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Abstract. We developed a two-stage model called the
random-forest–generalised additive model (RF–GAM),
based on satellite data, meteorological factors, and other
geographical covariates, to predict the surface 8 h O3 con-
centrations across the remote Tibetan Plateau. The 10-fold
cross-validation result suggested that RF–GAM showed
excellent performance, with the highest R2 value (0.76)
and lowest root-mean-square error (RMSE) (14.41 µg m−3),
compared with other seven machine-learning models. The
predictive performance of RF–GAM showed significant
seasonal discrepancy, with the highest R2 value observed
in summer (0.74), followed by winter (0.69) and autumn
(0.67), and the lowest one in spring (0.64). Additionally, the
unlearning ground-observed O3 data collected from open-
access websites were applied to test the transferring ability
of the novel model and confirmed that the model was robust
in predicting the surface 8 h O3 concentration during other
periods (R2

= 0.67, RMSE= 25.68 µg m−3). RF–GAM
was then used to predict the daily 8 h O3 level over the
Tibetan Plateau during 2005–2018 for the first time. It was
found that the estimated O3 concentration displayed a slow
increase, from 64.74± 8.30 µg m−3 to 66.45± 8.67 µg m−3

from 2005 to 2015, whereas it decreased from the peak to
65.87± 8.52 µg m−3 during 2015–2018. Besides this, the
estimated 8 h O3 concentrations exhibited notable spatial
variation, with the highest values in some cities of the north-
ern Tibetan Plateau, such as Huangnan (73.48±4.53 µg m−3)
and Hainan (72.24± 5.34 µg m−3), followed by the cities in
the central region, including Lhasa (65.99± 7.24 µg m−3)

and Shigatse (65.15± 6.14 µg m−3), and the lowest O3
concentration occurred in a city of the southeastern Tibetan
Plateau called Aba (55.17±12.77 µg m−3). Based on the 8 h
O3 critical value (100 µg m−3) provided by the World Health
Organization (WHO), we further estimated the annual mean
nonattainment days over the Tibetan Plateau. It should be
noted that most of the cities on the Tibetan Plateau had
excellent air quality, while several cities (e.g. Huangnan,
Haidong, and Guoluo) still suffered from more than 40
nonattainment days each year, which should be given more
attention in order to alleviate local O3 pollution. The results
shown herein confirm that the novel hybrid model improves
the prediction accuracy and can be applied to assess the
potential health risk, particularly in remote regions with few
monitoring sites.

1 Introduction

Along with the rapid economic development and urbanisa-
tion, the anthropogenic emissions of nitrogen oxides (NOx)
and volatile organic compounds (VOCs) displayed high-
speed growth. The chemical reactions between NOx and
VOCs in the presence of sunlight triggered ambient ozone
(O3) formation (Wang et al., 2017, 2019). As a strong oxi-
dant, ambient O3 could play a negative role in human health
through aggravating the cardiovascular and respiratory func-
tion (Ghude et al., 2016; Marco, 2017; Yin et al., 2017a).
Apart from the effect on human health, O3 also posed a great
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threat to vegetation growth (Emberson et al., 2018; Feng
et al., 2015, 2019; Qian et al., 2018). Moreover, the tropo-
spheric O3 can perturb the radiative energy budget of the
earth–atmosphere system, as it is the third most important
greenhouse gas next to carbon dioxide (CO2) and methane
(CH4), thereby changing the global climate (Bornman et al.,
2019; Fu et al., 2019; Wang et al., 2019). Recently, the partic-
ulate matter with a concentration of less than 2.5 µm (PM2.5)
showed a persistent decrease, while the O3 issue has been
increasingly prominent in China (Li et al., 2017b, 2019b).
Therefore, it was critical to accurately reveal the spatiotem-
poral variation in O3 pollution and assess its heath risk in
China.

A growing body of studies began to investigate the spa-
tiotemporal variation in the O3 level worldwide. Wang et
al. (2014b) demonstrated that the 8 h O3 concentrations in
nearly all of the provincial cities experienced remarkable
increases during 2013–2014. Following this work, Li et
al. (2017b) reported that the annual mean O3 concentration
over China increased by 9.18 % during 2014–2016. In other
Asian countries except China, Vellingiri et al. (2015) per-
formed long-term observation and found that the O3 concen-
tration in Seoul, South Korea, has displayed a gradual in-
crease in recent decades. In the southeastern United States,
Li et al. (2018) observed that the surface O3 concentration
has displayed a gradual decrease in the past 10 years. Al-
though the number of ground-level monitoring sites has been
increasing globally, the limited monitoring sites still can-
not accurately reflect the fine-scale O3 pollution status be-
cause each site shows little spatial representativeness (0.25–
16.25 km2) (Shi et al., 2018). Furthermore, the number of
monitoring sites in many countries (e.g. China and the United
States) displays an uneven distribution characteristic at the
spatial scale. In China, most of these sites are concentrated
in the North China Plain (NCP) and Yangtze River Delta
(YRD), while western China has an extreme lack of ground-
level O3 data, which often increases the uncertainty of health
assessment. Therefore, many studies used various models
to estimate the O3 concentrations without monitoring sites.
Chemical transport models (CTMs) were often considered to
be the typical methods to predict the surface O3 level. Zhang
et al. (2011) employed the GEOS-Chem model to simulate
the surface O3 concentration over the United States, suggest-
ing that the model could capture the spatiotemporal varia-
tion in surface O3 concentration at a large spatial scale. Later
on, Wang et al. (2016) developed a hybrid model called land
use regression (LUR) coupled with CTMs to predict the sur-
face O3 concentration in the Los Angeles Basin, California.
In recent years, these methods were also applied to estimate
the surface O3 level over China. Liu et al. (2018) used the
Community Multiscale Air Quality (CMAQ) model to sim-
ulate the nationwide O3 concentration over China in 2015.
Nonetheless, the high-resolution O3 prediction using CTMs
might have widely deviated from the measured value, owing
to the imperfect knowledge about the chemical mechanism

and the higher uncertainty of the emission inventory. More-
over, the continuous emission data of NOx and VOCs were
not always open access, which restricted the long-term esti-
mation of the surface O3 concentration using CTMs.

Fortunately, the daily satellite data enable the fine-scale
estimations of the O3 level at a regional scale due to broad
spatial coverage and high temporal resolution (McPeters et
al., 2015). Shen et al. (2019) confirmed that the satellite-
retrieved O3 column amount could accurately reflect the spa-
tiotemporal distribution of the surface O3 level. Therefore,
some studies tried to use traditional statistical models cou-
pled with high-resolution satellite data to estimate the am-
bient O3 level. Fioletov et al. (2002) used the satellite mea-
surement to investigate the global distribution of O3 concen-
trations based on a simple linear model. Recently, Kim et
al. (2018) employed the integrated empirical geographic re-
gression method to predict the long-term (1979–2015) vari-
ation in ambient O3 concentration over the United States
based on O3 column amount data. Although the statistical
modelling of ambient O3 concentration is widespread around
the world, most of the traditional statistical modelling only
utilised the linear model to predict the ambient O3 concentra-
tion, which generally decreased the prediction performance
because the nonlinearity and high-order interactions between
O3 and predictors cannot be managed by a simple linear
model.

As an extension of traditional statistical model, machine-
learning methods have been widely applied to estimate the
pollutant levels in recent years because of their excellent pre-
dictive performances. Among these machine-learning algo-
rithms, decision tree models such as random forest (RF) and
extreme gradient boosting (XGBoost) generally showed fast
training speed and excellent prediction accuracy (Li et al.,
2020; Zhan et al., 2018). Furthermore, decision tree models
can obtain the contribution of each predictor to air pollutants,
which was beneficial to the parameter adaption and model
optimisation. Chen et al. (2018b) has firstly employed the
RF model to simulate the PM2.5 level in China since 2005.
Following this work, we recently used the XGBoost model
to estimate the 8 h O3 concentration on the island of Hainan
for the first time and captured the moderate predictive perfor-
mance (R2

= 0.59) (Li et al., 2020). While the decision tree
model showed many advantages in predicting the pollutant
level, the spatiotemporal autocorrelation of pollutant concen-
tration was not a concern in these studies. Li et al. (2019a)
confirmed that the prediction error by the decision tree model
varied greatly with space and time. Thus, it is imperative
to incorporate the spatiotemporal variables into the original
model to further improve the performance. To resolve the de-
fects of decision tree models, Zhan et al. (2018) developed
a hybrid model called RF-spatiotemporal Kriging (STK) to
predict the O3 concentration over China and achieved bet-
ter performance (overall – R2

= 0.69; southwestern China –
R2
= 0.66). Unfortunately, the RF–STK model still showed

some weaknesses in predicting O3 concentration. First of all,
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the predictive performance of the STK model was strongly
dependent on the number of monitoring sites and their spa-
tial densities. The model often showed worse predictive per-
formance in regions with few monitoring sites (Gao et al.,
2016). Moreover, the ensemble model cannot simulate the O3
level during the periods without ground-level-measured data.
In contrast, the generalised additive model (GAM) not only
considers the time autocorrelation of O3 concentration but
also shows better extrapolation ability (Chen et al., 2018a;
Ma et al., 2015). Thus, the ensemble model of RF and GAM
was proposed to predict the spatiotemporal variation in the
surface 8 h O3 concentration.

The Tibetan Plateau, the highest plateau in the world,
shows higher surface solar radiation compared with the re-
gions outside the plateau. It was well documented that high
solar radiation tended to generate a large amount of the OH
radical, resulting in the O3 formation via the reaction of VOC
and the OH radical (Ou et al., 2015). While the total O3 col-
umn amount on the Tibetan Plateau has displayed a slight de-
crease since the 1990s, the convergent airflow formed by sub-
tropical anticyclones could bring ozone-rich air surrounding
the plateau to the low atmosphere (Lin et al., 2008), thereby
leading to a higher surface O3 concentration over the plateau.
Most studies focused on the stratosphere–troposphere trans-
port of O3 on the Tibetan Plateau, whereas limited effort
was given to investigating the ground-level O3 level over this
region. To date, only several studies were concerned with
the spatiotemporal variation in the surface O3 concentration
in this region based on field-observation data (Chen et al.,
2019; Shen et al., 2014; Yin et al., 2017b). Unfortunately, the
few monitoring sites on the Tibetan Plateau cannot capture
the real O3 pollution status, especially in remote areas (e.g.
the northern part of the Tibetan Plateau), because each site
only possessed limited spatial representativeness. Apart from
these field measurements, Liu et al. (2018) (R = 0.60) and
Zhan et al. (2018) (R2

= 0.66) used CTMs and the machine-
learning model to simulate the surface O3 concentration over
China in 2015, respectively. Both of these studies included
the predicted O3 level on the Tibetan Plateau. Although they
finished the pioneering work, the predictive performances of
both studies were not excellent. Therefore, it was imperative
to develop a higher-quality model to enhance the modelling
accuracy.

Here, we developed a new hybrid-method (RF–GAM)
model integrating satellite data, meteorological factors, and
geographical variables to simulate the gridded 8 h O3 con-
centrations over the Tibetan Plateau for the first time. Based
on the estimated surface O3 concentration, we clarified the
long-term variation (2005–2018) of the surface O3 concen-
tration and quantified the key factors for the annual trend.
Filling the gap of statistical estimation of the 8 h O3 level in
a remote region, this study provides useful datasets for epi-
demiological studies and air quality management.

2 Materials and methods

2.1 Study area

The Tibetan Plateau is located in southwestern China, which
ranges from 26.00 to 39.58◦ N and from 73.33 to 104.78◦ E.
The Tibetan Plateau is surrounded by the Taklamakan Desert
to the north and Sichuan Basin to the southeast. The land
area of the Tibetan Plateau reaches 2.50×106 km2 (Chan
et al., 2006). Based on the air circulation pattern, the Ti-
betan Plateau can be roughly classified into the monsoon-
influenced region and the westerly-wind-influenced region
(Wang et al., 2014a). The annual mean air temperature in
most regions is below 0 ◦C. The annual mean rainfall amount
on the Tibetan Plateau ranges from 50 to 2000 mm. The ter-
rain conditions are complex, and higher altitudes are concen-
trated in the central region. The Tibetan Plateau is generally
treated as a remote region lacking in anthropogenic activ-
ity, and most of the residents are concentrated in the south-
eastern and southern parts of the Tibetan Plateau. The Ti-
betan Plateau consists of 19 prefecture-level cities, and their
names and corresponding geographical locations are shown
in Figs. 1 and S1.

2.2 Data preparation

2.2.1 Ground-level 8 h O3 concentration

The daily 8 h O3 data in 37 monitoring sites over the Ti-
betan Plateau from 13 May 2014 to 31 December 2018 were
collected from the national air quality monitoring network.
The O3 levels in all of these sites were determined using an
ultraviolet-spectrophotometry method. The highest 8 h mov-
ing average O3 concentration each day was calculated as the
daily 8 h O3 level after data quality assurance. The data qual-
ity of all the monitoring sites was assured on the basis of
the HJ 630-2011 specifications. The data with no more than
two consecutive hourly measurements missing in all the days
were treated as the valid data.

2.2.2 Satellite-retrieved O3 column amount

The O3 column amounts (DU: total molecules cm−2) dur-
ing 2005–2018 were downloaded from the Ozone Monitor-
ing Instrument O3 (OMI O3) level-3 data with a 0.25◦ spa-
tial resolution from the website of the National Aeronautics
and Space Administration (NASA) (https://acdisc.gsfc.nasa.
gov/data/Aura_OMI_Level3/OMDOAO3e.003/, last access:
19 May 2020). The OMI O3 product shows global cov-
erage and traverses the earth once a day. The O3 column
amount with a cloud radiance fraction >0.5, terrain reflectiv-
ity >30 %, and solar zenith angles >85◦ should be removed.
In addition, the cross-track pixels significantly influenced by
the row anomaly should be deleted.
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Figure 1. The geographical locations and annual mean 8 h O3 concentrations in the ground-observed sites (red dots) over the Tibetan Plateau
during 2014–2018. The elevation data are collected from geographical and spatial data cloud at a 30 m spatial resolution.

2.2.3 Meteorological data and geographical covariates

The daily meteorological data were obtained from ERA-
Interim datasets with 0.125◦ resolution. These meteorolog-
ical data consisted of the 2 m dew-point temperature (d2m),
2 m temperature (t2m), 10 m U wind component (u10), 10 m
V wind component (v10), boundary layer height (blh), sun-
shine duration (sund), surface pressure (sp), and total precip-
itation (tp). The 30 m resolution elevation data (DEM) were
downloaded from the China Resource and Environmental
Science Data Center (CRESDC). The data of the gross do-
mestic product (GDP) and population density with 1 km res-
olution were also extracted from CRESDC. Population den-
sity and GDP in 2005, 2010, and 2015 were integrated into
the model to predict the surface 8 h O3 concentration over
the Tibetan Plateau because these data were available every
5 years. Additionally, the land use data of 30 m resolution
(e.g. water, grassland, urban, forest) were also extracted from
CRESDC. Lastly, the latitude, longitude, and time were also
incorporated into the model.

All of the explanatory variables collected were resampled
to 0.25◦× 0.25◦ grids to predict the O3 level. The original
meteorological data with 0.125◦ resolution were resampled
to the 0.25◦ grid. The land use area, elevation, GDP, and
population density in each grid were calculated using spa-
tial clipping. Lastly, all of the predictors were integrated into
an intact table to train the model.

2.3 Model development and assessment

The RF–GAM model was regarded as the hybrid model of
RF and GAM. The RF–GAM model was a two-stage model
in which the prediction error estimated by the RF model
was then simulated by GAM. The prediction results of RF
and GAM were summed as the final result of the RF–GAM

model (Fig. 2). The detailed equation is as follows:

Z(s, t)= P(s, t)+E(s, t), (1)

where Z(s, t) is the estimated 8 h O3 level at the location s

and time t , P(s, t) represents the 8 h O3 concentration pre-
dicted by the RF model, and E(s, t) denotes the prediction
error by GAM.

In the RF model, a large number of decision trees were
planted based on the bootstrap sampling method. At each
node of the decision tree, the random samples of all predic-
tors were applied to determine the best split among them.
Following the procedure, a simple majority vote was em-
ployed to predict the 8 h O3 level. The RF model avoided a
priori linear assumption of O3 concentration and predictors,
which was often not in good agreement with the actual state.
The RF model has two key parameters, including ntree (the
number of trees grown) and mtry (the number of explanatory
variables sampled for splitting at each node). The prediction
performance of the RF model was strongly dependent on the
two parameters. The optimal ntree and mtry were determined
based on the least out-of-bag (OOB) errors. Based on the
iteration result, the optimal ntree and mtry reached 500 and
5, respectively. Besides this, the backward variable selection
method was performed on the RF submodel to achieve bet-
ter performance. At each step of the predictor selection, the
variable with the least important value was excluded from
the next step. This one-variable-at-a-time exclusion method
was repeated until only two explanatory variables remained
in the submodel. Finally, all of the selected variables except
the area of water were integrated into the model to achieve
the best prediction performance. The detailed RF model is as
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Figure 2. The workflow for predicting the spatiotemporal distributions of 8 h O3 levels.

follows:

O3 = O3 column+Elevation+Agr+Urban+Forest

+GDP+Grassland+Population+Prec+ T +WS
+P + tsun+RH, (2)

where O3 denotes the observed 8 h O3 level in the monitoring
site; the O3 column represents the O3 column amount in the
corresponding grid; Elevation denotes the corresponding el-
evation of the site; and Agr, Urban, Forest, and Grassland are
the agricultural land, urban land, forest land, and the grass-
land, respectively. Population represents the population den-
sity in the corresponding site. Prec, T , WS, P , tsun, and RH
are precipitation, air temperature, wind speed, air pressure,
sunshine duration, and relative humidity, respectively. Addi-
tionally, another five models, including the RF, generalised
regression neutral network (GRNN), backward-propagation
neural network (BPNN), Elman neural network (ElmanNN),
and extreme learning machine (ELM), also used the back-
ward variable selection method. The R2 value was treated as
an important parameter for adding or reducing the variable.
The variable should be removed when the R2 value of the
submodel showed a remarkable decrease with the integration
of this variable. Lastly, the optimal variable group was ap-
plied to establish the submodel.

Following the RF submodel, the prediction error estimated
by the RF submodel was further modelled by the GAM.

GAM could reflect the time autocorrelation of the predictive
error of RF model, and thus the ensemble model of RF and
GAM might decrease the modelling error of the one-stage
model. All of the variables were incorporated into the models
to establish the second-stage model, and the backward vari-
able selection was also used to determine the optimal variable
group.

The 10-fold cross-validation (CV) technique was em-
ployed to evaluate the predictive performances for all of the
machine-learning models. All of the training datasets were
randomly classified into 10 subsets uniformly. In each round
of validation, nine subsets were used to train, and the remain-
ing subset was applied to test the model performance. The
process was repeated 10 times until every subset has been
tested. Some statistical indicators, including the R2, root-
mean-square error (RMSE), mean prediction error (MPE),
relative percentage error (RPE), and the slope, were calcu-
lated to assess the model performance. The optimal model
with the best performance was used to estimate the 8 h O3
concentration in recent decades.
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Figure 3. Density scatterplots of model fitting and cross-validation results at a daily level. Panels (a), (b), and (c) represent RF–GAM, RF–
STK, and RF models, respectively. The red dotted line denotes the fitting linear-regression line. MPE, RMSE, and RPE are mean prediction
error (µg m−3), root-mean-square error (µg m−3), and relative percentage error (%), respectively.

Table 1. The R2 values, RMSE, MPE, and RPE of RF–GAM in
different years during 2014–2018 over the Tibetan Plateau.

2014 2015 2016 2017 2018

R2 0.69 0.72 0.76 0.73 0.75
RMSE 13.65 14.56 14.28 14.52 14.35
MPE 9.53 10.82 10.84 10.95 10.93
RPE 23.27 % 23.26 % 23.02 % 23.20 % 23.09 %

3 Results and discussion

3.1 The validation of model performance

Figures 3 and S2 show the density scatterplots of the
fitting and 10-fold cross-validation results for eight
machine-learning models for China. The 10-fold
cross-validation R2 values followed the order of RF–
GAM (R2

= 0.76)>RF–STK (R2
= 0.63)>RF (R2

=

0.55)>GRNN (R2
= 0.53)>BPNN (R2

= 0.50)>XGBoost
(R2
= 0.48)>ElmanNN (R2

= 0.47)>ELM (R2
= 0.32).

The RMSE values of RF–GAM, RF–STK, RF, GRNN,
XGBoost, BPNN, ElmanNN, and ELM were 14.41, 17.79,

Figure 4. The transferring-ability validation of RF–GAM method
based on the measured daily 8 h O3 concentration during Decem-
ber 2013–May 2014.

19.13, 19.41, 20.73, 20.06, 20.61, and 23.36 µg m−3,
respectively. Both the MPE and RPE showed similar charac-
teristics to RMSE of the order of RF–GAM (10.97 µg m−3

and 26.50 %) < RF–STK (13.48 µg m−3 and 35.15 %) < RF
(14.71 µg m−3 and 35.51 %) < GRNN (14.89 µg m−3 and
35.82 %) < BPNN (15.43 µg m−3 and 36.19 %) < ElmanNN

Atmos. Chem. Phys., 20, 6159–6175, 2020 https://doi.org/10.5194/acp-20-6159-2020
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Figure 5. The variable importance of predictors in the final RF–
GAM model.

(15.75 µg m−3 and 37.05 %) < XGBoost (15.80 µg m−3

and 38.13 %) < ELM (18.23 µg m−3 and 44.05 %) (Figs. 3
and S2). Besides this, the slope of the RF–GAM model
was closer to 1 compared with other models. It was well
documented that the RF model generally showed better
performance than other models because this method did
not need to define complex relationships between the
explanatory variables and the O3 concentration (e.g. linear
or nonlinear). Furthermore, the variable importance indi-
cators calculated by the RF model can help the user to
distinguish the key variables from the noise ones and make
full use of the strength of each predictor to assure the model
robustness. Although BPNN, GRNN, XGBoost, ElmanNN,
and ELM have been widely applied to estimate the air
pollutant concentrations (Chen et al., 2018c; Zang et al.,
2018; Zhu et al., 2019), these methods suffered from some
weaknesses in predicting the pollutant level. For instance,
both the BPNN and ElmanNN models could capture the
locally optimal solution when the training subsets were inte-
grated into the final model, which decreased the predictive
performance of the model (Wang et al., 2015). Moreover,
BPNN generally showed slow training speed, especially
with the huge training subsets (Li and Park, 2009; Wang et
al., 2015). ELM often consumed more computing resources
and experienced the overfitting issue due to the increase in
sampling size (Huang et al., 2015; Shao et al., 2015). The
GRNN method advanced the training speed compared with
the BPNN model and avoided the locally optimal solution
during the modelling process (Zang et al., 2019), whereas
the predictive performance is still worse than that of the
RF model. XGBoost was often considered to be robust in
predicting the air pollutant level (Li et al., 2020), while the
model did not display excellent performance in the present
study. This might be attributable to the sampling size in
the present study not being big enough because the model
generally showed better performance with big samples.

Table 2. The R2 values, RMSE, MPE, and RPE of RF–GAM in
four seasons over the Tibetan Plateau.

Spring Summer Autumn Winter

R2 0.64 0.74 0.67 0.69
RMSE 15.32 15.13 13.23 14.58
MPE 11.94 11.75 10.52 11.44
RPE 24.63 % 22.35 % 23.32 % 23.24 %

Table 3. The predictive performances of RF–GAM in different
provinces over the Tibetan Plateau.

Tibet Qinghai Gansu Sichuan Yunnan

R2 0.69 0.70 0.74 0.71 0.54
RMSE 14.81 14.83 13.65 13.23 12.49
MPE 11.24 11.33 10.88 10.08 10.20
RPE 22.90 % 22.65 % 22.51 % 22.62 % 25.85 %

Moreover, we found that the two-stage model was superior
to the one-way model in the predictive performance. This
encouraging result suggested that the relationship between
the predictors and the 8 h O3 concentration varied with
space and time. The two-stage model used the GAM method
to further adjust the prediction error of the RF model and
considered the spatiotemporal correlation of the predictor
error on the Tibetan Plateau. Although the STK model
incorporated space and time into the model simultaneously,
the RF–GAM model outperformed the RF–STK model. It
was assumed that the STK model showed higher uncertainty
in predicting the O3 concentration in regions with few sam-
pling sites (Gao et al., 2016; Li et al., 2017a). Overall, the
ensemble RF–GAM model showed significant improvement
in predictive performance.

The performances of RF–GAM displayed slight differ-
ences for each year during 2014–2018. As shown in Ta-
ble 1, the R2 value showed the highest value (0.76) in 2016,
followed by that in 2018 (0.75), 2017 (0.73), and 2015
(0.72), and showed the lowest one in 2014 (0.69). Both the
RMSE and MPE exhibited the lowest values in 2014, while
these parameters did not show significant variation during
2015–2018. The lowest R2 value and the highest RPE were
found in 2014 due to having the lowest sample size, while
the highest R2 value and lowest RPE in 2016 were due to
the maximum sample size. Geng et al. (2018) found that
the predictive performance of the machine-learning model
was strongly dependent on the number of training sam-
ples and sampling frequency. The lower RMSE and MPE
in 2014 might be attributable to the lack of measured O3
data in spring, which decreased the higher value of O3
concentration. The performances of the RF–GAM model
in four seasons were also assessed by 10-fold cross val-
idation (Table 2). The predictive performance of the RF–
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Figure 6. The mean value of estimated 8 h O3 concentration during
2005–2018 over the Tibetan Plateau.

GAM model showed significant seasonal differences, with
the highest R2 value observed in summer (0.74), followed
by winter (0.69) and autumn (0.67), and the lowest one
in spring (0.64). However, both the RMSE and MPE dis-
played different seasonal characteristics from the R2 value.
Both the RMSE and MPE for RF–GAM followed the or-
der of spring (15.32 and 11.94 µg m−3) > summer (15.13 and
11.75 µg m−3) > winter (14.58 and 11.44 µg m−3) > autumn
(13.23 and 10.52 µg m−3). The lowest R2 value in spring
might be caused by multiple O3 sources and complicate O3
formation mechanisms. On the one hand, the O3 in spring
might be generated from the local anthropogenic emission
or long-range transport (Li et al., 2017b, 2019b). On the
other hand, a strong stratosphere–troposphere exchange pro-
cess due to the lower height of the troposphere on the Ti-
betan Plateau might lead to the higher O3 concentration in
spring (Skerlak et al., 2014). Unfortunately, both the long-
range transport and stratosphere–troposphere exchange pro-
cess were missing in the RF–GAM model, which restricted
the accuracy of O3 estimation in spring. The large estimation
errors (e.g. RMSE, MPE, and RPE) in spring and summer
were attributable to the high 8 h O3 concentration in these
seasons, while the low prediction error observed in autumn
was due to the low O3 level.

Apart from the seasonal variation, we also investigated
the spatial variabilities in the predictive accuracy for the
RF–GAM model. The Tibetan Plateau was classified into
five provinces, and then the predictive performance of RF–
GAM model in each province was calculated. Among the five
provinces, Gansu displayed the highest R2 value (0.74), fol-
lowed by Sichuan Province (0.71), Qinghai Province (0.70),
the autonomous region of Tibet (0.69), and Yunnan Province
(0.54) (Table 3). The results shown herein were not in agree-
ment with the previous studies by Geng et al. (2018), who
confirmed that the predictive performance of the machine-
learning model was positively associated with the sampling

size. It was assumed that the spatial distribution of the sam-
pling sites in Tibet was uneven and the sampling density was
low, though Tibet possessed the highest number of moni-
toring sites of the provinces. The prediction errors (RMSE
and MPE) did not exhibit the same characteristics as the
R2 value. The higher RMSE and MPE were found in the
autonomous region of Tibet (14.81 and 11.24 µg m−3) and
Qinghai Province (14.83 and 11.33 µg m−3) due to the higher
values of blh and sund. The lowest values of the RMSE and
MPE could be observed in Yunnan Province, which was due
to the higher rainfall amount. The highest RPE was found
in Yunnan Province (25.85 %), followed by Tibet (22.90 %),
Qinghai (22.65 %), and Sichuan (22.62 %), and the lowest
one was found in Gansu Province (22.51 %), which might be
linked with the sample size.

Although 10-fold cross-validation verified that the RF–
GAM model showed better predictive performance in
estimating the surface 8 h O3 concentration, the test
method cannot validate the transferring ability of the fi-
nal model. The monitoring site on the Tibetan Plateau
before May 2014 is very limited, and only the daily
8 h O3 data in Lhasa from the open-access web-
site (https://www.aqistudy.cn/historydata/daydata.php?city=
%E6%8B%89%E8%90%A8&month=2013-12, last access:
19 May 2020) were available to compare with the simulated
data. As depicted in Fig. 4, the R2 value of the unlearning 8 h
O3 level against the predicted 8 h O3 concentration reached
0.67, which was slightly lower than that of the 10-fold cross-
validation R2 value. Overall, the extrapolation ability of the
RF–GAM model is satisfactory, and thus it was assumed that
the model could be applied to estimate the O3 concentration
in other years. Both the RMSE and MPE for the unlearning
8 h O3 level against the predicted 8 h O3 concentration were
significantly higher than those of the 10-fold cross valida-
tion. It was assumed that Lhasa showed a higher surface 8 h
O3 concentration over the Tibetan Plateau.

To date, some previous studies also simulated the sur-
face O3 concentration on the Tibetan Plateau using statistical
models (Zhan et al., 2018). For instance, Zhan et al. (2018)
employed the RF–STK model to estimate the surface O3 con-
centration over China and explained the 66 % spatial variabil-
ity in the O3 level on the Tibetan Plateau. Apart from these
statistical models, some classical CTMs were also applied to
estimate the O3 concentration in remote areas. Both Liu et
al. (2018) and Lin et al. (2018) used CMAQ to estimate the
O3 level across China, while the R2 values in most of cities
were lower than 0.50. In terms of the predictive performance,
the RF–GAM model in our study showed significant advan-
tages compared with previous studies. It should be noted that
our RF–GAM model could outperform most of current mod-
els, chiefly because of (1) accounting for the temporal auto-
correlation of the surface O3 concentration and (2) the use of
high-quality satellite data.
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Figure 7. The inter-annual variation in predicted 8 h O3 level (µg m−3) from 2005 to 2018 across the Tibetan Plateau.

3.2 Variable importance

The results of variable importance for key variables are de-
picted in Fig. 5. In the final RF–GAM model, it was found
that time was the dominant factor for the 8 h O3 concentra-
tion on the Tibetan Plateau, indicating that the ambient O3
concentration displayed significant temporal correlation. Fol-
lowing the time, meteorological factors served as the main
factors for the O3 pollution in remote regions. The sum of
sund, sp, d2m, t2m, and tp constituted 34.43 % of the overall
variable importance. Among others, sund was considered to
be the most important meteorological factor for the O3 pollu-
tion. It was assumed that strong solar radiation and long du-
ration of sunshine favoured the photochemical generation of
ambient O3 (Malik and Tauler, 2015; Stähle et al., 2018). Tan
et al. (2018) demonstrated that the chemical reaction between
NOx and VOCs was strongly dependent on the sunlight. Be-
sides this, the atmospheric pressure (sp) was also treated as
a major driver for the O3 pollution over the Tibetan Plateau.
Santurtún et al. (2015) have demonstrated that sp was closely
linked to the atmospheric circulation and synoptic-scale me-
teorological pattern, which could influence the long-range

transport of ambient O3. Apart from sund and sp, d2m and
t2m played significant role in the O3 pollution, which was
consistent with many previous studies (Zhan et al., 2018).
Zhan et al. (2018) observed that cold temperatures were not
favourable to the O3 formation. d2m can affect the surface
O3 pollution through two aspects. On the one hand, RH af-
fected heterogeneous reactions of O3 and particles (e.g. soot,
mineral) (He et al., 2017; He and Zhang, 2019; Yu, 2019).
On the other hand, high RH could increase the soil moisture
and evaporation, and thus the water-stressed plants tended to
emit more biogenic isoprene, thereby promoting the eleva-
tion of O3 concentration (Zhang and Wang, 2016). It should
be noted that the effect of precipitation on O3 pollution was
weaker than those of other meteorological factors. Zhan et
al. (2018) also found a similar result and believed that rain
scavenging served as the key pathway for the O3 removal
only when O3 pollution was very serious. The effect of the
O3 column amount on surface O3 concentration seemed to be
lower than those of most meteorological factors, suggesting
that vertical transport of ambient O3 was complex. Although
socioeconomic factors and land use types were not dominant
factors for the O3 pollution on the Tibetan Plateau, they still
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Figure 8. The trend analysis of predicted 8 h O3 concentration. Pan-
els (a) and (b) represent the result of Mann–Kendall method and
discrepancy of estimated O3 level during 2005–2018 across the Ti-
betan Plateau.

cannot be ignored in the present study because the predictive
performance would worsen if these variables were excluded
from the model. It was widely acknowledged that the anthro-
pogenic emissions focused on developed urban areas with
high population density, especially on the remote plateau
(Zhang et al., 2007; Zheng et al., 2017). Compared with the
urban land, the grassland played a more important role in the
O3 pollution on the Tibetan Plateau. It was thus assumed that
the grassland was widely distributed on the Tibetan Plateau,
which could release a large amount of biogenic volatile or-
ganic compounds (BVOCs) (Fang et al., 2015). It was well
known that photochemical reactions of BVOCs and NOx in
the presence of sunlight caused the O3 formation (Calfapietra
et al., 2013; Yu et al., 2006). Furthermore, Fang et al. (2015)
confirmed that BVOC emission on the Tibetan Plateau dis-
played a remarkable increase in the wet seasons.

3.3 The spatial distribution of estimated 8 h O3
concentration over the Tibetan Plateau

Figure 6 depicts the spatial distribution of the 8 h O3 level
estimated by the novel RF–GAM model. The spatial distri-
bution pattern modelled by the RF–GAM model showed a
similar characteristic to the results found by previous studies
except on the northern Tibetan Plateau (Liu et al., 2018). The
estimated 8 h O3 concentration displayed the highest value in
some cities of the northern Tibetan Plateau, such as Huang-
nan (73.48±4.53 µg m−3) and Hainan (72.24±5.34 µg m−3),
followed by the cities in the central region, including Lhasa
(65.99± 7.24 µg m−3) and Shigatse (65.15± 6.14 µg m−3),
and the lowest one was found in a city of the southeastern
Tibetan Plateau (Aba) (55.17± 12.77 µg m−3). The spatial
pattern of the 8 h O3 concentration is highly consistent with
the result predicted by Liu et al. (2018) using the CMAQ
model, while it is not in agreement with the result estimated
by Zhan et al. (2018) using the RF–STK model. The differ-
ence between the present study and Zhan et al. (2018) is seen
on the northern Tibetan Plateau, which lacks a monitoring
site and still has the higher uncertainty. Firstly, this might
be due to the weakness of RF–STK mentioned above. More-
over, Zhan et al. (2018) only used the ground-level-measured
data in 2015 to establish the model, and the data from new
sites since 2015 were not incorporated into the model, which
could increase the model uncertainty (Zhan et al., 2018). As
shown in Fig. 6, most of the cities in Qinghai Province (e.g.
Huangnan, Hainan, and Guoluo) generally showed a higher
8 h O3 concentration over the Tibetan Plateau, which was
in a good agreement with the spatial distribution of the O3
column amount (Fig. S3). Besides this, some cities in Tibet,
such as Shigatse and Lhasa, also showed higher 8 h O3 levels.
It was assumed that the precursor emissions in these regions
were significantly higher than those in other cities of the Ti-
betan Plateau (Fig. S4). Zhang et al. (2007) used the satel-
lite data to observe that the higher VOCs and NOx emission
was concentrated in the residential areas with high popula-
tion density on the remote Tibetan Plateau. Apart from the
effect of anthropogenic emission, the meteorological condi-
tions could also be important factors for the 8 h O3 concen-
tration. As shown in Figs. S5–S10, a higher blh and sp on the
northeastern Tibetan Plateau might promote the O3 forma-
tion through the reaction of the VOC and OH radical, lead-
ing to a higher 8 h O3 concentration in these cities (Ou et al.,
2015). In addition, a lower tp occurred on the northern Ti-
betan Plateau and the northeastern Tibetan Plateau, both of
which were unfavourable to the ambient O3 removal (Yoo et
al., 2014). In contrast, the higher tp observed on the south-
eastern Tibetan Plateau resulted in slight O3 pollution.
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Figure 9. The seasonal variability in estimated 8 h O3 level across the Tibetan Plateau. Panels (a–d) represent the predicted 8 h O3 concen-
trations in spring, summer, autumn, and winter, respectively.

Table 4. The estimated 8 h O3 concentration in 19 prefecture-level cities over the Tibetan Plateau during four seasons, including spring,
summer, autumn, and winter.

Province Spring Summer Autumn Winter Annual Measured O3 level

Aba Sichuan 65.61± 14.30 59.46± 14.32 45.55± 12.03 47.95± 10.55 55.17± 12.77 47.75± 19.47
Ngari Tibet 71.34± 3.12 70.10± 3.57 53.14± 3.67 51.84± 3.69 62.21± 3.34 53.34± 24.46
Qamdo Tibet 72.52± 4.29 62.74± 5.79 52.06± 4.01 55.42± 3.09 61.10± 3.93 59.76± 23.77
Diqing Yunnan 56.38± 7.87 44.35± 5.90 37.45± 5.76 45.88± 7.05 46.22± 6.51 47.81± 21.63
Gannan Gansu 76.77± 9.73 73.27± 10.67 54.74± 8.33 54.72± 6.95 65.60± 8.91 68.86± 25.45
Ganzi Sichuan 69.38± 10.99 61.45± 11.58 48.49± 8.79 50.94± 6.62 58.06± 9.48 38.07± 19.08
Guoluo Qinghai 80.12± 5.12 76.13± 5.83 58.86± 5.71 57.38± 4.66 68.77± 5.25 80.04± 23.90
Haibei Qinghai 78.18± 10.21 78.84± 10.31 60.90± 9.69 57.48± 9.78 69.47± 9.99 81.07± 32.74
Haidong Qinghai 74.20± 10.34 73.70± 9.12 53.61± 8.11 51.02± 9.60 63.84± 9.21 44.28± 34.96
Hainan Qinghai 83.01± 5.36 82.27± 5.72 61.57± 5.39 58.96± 5.44 72.24± 5.34 78.34± 27.11
Haixi Qinghai 79.39± 6.88 79.48± 7.79 60.78± 7.48 57.71± 6.99 69.99± 7.24 80.60± 27.17
Huangnan Qinghai 85.21± 4.98 83.01± 4.66 61.95± 4.18 60.62± 4.49 73.48± 4.53 74.83± 22.63
Lhasa Tibet 80.08± 9.63 70.13± 8.42 55.86± 5.78 55.85± 5.19 65.99± 7.24 75.45± 26.65
Nagqu Tibet 74.59± 5.13 70.46± 6.69 54.60± 5.16 53.53± 4.83 63.83± 5.23 44.79± 28.75
Shigatse Tibet 77.31± 8.62 69.66± 7.69 55.93± 4.58 55.57± 4.72 65.15± 6.14 75.62± 26.50
Shannan Tibet 73.90± 5.97 61.00± 5.86 54.70± 3.13 61.71± 4.32 63.04± 4.00 73.04± 26.31
Xining Qinghai 77.43± 10.27 77.84± 9.44 58.19± 9.29 54.72± 10.04 67.77± 9.70 61.77± 22.58
Yushu Qinghai 77.35± 5.55 73.34± 6.37 56.12± 5.53 55.02± 5.01 66.05± 5.50 57.14± 31.98
Nyingchi Tibet 73.22± 2.77 59.60± 2.33 53.84± 2.06 62.24± 3.63 62.40± 2.20 66.61± 26.71
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Figure 10. The spatial distributions of nonattainment days on the Tibetan Plateau during 2005–2018.

3.4 The temporal variation in the simulated 8 h O3
concentration over the Tibetan Plateau

The annual mean estimated 8 h O3 concentration on the Ti-
betan Plateau displayed a slow increase, from 64.74± 8.30
to 66.45± 8.67 µg m−3 in 2005–2015 (Table S1), whereas it
decreased from the peak to 65.87±8.52 µg m−3 during 2015–
2018 (Fig. 7). Based on the Mann–Kendall method (Fig. 8a),
it was found that the surface O3 concentration exhibited a
slight increase on the whole, while the degree of increase
was not significant (p>0.05). Besides this, it should be noted
that the O3 concentrations in various regions showed differ-
ent rates of increase. As depicted in Fig. 8b, we found that the
8 h O3 concentrations on the northern, western, and eastern
Tibetan Plateau displayed significant an increasing trend at
the rate of 1–3 µg m−3 during 2005–2018. The middle region
of the Tibetan Plateau showed a moderate increase trend at
the rate of 0–1 µg m−3. However, the 8 h O3 concentration in
Shigatse and Shannan even displayed a decreasing trend in
2005–2018.

Besides this, the 8 h O3 concentrations on the Tibetan
Plateau displayed significantly seasonal discrepancy. The
estimated 8 h O3 level on the Tibetan Plateau followed the
order of spring (75.00± 8.56 µg m−3) > summer (71.05±
11.13 µg m−3) > winter (56.39± 7.42 µg m−3) > autumn
(56.13± 8.27 µg m−3) (Fig. 9 and Table 4). The 8 h O3 con-
centrations in most of prefecture-level cities showed similar
seasonal characteristics, with overall seasonal variation on
the Tibetan Plateau. Based on the result summarised in
Table S2, it was found that the key precursors of ambient
O3 generally displayed higher emissions in winter compared
with other seasons. However, the seasonal distribution
of ambient O3 concentration was not in accordance with
the precursor emissions, suggesting that the meteorolog-
ical factors might play more important roles in ambient
O3 concentration. It was well known that the higher air
temperatures in spring and summer were closely related
to the low sp and high sund, both of which promoted O3
formation (Sitnov et al., 2017). Although summer showed
the highest air temperature and the longest sunshine dura-
tion, the higher rainfall amount in summer decreased the
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ambient O3 concentration via wet deposition (Li et al.,
2017a, 2019b). Moreover, the highest blh occurred in spring,
which was favourable to the strong stratosphere–troposphere
exchange process on the Tibetan Plateau (Skerlak et al.,
2014). Therefore, the 8 h O3 concentrations in summer and
winter were lower than that in spring. Nonetheless, the 8 h
O3 levels in Diqing, Shannan, and Nyingchi displayed the
highest values in spring (56.38± 7.87, 73.90± 5.97, and
73.22± 2.77 µg m−3), followed by winter (45.88± 7.05,
61.71± 4.32, and 62.24± 3.63 µg m−3) and summer
(44.35± 5.90, 61.00± 5.86, and 59.60± 2.33 µg m−3), and
the lowest ones in autumn (37.45± 5.76, 54.70± 3.13, and
53.84± 2.06 µg m−3). The lower O3 level in summer than
winter was mainly attributable to the higher precipitation
observed in the summer of these cities (Fig. S11). In addi-
tion, it should be noted that the NOx and VOC emissions of
the southern Tibetan Plateau (e.g. Shannan) exhibited higher
values in winter compared with other seasons.

3.5 The nonattainment days over the Tibetan Plateau
during 2005–2018

The annual mean nonattainment days in the 19 prefecture-
level cities over the Tibetan Plateau are summarised in Ta-
ble 2. The value of 100 µg m−3 was regarded as the critical
value for the 8 h O3 level by the World Health Organiza-
tion (WHO). Nonattainment days refer to total days with the
8 h O3 concentration higher than 100 µg m−3. Although the
annual mean 8 h O3 concentrations in all of the cities over
the Tibetan Plateau did not exceed the critical value, not all
of the regions experienced excellent air quality in the long
term (2005–2018). Some cities of Qinghai Province, includ-
ing Huangnan, Haidong, and Guoluo, suffered from 45, 40,
and 40 nonattainment days each year (Fig. 10 and Table 5).
Besides this, some cities on the southern Tibetan Plateau,
such as Shigatse and Shannan, also experienced more than
40 nonattainment days each year, suggesting that the Tibetan
Plateau still faced the risk of O3 pollution. Fortunately, some
remote cities, such as Ali, Ngari, and Qamdo, did not experi-
ence excessive O3 pollution all the time, which was ascribed
to low precursor emissions and appropriate meteorological
conditions. It should be noted that the nonattainment days in
regions with high O3 concentration showed significant sea-
sonal difference, whereas the seasonal difference was not re-
markable in cities with low O3 pollution. As shown in Ta-
ble 2, it should be noted that nearly all of the nonattainment
days could be detected in spring and summer, which was in
good agreement with the O3 levels in different seasons, in-
dicating that the O3 pollution issue should be given more at-
tention in spring and summer.

The determination of nonattainment days showed some
uncertainties, owing to the predictive error of modelled O3
concentration. First of all, meteorological data used in RF–
GAM model were collected from reanalysis data, and these
gridded data often showed some uncertainties, which could

Table 5. The mean nonattainment days (8 h O3 level >100 µg m−3)
in 19 prefecture-level cities over the Tibetan Plateau each year.

Spring Summer Autumn Winter Annual

Aba 0 0 0 0 0
Ngari 0 0 0 0 0
Qamdo 0 0 0 0 0
Diqing 0 0 0 0 0
Gannan 0 1 0 0 1
Ganzi 13 2 0 0 15
Guoluo 19 21 0 0 40
Haibei 0 0 0 0 0
Haidong 22 18 0 0 40
Hainan 14 12 1 0 27
Haixi 1 1 0 0 2
Huangnan 23 22 0 0 45
Lhasa 12 7 0 0 19
Nagqu 24 14 0 0 38
Shigatse 28 13 0 0 41
Shannan 33 7 0 0 40
Xining 2 1 0 0 3
Yushu 0 0 0 0 0
Nyingchi 0 0 0 0 0

increase the uncertainty of O3 estimation. Second, the O3
column amount used in the present study reflected the ver-
tical O3 column amount rather than the surface O3 concen-
tration. Thus, it could decrease the predictive performance of
the surface O3 level.

4 Summary and implications

In the present study, we developed a novel hybrid model
(RF–GAM) based on multiple explanatory variables to
estimate the surface 8 h O3 concentration across the
remote Tibetan Plateau. The 10-fold cross-validation
method demonstrated that RF–GAM achieved excellent
performance, with the highest R2 value (0.76) and lowest
root-mean-square error (RMSE) (14.41 µg m−3), compared
with other models, including the RF–STK, RF, BPNN,
XGBoost, GRNN, ElmanNN, and ELM models. Moreover,
the unlearning ground-level-measured O3 data validated the
fact that the RF–GAM model showed better extrapolation
performance (R2

= 0.67, RMSE= 25.68 µg m−3). The
result of variable importance suggested that time, sund, and
sp were key factors for the surface 8 h O3 concentration
over the Tibetan Plateau. Based on the RF–GAM model,
we found that the estimated 8 h O3 concentration exhib-
ited notable spatial variation, with higher values in some
cities of the northern Tibetan Plateau, such as Huangnan
(73.48± 4.53 µg m−3) and Hainan (72.24± 5.34 µg m−3),
and lower values in some cities of the southeastern Tibetan
Plateau, such as Aba (55.17± 12.77 µg m−3). Besides this,
we also found that the O3 level displayed a slow increase,
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from 64.74±8.30 to 66.45±8.67 µg m−3 from 2005 to 2015,
while the O3 concentration decreased to 65.87±8.52 µg m−3

in 2018. The estimated 8 h O3 level on the Tibetan Plateau
showed significant seasonal discrepancy in the order
of spring (75.00± 8.56 µg m−3) > summer (71.05±
11.13 µg m−3) > winter (56.39± 7.42 µg m−3) > autumn
(56.13± 8.27 µg m−3). Based on the critical value set by the
WHO, most of the cities on the Tibetan Plateau had excellent
air quality, while several cities (e.g. Huangnan, Haidong,
and Guoluo) still suffered from more than 40 nonattainment
days each year.

The RF–GAM model for O3 estimation has several lim-
itations. First of all, the O3 estimation of the northern Ti-
betan Plateau might show some uncertainties because there
are few ground-level monitoring sites, and thus we cannot
validate the reliability of predicted values in regions without
a monitoring site. Secondly, our approach did not include
data on the emission inventory or traffic count because the
continuous emissions of NOx and VOCs were not open ac-
cess. Lastly, we only focused on the temporal variation in the
surface O3 concentration in the past 10 years, and the short-
term O3 data cannot reflect the response of O3 pollution to
climate change. In the future work, we should combine more
explanatory variables such as long-term NOx and VOC emis-
sions to retrieve the surface O3 level over the Tibetan Plateau
in recent decades.
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