a new iteration is started, re-allocating all objects to the nearest 



new cluster means. This procedure is repeated until the allocation of objects to the k clusters converges and 

no more re-allocation occurs. 

It is an intrinsic property of the k-means clustering method that different initializations of the k seed 

trajectories might yield different clustering results. Likewise, the use of different weighing factors will 

usually yield different clustering results. Therefore, the cluster algorithm was run many times, using a range 

of cluster numbers k, and different angles of the k seed trajectories. Also, a range of weights ωβ, ωz and ωθ 

was used to check the sensitivity of the clustering results with respect to variations in these weights. In total, 

several 100 cluster analyses were performed, most of which yielded different cluster compositions. 

Evaluation of cluster results 

From previous work (Engler et al., 2012) we learned that in Central Europe surface-measured PM10 is a 

parameter rather sensitive towards the occurrence of different air mass types and seasonal variations in 

meteorology. We therefore evaluated the performance of the cluster algorithm with the aid of PM10 mass 

concentration data, a pollution parameter that is widely available from government monitoring sites in 

Germany (Minkos et al., 2019). For the evaluation, we collected PM10 mass concentrations from a total of 

142 urban and rural background stations across Germany. 

As a numerical criterion for the algorithm’s performance we computed a spread parameter S representing 

the standard deviation of the PM10 mean values for the k clusters from a particular cluster analysis run, 

weighted with the number of trajectories contained in each cluster. If this spread parameter S is high, a 

particular run is considered capable to explain the variations in PM10 as a function of back trajectories and 

θv profiles. If S is low, the particular run is obviously inefficient in explaining variations in PM10 mass 

concentrations. Guided by experience (Engler et al., 2012), we tested the cluster algorithm for a range of 

cluster numbers between 8 and 19. Our preferred solution contains a cluster number of k = 15. The 

judgement is based on observing more and more redundancies in the cluster composition (i.e. cluster means 

close to each other) for k > 15. Reducing the number of clusters below 15 would, conversely, merge clusters 

that could be clearly identified as typical weather situations in Central Europe. With respect to the weights 

ωβ, ωz and ωθ, we checked the following range of settings: ωβ = 1/° (default), ωz = 0~1 m-1, ωθ = 0~10 K-1. 

Sensitivity analysis revealed that the geographical origin of trajectories (β) and vertical stratification (θv 

profile) mattered most to achieve a good cluster separation. The vertical trajectory coordinate z turned out 

to be irrelevant to explaining variations in PM10 mass concentrations so it was subsequently set ωz = 0 and 

ignored hereafter. 

Final cluster solution 

The final cluster solution was obtained with a number of k = 15 clusters (i.e. air masses) and the settings 

ωβ = 1/° (default), ωz = 0, and ωθ = 1.6 K-1. The particular individual solution was selected among a group 

of 5 almost equivalent solutions having the largest separation parameter S, and providing a good visual 



display of back trajectory cluster means. The 15 cluster means (i.e. air masses) were labelled according to 

a system distinguishing seasonality and vorticity of the atmospheric circulation over central Europe. The 

15 clusters are named by seasons (CS: cold season, clusters composed predominantly of days centred 

around 15 January in winter; WS: warm season, those centred around 15 July; TS: transition season, those 

with most cases in between) and synoptic patterns (ST: Stagnant flow with no clear preference; A1: Anti-

cyclonic with air mass originating from Eastern Europe; A2: Anti-cyclonic with air mass originating from 

west; C1: cyclonic with air mass originating from relatively south; C2: cyclonic with air mass originating 

from the north). This nomenclature was chosen because it is familiar to meteorologists and can be linked 

to the existing knowledge of climatology in Central Europe. The solution presented here is, according to 

our judgement, an optimum representation of air masses in Central Europe with the aim of describing 

contrasts in surface-measured PM parameters.  
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