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Abstract. The Korean Geostationary Ocean Color Imager
(GOCI) satellite has monitored the East Asian region in high
temporal (e.g., hourly) and spatial resolution (e.g., 6 km) ev-
ery day for the last decade, providing unprecedented infor-
mation on air pollutants over the upstream region of the
Korean Peninsula. In this study, the GOCI aerosol optical
depth (AOD), retrieved at the 550 nm wavelength, is assim-
ilated to enhance the quality of the aerosol analysis, thereby
making systematic improvements to air quality forecasting
over South Korea. For successful data assimilation, GOCI
retrievals are carefully investigated and processed based on
data characteristics such as temporal and spatial distribu-
tion. The preprocessed data are then assimilated in the three-
dimensional variational data assimilation (3D-Var) technique
for the Weather Research and Forecasting model coupled
with Chemistry (WRF-Chem). For the Korea–United States
Air Quality (KORUS-AQ) period (May 2016), the impact
of GOCI AOD on the accuracy of surface PM2.5 predic-
tion is examined by comparing with effects of other obser-
vations including Moderate Resolution Imaging Spectrora-
diometer (MODIS) sensors and surface PM2.5 observations.
Consistent with previous studies, the assimilation of sur-
face PM2.5 measurements alone still underestimates surface
PM2.5 concentrations in the following forecasts, and the fore-
cast improvements last only for about 6 h. When GOCI AOD
retrievals are assimilated with surface PM2.5 observations,
however, the negative bias is diminished and forecast skills
are improved up to 24 h, with the most significant contribu-
tions to the prediction of heavy pollution events over South
Korea.

1 Introduction

With the recent increase in chemical and aerosol observations
in the troposphere, chemical data assimilation is expected to
play an essential role in improving air quality forecasting,
particularly in the real-time environment. Although various
data assimilation (or analysis) techniques have been devel-
oped for many decades, they were predominantly applied in
the context of numerical weather prediction (NWP) (Kalnay,
2003) and have not been extensively exploited for the predic-
tion of air pollution.

Uncertainties in aerosol chemistry, as well as its multiscale
interactions with daily changing weather conditions, make
it challenging to predict air pollutants accurately (Grell and
Baklanov, 2011; Baklanov et al., 2014; Kong et al., 2015;
Baklanov et al., 2017). Surface concentrations are directly
affected by the transport and dispersion of chemical species
through advection, convection, vertical diffusion, and surface
fluxes. In general, they are strongly driven by external forc-
ing such as anthropogenic and natural emissions. The latter
heavily relies on temperature, humidity, and wind speed in
the boundary layer as well as solar radiation and soil mois-
ture. Aerosols in turn affect local meteorology via aerosol–
meteorology interaction (by directly scattering and absorbing
solar radiation and also as sources of cloud condensation nu-
clei) at short timescales. For the operational air quality fore-
casting in South Korea, the Korean National Institute of Envi-
ronmental Research (NIER) performs chemical simulations
at 3 km resolution at present (Chang et al., 2016). For such a
high-resolution application and for situations with very high
aerosol concentrations, these fast-varying complex mecha-
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nisms might be better represented through online coupling
between chemical and meteorological components. The on-
line coupled forecasting system is particularly suitable for air
quality forecasting associated with strong synoptic forcing or
long-range transport of air pollutants. Also, finer-scale fea-
tures may require more frequent coupling of the atmospheric
system and only the online coupled system can provide the
framework for such applications.

With large uncertainties in chemical modeling and emis-
sion data, particularly associated with meteorological com-
ponents, one of the most effective ways of utilizing aerosol
observations is to assimilate them into the forecast model and
improve the initialization of aerosol simulations. However,
due to the scarcity of three-dimensional chemical observa-
tions and the complexity of how to project the observed in-
formation (usually in the optical properties) onto the param-
eterized schemes in the chemical model, aerosol or chemi-
cal data assimilation in coupled chemistry and meteorology
models has been limited to date (Bocquet et al., 2015). Im-
proving the quality of chemical assimilation will not only
improve the prediction of air pollution, but also advance nu-
merical weather prediction (NWP) for precipitation, visibil-
ity, and high-impact weather.

An international cooperative air quality field study con-
ducted in Korea, named Korea–United States Air Quality
(KORUS-AQ), was a field campaign jointly developed by
air quality researchers in the United States and South Ko-
rea to improve our understanding of major contributors to
poor air quality in Korea for 1 May–12 June 2016. During
this early summertime when it is mostly warm and humid,
numerous measurements of pollutants were made at multiple
platforms in an effort to identify local and transboundary pol-
lution sources contributing to the formation of ozone and fine
particulate matter (PM2.5). Although local emissions played
a nontrivial role throughout the period, the highest pollution
event occurred through the long-range transport from the up-
wind area on 25–27 May 2016 (Miyazaki et al., 2019). As the
transboundary transport cannot be fully measured by surface
stations over land, the proper use of satellite data that have a
wide spatial coverage would have great potential to improve
air quality forecasting for such events.

The Korean Geostationary Ocean Color Imager (GOCI)
onboard the Communication, Ocean, and Meteorology Satel-
lite (COMS) provides hourly aerosol optical depth (AOD)
retrievals at multiple spectral bands monitoring the East
Asian region centered on the Korean Peninsula during day-
time (Kim et al., 2017). Since its launch in 2010, the GOCI
satellite has been producing AOD retrievals at high spa-
tial and temporal resolution. It has long been demonstrated
that the GOCI data are of high accuracy, comparable to the
low-orbiting Moderate Resolution Imaging Spectroradiome-
ter (MODIS) and Visible Infrared Imaging Radiometer Suite
(VIIRS) products (Lee et al., 2010; Wang et al., 2013; Xiao
et al., 2016; Choi et al., 2018).

Liu et al. (2011) first implemented the capability of assim-
ilating AOD retrieved from MODIS satellite sensors (Remer
et al., 2005) into the National Centers for Environmental Pre-
diction (NCEP) Gridpoint Statistical Interpolation (GSI; Wu
et al., 2002; Kleist et al., 2009) system. Since they confirmed
that the AOD assimilation improved aerosol forecasts in a
dust storm event that occurred in East Asia, the GSI three-
dimensional variational data assimilation (3D-Var) system
has been widely used for air quality forecasting and extended
for additional aerosol observations such as surface particulate
matter – all particles with an aerodynamic diameter less than
2.5 µm (PM2.5) or up to 10 µm (PM10) (Schwartz et al., 2012
and Jiang et al., 2013, respectively).

GOCI AOD retrievals have been assimilated in several
studies to assess their impact on short-term air pollution
forecasts in the online coupled forecasting system. Saide
et al. (2014) performed the Observing System Experiment
(OSE) using the eight-bin MOdel for Simulating Aerosol In-
teractions and Chemistry aerosol model (MOSAIC) (Zaveri
et al., 2008) in the WRF-Chem/GSI 3D-Var system. Pang
et al. (2018) assimilated AOD retrievals from GOCI and the
Visible Infrared Imaging Radiometer Suite (VIIRS; Jackson
et al., 2013) to predict surface PM2.5 concentrations over
eastern China and found that the assimilation of AOD re-
trievals improved the forecast accuracy but still underesti-
mated heavy pollution events.

This work further extends the assimilation capabilities in
the GSI 3D-Var system to best use GOCI AOD retrievals dur-
ing the KORUS-AQ period with careful investigation of data
characteristics. Aiming to improve the operational air qual-
ity forecasting in Korea, which is currently lacking a state-
of-the-art analysis system, we are discussing how to effec-
tively assimilate satellite-derived aerosol data and examine
their impact on surface PM2.5 predictions compared to other
observations. In the categorical forecasts for different air pol-
lution events, we focus on severe pollution cases describing
how air pollutants evolve, coupled with the synoptic weather
systems.

A brief overview of the analysis and forecasting systems
used in this study is presented in Sect. 2, followed by cycling
experiments with details on observation processing for GOCI
retrievals described in Sect. 3. Results are summarized in
Sect. 4, discussing the observation impact during the cycles
and extended forecasts separately. Forecast performances in
heavy pollution events are briefly described as well. Finally,
conclusions are made in Sect. 5, along with a discussion on
the limitations of this study and suggestions for future re-
search.
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2 The WRF-Chem forecast model and the GSI 3D-Var
analysis system

2.1 WRF-Chem forecast model

The model used in this study is an online coupled me-
teorology and chemistry model, WRF-Chem version 3.9.1
(Grell et al., 2005). The physics options used in WRF-
Chem include the rapid radiative transfer model for gen-
eral circulation models (RRTMG) for longwave radiation (Ia-
cono et al., 2008), new Goddard shortwave radiation (Chou
and Suarez, 1994), the Yonsei University (YSU) planetary
boundary layer (PBL) scheme (Hong et al., 2006), the Lin
microphysics scheme (Lin et al., 1983), and a new Grell 3D
cumulus parameterization scheme. These options are chosen
based on the operational configuration currently used in the
Korean National Institute of Environmental Research (NIER)
for their daily air quality forecasting in South Korea. The
Goddard Chemistry Aerosol Radiation and Transport (GO-
CART; Chin et al., 2002), developed by the National Aero-
nautics and Space Administration (NASA), is used as an
aerosol scheme. Aerosol direct effects are allowed through
the interaction between GOCART and the Goddard short-
wave radiation scheme (Fast et al., 2006; Barnard et al.,
2010).

The Model for Ozone and Related Chemical Tracers
(MOZART) gas-phase chemistry (Emmons et al., 2010) is
generated with the kinetic preprocessor (KPP) (Damian et al.,
2002; Sandu and Sander, 2006) and is used together with the
simple GOCART aerosol scheme, known as the MOZCART
mechanism (Pfister et al., 2011). The MOZART chemistry
in WRF-Chem is designed to run with the Madronich FTUV
scheme for photolysis processes (Tie et al., 2003), reading
in climatological O3 and O2 overhead columns. It also uti-
lizes the standard WRF-Chem implementation of the Wesley
dry deposition scheme (based on Wesely, 1989) allowing for
seasonal changes in the dry deposition. The resolved-scale
wet scavenging is inactivated, but convective wet scaveng-
ing is applied in the Grell cumulus parameterization. Also,
GOCART sea salt emissions and dust emissions with AFWA
modifications (LeGrand et al., 2019) are included in this
study.

Anthropogenic emissions are estimated offline based on
the global EDGAR-Hemispheric Transport of Air Pollu-
tants (HTAP) emission inventory (http://edgar.jrc.ec.europa.
eu/htap_v2/, last access: 1 May 2018) that consists of 0.1◦×
0.1◦ grid maps of CH4, CO, SO2, NOx , NMVOC, NH3,
PM10, PM2.5, BC, and OC from the year 2010. The emis-
sion data mapped to our model grids have a single level
with no vertical variations and are generated from the an-
nual mean with no diurnal variations (e.g., time-invariant).
In terms of data range, the maximum (average) value of
PM2.5 in the data, for example, is 3.56 (0.032) and 2.84
(0.026) µg m−2 s−1 in domain 1 and 2, respectively.

Biogenic emissions are built up using the Model of Emis-
sion of Gases and Aerosol from Nature (MEGAN; version
2) (Guenther et al., 2006), and for biomass burning emis-
sions, daily fire estimates provided by the fire inventory from
NCAR (FINN; Wiedinmyer et al., 2011) are used with tracer
transport allowed. All the WRF files including biomass and
biomass burning emissions are processed using the MODIS
land use datasets (Friedl et al., 2002).

2.2 The GSI 3D-Var analysis system

2.2.1 Cost function

To assimilate AOD retrievals and surface PM2.5 observations
in the Weather Research and Forecasting-Chemistry (WRF-
Chem) model, the NCEP GSI 3D-Var version 3.5 system is
used. As Liu et al. (2011) and Schwartz et al. (2012) de-
scribed the details of the system for aerosol data assimilation,
only a brief explanation follows. Incorporating observations
into the three-dimensional model state space, a 3D-Var sys-
tem produces the best estimate to the true state by minimizing
the differences between observations and background fore-
casts (e.g., innovations; represented by o–b), which is called
the “analysis”. The analysis is then used to initialize aerosol
variables in the forecast model (e.g., WRF-Chem) so that the
quality of aerosol forecasts can be largely dependent on the
quality of the aerosol analysis produced in the 3D-Var sys-
tem. Given the model state vector (x), the penalty function
(or cost function) J (x) is defined as

J (x)=
1
2
(x− xb)

TB−1(x− xb)+
1
2
(H(x)− y)TR−1(H(x)− y), (1)

where xb stands for the background state vector (e.g., fore-
casts from the previous cycle), and y is an observation vec-
tor. Here, the terms of background (b) and forecast (f) are
used interchangeably throughout the paper; H is an obser-
vation operator that projects the model states onto the ob-
servation space linearly or nonlinearly to compute the model
correspondent to each observation. Background and obser-
vation error covariance matrices B and R, respectively, indi-
cate how reliable the background forecast (B in the first term)
and the observed information (R in the second term) might
be to determine how to properly weight the two disparate
resources. By minimizing the cost function (J (x)) with re-
spect to the model state vector x at the analysis time, the
variational analysis algorithm produces the analysis that fits
best to all the observations assimilated within the assimila-
tion time window.

To characterize the forecast error magnitude and its spa-
tial structure, background error covariance B is estimated
for each aerosol species using the National Meteorological
Center (NMC) method (Parrish and Derber, 1992) based on
the differences between 48 and 24 h WRF-Chem forecasts
valid at the same time for 30 samples ending at 00:00 UTC
in May 2016. The current GSI/3D-Var system does not al-
low cross-correlation between aerosol species or between
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aerosol and meteorological variables. As this is a 3D-Var
analysis with no time information, B only characterizes the
spatial correlations in each analysis variable, which deter-
mines how to propagate the observed information across the
model grids.

2.2.2 Observation operators

Following Liu et al. (2011) and Schwartz et al. (2012), this
study also takes the speciated approach whereby the analysis
vectors are comprised of 15 WRF-Chem/GOCART aerosol
variables – sulfate, organic carbon and black carbon, mineral
dust in five particle size bins (with effective radii of 0.5, 1.4,
2.4, 4.5, and 8.0 µm), sea salt in four particle size bins (with
effective radii of 0.3, 1.0, 3.25, and 7.5 µm for dry air), and
unspeciated aerosol contributions to PM2.5 – as opposed to
using the total aerosol mass of PM2.5 as the analysis variable
in Pagowski et al. (2010).

The observation operator H(x) for surface PM2.5 requires
10 GOCART aerosol variables as

H(x)= ρd[P +D1+ 0.286D2+ 1.8(O1+O2)+B1

+B2+S1+ 0.942S2+ 1.375U ], (2)

where P represents unspeciated aerosol contributions to
PM2.5; U denotes sulfate; O1 and O2 (B1 and B2) are hy-
drophobic and hydrophilic organic (black) carbon, respec-
tively; and D1 and D2 (S1 and S2) are dust (sea salt) aerosols
in the smallest and second-smallest size bins. This formula
originated from the WRF-Chem diagnostics of PM2.5 for the
GOCART aerosol scheme. PM observations are mass con-
centrations (µg m−3), while all the model variables listed
within the bracket on the right-hand side are aerosol mix-
ing ratios (µg kg−1); dry density ρd is thus required for the
unit conversion in Eq. (2).

In this study, we assimilate AOD retrievals at 550 nm from
both MODIS and GOCI sensors using the same observation
operator based on the community radiative transfer model
(CRTM; Han et al., 2006; Liu and Weng, 2006) as described
in Liu et al. (2011). Although the GOCART aerosol scheme
is well known to underestimate surface PM concentrations
due to the lack of secondary organic aerosol (SOA) forma-
tion, nitrate, and ammonium (Liu et al., 2011; Volkamer
et al., 2006; McKeen et al., 2009; Pang et al., 2018), it is
widely used in analysis studies because it is the only scheme
publicly available for assimilating AOD retrievals from satel-
lite data in the GSI system. Aerosol optical depth (AOD)
measures the amount of light extinction by aerosol scattering
and absorption in the atmospheric column, which depends
on the refractive indices and the size distribution of aerosol.
In GSI, the CRTM computes the effective radii and the re-
fractive indices of the 14 speciated WRF-Chem/GOCART
aerosol species, assuming spherical aerosol particles and log-
normal size distributions. Applying single-scattering prop-
erties of spheres by Mie theory, the mass extinction coeffi-
cient is computed as a function of the effective radius for

each aerosol species at a certain wavelength (here, 550 nm)
at each model level. The mass extinction coefficient (m2 g−1)
for each aerosol species multiplied by the aerosol layer mass
(g m−2) produces dimensionless AOD for the species at that
level. To represent the entire atmospheric column, model-
simulated AOD is then computed as the column integration
of AOD for all aerosol species. Using the CRTM as a forward
operator, AOD retrievals are assimilated separately or simul-
taneously with PM2.5 observations from the surface network
over East Asia, as described in the following section.

3 Cycling experiments

During the month of May 2016, observations are assimilated
in the GSI 3D-Var system to produce the analysis that is used
as an initial condition for the following WRF-Chem simula-
tions. WRF-Chem forecasts valid at the next analysis time
are then used as a first guess (or background) for the next
GSI analysis. In this study, the whole process is repeated ev-
ery 6 h (called “cycled”) for the month-long period. Here we
describe the analysis and the forecast systems used in the cy-
cling.

3.1 Model configurations and cycling

All the analyses and the following forecasts are conducted
over two one-way nested domains centered on the Korean
Peninsula, as shown in Fig. 1. Domain 1 uses 175×127 hor-
izontal grids at 27 km resolution, and domain 2 has 97×136
grids at 9 km resolution. Both domains have a total of 31 ver-
tical levels up to 50 hPa. The initial and boundary meteoro-
logical conditions for domain 1 are provided by the UK Met
Office Unified Model (UM-MET) global forecasts operated
by the Korean Meteorological Administration (KMA) with
a horizontal resolution of ∼ 25 km (0.3515◦× 0.234375◦)
at 26 isobaric levels every 6 h. This configuration was cho-
sen due to the limitation of computational resources, but
the use of higher resolutions both in time and space might
be desirable to further improve forecast skills in the fu-
ture. The chemical initial and boundary conditions for do-
main 1 are taken from the output of the global Model for
Ozone and Related Chemical Tracers (MOZART-4) (Em-
mons et al., 2010) converted to WRF-Chem species by us-
ing the “mozbc” utility (downloaded from https://www2.
acom.ucar.edu/wrf-chem/wrf-chem-tools-community/, last
access: 28 November 2018). Meteorological and chemical
fields in domain 1 are initialized from the global forecasts
every cycle, while initial and boundary conditions for do-
main 2 are nested down from domain 1 in a one-way nesting.
Aerosol and chemical initial conditions are then overwritten
by WRF-Chem forecasts from the previous cycle in each do-
main. The GSI analysis is consecutively performed in the two
domains using the same observations within each domain to
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Figure 1. Surface observation network with 960 Chinese stations and 361 Korean stations in domain 1 (a) and zoomed in over South Korea
in (b). A black box in (a) indicates domain 2 over the Korean Peninsula. Dots indicate surface PM2.5 observations averaged over the month
of May 2016.

update the initial conditions. During the cycles, 24 h forecasts
are initialized from the 00:00 UTC analysis every day.

3.2 Observations

3.2.1 Surface PM2.5

Hourly surface PM concentrations are provided by the NIER,
which collects real-time pollutant observations at 361 South
Korean stations from AirKorea (http://www.airkorea.or.kr,
last access: 11 September 2018) and those at ∼ 900 Chi-
nese sites from the China National Environmental Moni-
toring Centre (CNEMC; http://www.cnemc.cn, last access:
31 October 2017). Figure 1 shows the entire surface observ-
ing network that was used to assimilate surface PM2.5. Ob-
servation sites are concentrated in the urban area where many
sites are close enough to be overlapped with each other. The
Seoul Metropolitan Area (SMA; centered around 37.5◦ N,
127◦ E), for example, has hourly reports from a total of 41
stations.

As part of data quality control (QC), surface PM2.5 con-
centrations higher than 100 µg m−3 are not assimilated, and
observations producing innovations (represented as o–b) that
exceed 100 µg m−3 were also discarded during the anal-
ysis step. To accommodate most measurements in China
during heavy pollution events, a much higher threshold of
500 µg m−3 was once applied as the maximum observed
value in our test experiment for the same month-long cycles,
but it did not lead to any meaningful changes in the forecast
performance over South Korea (not shown). Presumably this

is because such high values were observed only over China
where air pollutants were already overestimated by emission
data based on the 2010 inventory such that the forecast skills
over Korea became insensitive to the assimilation of those
additional surface observations in China. Therefore, we ap-
plied the original threshold of 100 µg m−3 to all our experi-
ments presented here.

Observation error is composed of measurement error (εo)
and the representative error (εr) caused by the discrete model
grid spacing (e.g., εpm2.5 =

√
εo2+ εr2). Following Elbern

et al. (2007) and Schwartz et al. (2012), observation error
for surface PM2.5 increases with the observed value (xo) as
εo = 1.5+0.0075×xo. The representative error is formulated

as εr = γ εo

√
1x
L

, where γ is 0.5, 1x is grid spacing (here,
27 km for domain 1 and 9 km for domain 2), and the scaling
factor L is defined as 3 km. Based on this formula, observa-
tion error (εpm2.5 ) ranges from 2.0 to 3.2 µg m−3 in domain 2,
assigning the error of 2.48 µg m−3 to the PM2.5 observation
of 50 µg m−3, for example. In this 3D-Var analysis, observa-
tion errors are considered to be uncorrelated so that the ob-
servation error covariance matrix R becomes diagonal. Dur-
ing the 6 h cycling, all the surface observations within a±1 h
window at each analysis time were assimilated without fur-
ther adjustment of observation error.

3.2.2 AOD retrievals and observation preprocessing

Total AOD retrievals at 550 nm from MODIS sensors on-
board the Terra and Aqua satellites have been widely used
in aerosol studies (Zhang and Reid, 2006, 2010; Lee et al.,
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2011). But the polar-orbiting satellites produce a very limited
dataset temporally (mostly around 06:00 UTC only) and spa-
tially (with sparse coverage) over Korea during the KORUS-
AQ period. The MODIS AOD level 2 products over both the
land and ocean “dark” area are available at 10km× 10km
resolution and thinned over 60 km resolution during the GSI
analysis in this study. Following Remer et al. (2005), ob-
servation errors are specified as the retrieval errors: (0.03+
0.05×AOD) over ocean and (0.05+0.15×AOD) over land.
They do not include the representativeness error and are
slightly smaller than those for GOCI AOD, as described be-
low.

The GOCI satellite monitors the East Asian region cen-
tered on the Korean Peninsula (36◦ N, 130◦ E), covering
about 2500km× 2500km. GOCI level II data have eight
spectral bands from the visible to near-infrared range (412
to 865 nm) with hourly measurements during daytime from
09:00 (00:00 UTC) to 17:00 local time (08:00 UTC) at 6 km
resolution. As summarized in Choi et al. (2018), a recently
updated GOCI Yonsei aerosol retrieval (YAER) version 2 al-
gorithm targets cloud- and snow-free pixels over land and
cloud- and ice-free pixels over ocean in producing the level
II data. By adopting the MODIS and VIIRS aerosol retrieval
and cloud-masking algorithms, cloud pixels are filtered to
avoid cloud contamination, and high-reflectance or highly
heterogeneous reflectance pixels are also masked to further
increase data accuracy and consistency during the retrieval
process.

Unlike MODIS retrievals, GOCI AOD has not been ex-
tensively used in the data assimilation community. The GSI
system takes most observation types in PrepBUFR format,
which has already gone through some processing to be pre-
pared for data assimilation, but the preprocessing algorithms
are not publicly available. This means that when a new
dataset is assimilated in GSI, users need to investigate the
characteristics of the data (such as temporal and spatial dis-
tribution) and thereby make the data suitable for assimilation,
which is of crucial importance for the analysis quality.

In terms of temporal distribution, most GOCI level II data
are retrieved at 30 min past each hour in the hourly report.
For example, the actual time for most of the data reported at
00:00 UTC is centralized around 00:30:00 UTC (hh:mm:ss).
In the 3D-Var algorithm, there is no time dimension and all
observations are considered to be available at the analysis
time. To account for temporal distribution, different weights
are often given to observations based on the relative distance
between the actual report time and the analysis time during
the analysis step. However, taking possible latency in data
transfer and retrieval processing into consideration, it is not
legitimate to assign weights to the retrievals based on their
final report time without further information. Therefore, con-
sidering the high temporal and spatial variability of aerosols,
the assimilation window is set to ±1 h in order to avoid in-
consistent observed information within the window in this
study.

Satellite data are known to have a large positive impact on
the analysis quality thanks to the high data volume both in
time and space, but such high density violates the assump-
tion of uncorrelated observation errors in the analysis algo-
rithm and increases the computation time for the analysis
step excessively. Hence, a large volume of satellite retrievals
are typically sampled on a regularly spaced grid through the
horizontal thinning procedure. In GSI, satellite radiance data
can be thinned such that retrievals are randomly sampled
at a predefined spacing for each instrument type before be-
ing ingested into the observation operator during the analy-
sis (Rienecker et al., 2008). This thinning procedure, how-
ever, can pick up inconsistent data (near the cloud bound-
aries, for instance) and is reported as suboptimal (Ochotta
et al., 2005; Reale et al., 2018). Therefore, we decided to
preprocess GOCI AOD retrievals with superobing whereby
all the data points are averaged within a certain radius. In
this study, we superobed GOCI retrievals over each grid box
in domain 1 (at 27 km resolution). Figure 2 shows the sam-
ple horizontal distribution of GOCI AOD retrievals valid at
06:00 UTC on 1 May 2016 before (a) and after (b) prepro-
cessing them, comparing with those thinned over 60 km (c)
and 27 km meshes (d) during the GSI analysis, respectively.
Some high AOD values in the original dataset (as shown in
a), especially on cloud edges, cannot be fully resolved by our
27 km model grids. By averaging all data points over each
grid box at 27 km resolution, the superobed data in (b) have
a better quality control throughout the domain, reducing the
data volume effectively. The total number of observations
marked in the upper right corner of each panel indicates that
thinning over the 60 km mesh in (c) reduces the number of
assimilated observations to 2.5% of that in the original level
II data, while superobing and thinning over the 27 km mesh
utilize 8 %–10 % of the original data, representing the whole
data coverage fairly well.

It might be noteworthy to make two more points related
to data processing here. First, superobing was applied as part
of preprocessing before the GSI analysis is started while, the
thinning was conducted during the analysis step so that the
preprocessing could speed up the GSI analysis up to 25 times
(by injecting less than 10 % of the original data and turning
off the thinning process). This can facilitate the use of satel-
lite retrievals in operational air quality forecasting. Next, the
thinning algorithm in GSI V3.5 resulted in erroneous val-
ues in some places, as indicated by the maximum values in
(c) and (d). For the month of May 2016, multiple cases with
such extreme fake values were found after the thinning pro-
cess. This bug may need to be fixed in the GSI or avoided by
bounding the values exceeding the original data.

To examine the effect of data processing on the perfor-
mance of the analysis and the background during the cycles,
we compare two cycling experiments – one with the assimila-
tion of the original level II data thinned over the 27 km mesh
(named GOCI_orig in gray) and the other with the assimi-
lation of GOCI retrievals preprocessed over the 27 km grids
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Figure 2. Horizontal distribution of GOCI AOD at 550 nm retrieved at 06:00:00 UTC on 1 May 2016 in (a) the original level II data at 6 km
resolution, (b) the preprocessed data at 27 km resolution before GSI, and the data thinned over (c) 60 km and (d) 27 km resolution during
the GSI analysis. The total number of observations available for the GSI analysis is shown in the upper right corner of each panel, and the
maximum value is in the upper left corner of each map. Domain 2 is marked as a black box in each panel.

in domain 1 (called GOCI in black) – in Fig. 3. As GOCI
data are reported from 00:00 to 08:00 UTC, only 00:00 and
06:00 UTC cycles are shown here in consecutive cycle num-
bers. The time series of (o–a) and (o–b) in each experiment
show that the preprocessed data fit slightly better to the ob-
servations than the thinned data, assimilating more retrievals
throughout the period. Because the differences between the
two experiments are not significant, for computational effi-
ciency, we decided to preprocess all the GOCI retrievals and
assimilate them with the thinning process turned off in GSI
for the rest of the experiments shown in this study.

Choi et al. (2018) described their improved retrieval algo-
rithm (GOCI YAER V2) with updated cloud-masking and
surface reflectance calculations, making a long-term eval-

uation against other ground- and satellite-based measure-
ments. In their study, depending on the verifying objects –
either ground-based Aerosol Robotic Network (AERONET)
or satellite-based retrievals – they specified the uncertain-
ties of GOCI AOD retrievals over land and ocean using two
different linear regression formulae. We assign ε1 following
their error specification with respect to AERONET and ε2
based on their expected error against retrieved satellite AOD
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Figure 3. Time series of observation minus analysis (o–a; solid
lines) and observation minus background (o–b; dotted) with respect
to GOCI AOD retrievals at 550 nm for two cycling experiments over
domain 1. The GOCI_orig experiment assimilates the original data
thinned over the 27 km mesh (in gray), while the GOCI experiment
assimilates GOCI retrievals averaged over the 27 km grid mesh in
domain 1 (black). Cycle-mean values are displayed next to each
component. The total number of observations assimilated in each
experiment at each cycle is also plotted as the “o” sign on the right
y axis, ranging from 2000 to 12 000.

in GOCI YAER V2.

ε1
land
= 0.061+ 0.184τA (3)

ε1
ocean
= 0.030+ 0.206τA (4)

ε2
land
= 0.073+ 0.137τA (5)

ε2
ocean
= 0.037+ 0.185τA (6)

Here, τA stands for GOCI AOD values. In an effort to ac-
count for representativeness error, we also tried with ε2 in-
creased by 20 % everywhere as the third error formula (e.g.,
ε3 = 1.2× ε2) and compared all three types of errors in
Fig. 4. When these different observation errors were applied
to GOCI retrievals in the assimilation, the smallest error (ε2)
produced slightly better fits to observations, especially for
the high values (AOD > 2) during the cycles, as expected,
but not in a statistically meaningful way (not shown). In fact,
it is not straightforward to estimate the representativeness er-
ror, which is subject to the model resolution (in the both hor-
izontal and vertical) and data processing in use. Therefore,
in many cases, observation error is specified based on the re-
sulting forecast performance (Ha and Snyder, 2014). But be-
cause our forecast skills were not very sensitive to the three
different error formulae tried here, for the rest of the experi-
ments, ε2 is used as the observation error for GOCI retrievals.

The goal of this study is to examine the relative impact
of the GOCI assimilation on the prediction of surface PM2.5

Figure 4. Three different types of observation errors (ε) applied to
GOCI AOD retrievals over land (solid line) and ocean (dashed line).
The first two errors (ε1 and ε2) are described in Eqs. (3)–(6), and
the third error (ε3) increases ε2 by 20 % everywhere.

and ultimately to improve the forecasts for pollution events.
Although it is rather easy to render the analysis close to
GOCI observations by reducing the observation error, it is
not guaranteed that the analysis in good agreement with
AOD retrievals would actually lead to better forecasts in sur-
face PM2.5. This is partly because AOD, a column-integrated
quantity, is not directly associated with surface PM2.5 and
partly because large uncertainties in the forecast model and
the emission forcing can dominate over the analysis error
during the model integration. Even if the efficiency of assim-
ilating AOD toward improving surface PM2.5 forecasts can
be largely affected by the quality of the forecast model and
the emission data in use, the effectiveness of the AOD as-
similation is based on the relationship between the column-
integrated AOD and PM2.5 on the ground. Therefore, it might
be worth checking the correlation between GOCI AOD re-
trievals and surface PM2.5 observations for the cycling pe-
riod. Figure 5 depicts a scatter diagram of GOCI AOD re-
trievals at 550 nm and surface PM2.5 observations that are
collocated in each grid box in domain 1 for the month of
May 2016. As shown with the linear regression coefficient of
0.33, the two observation types have low correlations during
this period, which is consistent with previous studies (Saide
et al., 2014; Pang et al., 2018). Such an indirect relationship
between the two observations makes the analysis challenging
because it can induce a large error in the observation operator
and heavily depends on the model’s ability to derive PM2.5
from AOD based on the vertical structure of aerosol variables
and the conversion from aerosol mass to optical properties.
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Figure 5. Scatter plots of GOCI AOD retrievals versus ground
PM2.5 observations collocated in domain 1 for the month of
May 2016. The value of R is the correlation coefficient between
the two observation types based on the linear regression shown as
the red line.

4 Results

With a careful design of the model configuration and ob-
servation processing, the overall impact of assimilating all
the available observations (DA) is illustrated compared to
the baseline experiment without data assimilation (NODA)
in Fig. 6. Here, the 0–23 h hourly forecasts from all the
00:00 UTC analyses in domain 2 are concatenated for the en-
tire month. Surface PM2.5 observations marked as black dots
show that the air quality becomes distinctively aggravated
for the last 7 d, which is related to the long-range transport
of air pollutants. With data assimilation (DA), the analyses
at 00:00 UTC and the following forecasts (red) are in bet-
ter agreement with the corresponding observations than those
without assimilation (gray), especially from day 15 (e.g., af-
ter a full spin-up for 2 weeks). In particular, on 25–27 May,
forecast error grows quickly even from the good analysis at
00:00 UTC, possibly associated with large uncertainties in
lateral boundary conditions and the forecast model in use.
However, averaged over the entire period, the mean absolute
error (MAE) indicates that the performance of 0–23 h fore-
casts at 9 km resolution is improved by ∼ 30 % through data
assimilation.

4.1 Observation impact during the cycles

Given that the aerosol assimilation has a positive impact on
air quality forecasting, it might be worth isolating the con-
tribution of each observation type to the improvement of the
analysis and the following forecasts. We first assimilate indi-
vidual observation types separately, naming the experiment
following each observation type, then we assimilate them all
together (called ALL). Figure 7 illustrates the vertical profile

Figure 6. Time series of surface PM2.5 simulated with (DA; red)
and without assimilation (NODA; gray) in domain 2, represent-
ing hourly 0–23 h forecasts from 00:00 UTC every day, as averages
over 361 stations over South Korea. Corresponding observations are
marked as black dots. The mean absolute error (MAE; |o–f|) aver-
aged over the entire period is shown for each experiment. Here, DA
refers to the ALL experiment.

of 10 three-dimensional GOCART aerosol variables that are
used to diagnose PM2.5 in the GOCART scheme, the analy-
sis (solid), and background (e.g., 6 h forecast; dashed) aver-
aged over domain 2. Assuming that cycles may need to spin
up meteorology and chemistry at least for 3 d in the regional
simulations, all the statistics are computed from day 4 in the
rest of the figures. Although the analysis variables only at the
lowest model level are used in the observation operator for
surface PM2.5, the observation impact is detected throughout
the atmosphere due to the spatial correlations specified in
the background error covariance. Contributions of different
observations to each analysis variable vary, with the largest
variability in the analysis increments (analysis minus back-
ground) displayed in sulfate. Interestingly, a large impact of
AOD retrievals is noticed in hydrophilic organic carbon (O2)
aloft (e.g., between 12 and 25 levels) and unspeciated aerosol
(P ) in the boundary layer. The assimilation of all the observa-
tions (ALL) tends to reduce O2, dust in both size bins (D1 and
D2), and unspeciated aerosol (P ) in the lower atmosphere.

Figure 8 summarizes the effect of different observations on
PM2.5 in both domains. The assimilation of surface PM2.5
observations (green) results in the smallest PM2.5, while
the GOCI assimilation (blue) produces the largest PM2.5
throughout the atmosphere in both domains. When the anal-
ysis (solid line) is compared to background (dashed), it is
revealed that PM2.5 is predominantly increased over do-
main 1 with the assimilation of GOCI retrievals. Overall, the
aerosol assimilation affects the entire profile of PM2.5, with
the largest impact at the surface.

It is noted that the vertical distribution of the model aerosol
species is associated with the vertical stratification of the
model as well as the vertical distribution of the species in
the background error covariance. It might be worth evaluat-
ing the vertical structure of individual species simulated in
the model with respect to the vertical profiles observed dur-
ing the KORUS-AQ field campaign (such as NASA DC-8
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Figure 7. Vertical profile of 10 GOCART aerosol variables com-
posed of PM2.5 – unspeciated aerosol contributions to PM2.5 (P),
sulfate, OC1 and OC2 (BC1 and BC2) as hydrophobic and hy-
drophilic organic (black) carbon, respectively, and DUST1 and
DUST2 (SEAS1 and SEAS2) as dust (sea salt) aerosols in the small-
est and second-smallest size bins. All the variables shown are mix-
ing ratios ( µg kg−1). Different experiments are depicted in different
colors, as averaged over domain 2 for the period of 4–31 May 2016.
The analysis (A) is drawn as a solid line, while the background (e.g.,
6 h forecast; B) is drawn as a dashed line.

Figure 8. Same as Fig. 7, except for PM2.5 in both domains.

aircraft) in the future, although all the flight tracks were lim-
ited to the vicinity of the Korean Peninsula (Peterson et al.,
2019).

To understand the observation impact in the horizontal dis-
tribution, Fig. 9 shows the analysis increments (analysis mi-
nus background) averaged over the period of 4–31 May 2016.
Generally, the assimilation of surface PM2.5 observations
(PM) reduces surface PM2.5 over most regions in China,
while the GOCI assimilation largely increases surface PM2.5
almost everywhere, consistent with Fig. 8. As MODIS re-
trievals have a relatively low coverage of the East Asian
region for the entire period, they have the smallest impact
among all the observation types. When all the observations
are assimilated together (in ALL), it combines the effect of
surface PM2.5 and GOCI retrievals, changing the vertical dis-
tribution of aerosol species to match the AOD column values
and pulling the surface states towards surface PM2.5 concen-
trations. While the observing network of surface PM2.5 is
widely distributed over China, the impact of GOCI data is
more centralized over Korea, making unequivocal contribu-
tions to air quality forecasting in the Korean Peninsula.

Note that we employ the 2010 inventory for our emission
data, which does not reflect the emission control started from
2013 in China (Zheng et al., 2018). Given that air pollutants
in the emission data constitute the majority of the precur-
sors of PM2.5 pollution, surface PM2.5 concentrations could
strongly depend on emissions, which might have led to the
overestimation in the background (e.g., first guess). There-
fore, the assimilation of surface PM2.5 tends to counteract
the overestimation driven by the emission data over China.
On the other hand, over South Korea, the emission data do
not seem to be overestimated and the assimilation of surface
PM2.5 leads to increasing surface PM2.5 most effectively dur-
ing the cycles.

Different from surface particulate matter, AOD in the
background is contingent upon the optical properties de-
scribed in the observation operator (e.g., CRTM) and the ver-
tical structure of aerosols simulated in the column. The influ-
ence of the GOCI assimilation may indicate model deficien-
cies in the two aspects because the model states are pulled
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Figure 9. Horizontal distribution of analysis increments (analysis minus background) in PM2_5_DRY, the model variable corresponding
to PM2.5, at the lowest level in domain 1 averaged over the period of 4–31 May 2016. Maximum and mean values of the domain in each
experiment are shown in the upper right corner of each panel.

toward the observed information during the analysis step, as
depicted in the analysis increment.

4.2 Observation impact on 24 h forecasts

Since the real effect of data assimilation is manifested in
the subsequent forecasts, we now examine forecast improve-
ments when initialized by our own analyses. A good analysis
is expected to slow down the forecast error growth, leading
to better forecasts. In this subsection, forecast errors at the
lowest model level are compared between experiments for
24 h with respect to surface observations from various sites in
South Korea. As we focus on 9 km simulations over the Ko-
rean Peninsula, it is hard to anticipate the direct effect of the
assimilation beyond 24 h, especially in such a small domain

in which the weather systems dramatically change from day
to day. As shown in Fig. 10, the forecast error is the largest
in the baseline experiment (NODA), followed by the assimi-
lation of MODIS retrievals alone (MODIS) in terms of mean
absolute error (MAE). Note that the analysis in the PM ex-
periment is verified against the same surface PM2.5 observa-
tions used in the assimilation. Therefore, the analysis error is
smaller than those in other experiments, but the forecast error
grows quickly over the next 24 h. The assimilation of surface
PM2.5 alone generally underestimates the prediction of sur-
face PM2.5, with the fastest growth of forecast error. On the
other hand, the assimilation of AOD retrievals (either GOCI
or MODIS) alone does not improve the surface analysis and
mostly overestimates surface PM2.5 for 24 h.
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Table 1. Physical and chemical parameterizations used in the ex-
periments.

Physical processes Parameterization schemes

Aerosol chemistry GOCART
Gas-phase chemistry MOZART-4
Photolysis Fast TUV
Cloud microphysics Lin
Cumulus Grell 3D ensemble
Longwave radiation RRTMG
Shortwave radiation Goddard
PBL YSU
Surface layer Monin–Obukhov
Land surface Noah

Figure 10. Time series of root mean square error (RMSE; a) and
bias (b) of the hourly forecasts from the 00:00 UTC initialization
for 4–31 May 2016. Different experiments in domain 2 are veri-
fied against surface PM2.5 observations from 361 stations in South
Korea. An average of 0–24 h forecast errors is shown next to each
experiment name. The mean absolute error (MAE) over the 24 h
forecasts is also shown in panel (b).

This might be ascribed to an imperfection of the forward
operator of AOD and the model deficiency in the represen-
tation of three-dimensional aerosol species that comprised
AOD and PM2.5. When assimilated with surface PM2.5 ob-
servations (in ALL), however, AOD retrievals effectively
reduce the forecast error and suppress the error growth
throughout 24 h forecasts.

Table 2. Air quality index values.

Concentration Good Moderate Unhealthy Very
(µg m−3, unhealthy
hourly)

PM2.5 0–15 16–50 51–100 > 100

Recently, heavy pollution events have often taken place
over Korea, and considerable attention has been drawn to the
accuracy of operational air quality forecasting in the coun-
try, particularly in surface PM2.5. As accurately predicting
exceedance and non-exceedance events in categorical pre-
dictions has great social impact, it is necessary to evaluate
the forecast accuracy for different categorical events. While
Miyazaki et al. (2019) classified the entire KORUS-AQ cam-
paign period into four different phases based on dominant at-
mospheric circulation patterns, we categorize events for the
month of May 2016 based on hourly surface PM2.5 concen-
trations, as summarized in Tables 2 and 3. Figure 11 summa-
rizes the evaluation of 24 h forecasts based on the formulae
described below.

Overall_Accuracy(%)=
a1+ b2+ c3+ d4

N
× 100 (7)

High_Pollution_Accuracy(%)=
c3+ d4
III + IV

× 100 (8)

Overestimation(%)=
b1+ c1+ c2+ d1+ d2+ d3

N
× 100 (9)

Underestimation(%)=
a2+ a3+ a4+ b3+ b4+ c4

N
× 100 (10)

False_Alarm(%)=
II

II + IV
× 100 (11)

Detection_Rate(%)=
IV

III + IV
× 100 (12)

Here, I = a1+a2+b1+b2, II = c1+c2+d1+d2, III =
a3+ a4+ b3+ b4, and IV = c3+ c4+ d3+ d4.

The air quality forecasting operated by the Korean NIER is
currently evaluated in the same way on a daily basis, except
for daily mean values.

In all events, the overall accuracy of 0–24 h forecasts is the
highest in ALL (∼ 70 %) and the lowest in NODA (∼ 60 %),
which is about 10 % improvement through assimilation dur-
ing this KORUS-AQ period. It is noted that the forecast er-
ror illustrated in Fig. 10 is dominated by days with a clear
sky or moderate air quality conditions (about two-thirds of
the month-long period, as shown in Fig. 6), while the fore-
cast accuracy summarized in Fig. 11 is determined by equally
weighting different categorical forecasts with different sam-
ple sizes. This implies that the categorical forecast evaluation
tends to emphasize the forecast accuracy for pollution events
(which has a smaller sample size). As such, Fig. 11a high-
lights the effect of data assimilation on improving air pol-
lution forecasts. Differences between experiments are much
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Table 3. Categorical forecasts for different air pollution events.

Category Forecast

Good Moderate Unhealthy Very unhealthy

Observation Good a1 b1 c1 d1
Moderate a2 b2 c2 d2
Unhealthy a3 b3 c3 d3
Very unhealthy a4 b4 c4 d4

Figure 11. Time series of the forecast accuracy (%) of the hourly forecasts from the 00:00 UTC initialization for 4–31 May 2016 in domain
2 for categorized events based on hourly surface PM2.5 concentrations, as defined in Tables 2 and 3.

larger in high pollution events (Fig. 11b) and the detec-
tion rate (Fig. 11f) to which AOD retrievals (both GOCI
and MODIS) make the biggest positive contributions. While
NODA produces poor forecasts consistently in most met-
rics shown in Fig. 11, the forecast accuracy in PM (green)
drops very quickly for the first 12 h for all events (a) and
pollution events (b), indicating that the assimilation of sur-
face PM2.5 alone may not be enough to maintain the fore-
cast skills beyond the cycling frequency (e.g., 6 h). It also
increasingly underestimates surface PM2.5 with time, espe-
cially after 20 h, and produces more false alarms even though
its overestimation rate is the lowest among all experiments.
Overall, the AOD assimilation tends to overestimate the pre-
diction of surface PM2.5 with a relatively large false alarm

rate, but it clearly helps enhance the forecast accuracy up
to 24 h when assimilated with surface PM2.5 observations.
Even with low correlations with surface PM2.5 (as illustrated
in Fig. 5), AOD retrievals keep the surface air pollution fore-
casts from drifting away from the true state, compensating
for model deficiencies. This demonstrates that it could be
substantially beneficial to monitor a wide range of the sur-
rounding area using a geostationary satellite for the enhance-
ment of air quality forecasts.

In order to verify our forecasts against independent ob-
servations, we processed total AOD at 500 nm from the
Aerosol Robotic Network (AERONET; https://aeronet.gsfc.
nasa.gov/, last access: 1 February 2019) sites and surface
PM2.5 concentrations measured at three more stations op-

https://doi.org/10.5194/acp-20-6015-2020 Atmos. Chem. Phys., 20, 6015–6036, 2020

https://aeronet.gsfc.nasa.gov/
https://aeronet.gsfc.nasa.gov/


6028 S. Ha et al.: Improving air quality forecasting

Table 4. Forecast error in total AOD at 500 nm verified against AERONET sites, computed over 0–23 h forecasts from the 00:00 UTC
analysis for 4–31 May.

RMSE Bias

NODA PM MODIS GOCI ALL NODA PM MODIS GOCI All

Olympic Park 0.26 0.27 0.25 0.23 0.24 −0.18 −0.19 −0.17 −0.15 −0.16
Busan 0.22 0.22 0.19 0.17 0.18 −0.16 −0.16 −0.13 −0.11 −0.11
Gwangju 0.18 0.19 0.17 0.16 0.16 −0.11 −0.13 −0.1 −0.09 −0.1
Gangneung 0.18 0.18 0.17 0.13 0.13 −0.12 −0.12 −0.1 −0.07 −0.07
Anmyeon 0.26 0.27 0.24 0.22 0.22 −0.16 −0.17 −0.14 −0.11 −0.12
Baengnyeong 0.15 0.15 0.14 0.13 0.13 −0.04 −0.08 −0.03 −0.02 −0.04
KNU 0.24 0.25 0.22 0.2 0.21 −0.18 −0.18 −0.16 −0.14 −0.14
Gosan 0.21 0.21 0.18 0.15 0.15 −0.12 −0.14 −0.09 −0.08 −0.09
Seoul_SNU 0.22 0.23 0.21 0.2 0.2 −0.14 −0.16 −0.13 −0.12 −0.12
NIER 0.21 0.21 0.2 0.19 0.19 −0.13 −0.15 −0.12 −0.11 −0.12
YSU 0.22 0.23 0.21 0.2 0.2 −0.15 −0.17 −0.14 −0.13 −0.13
Daegwallyeong 0.13 0.12 0.12 0.09 0.09 −0.08 −0.07 −0.06 −0.03 −0.03
Iksan 0.35 0.35 0.33 0.28 0.29 −0.26 −0.26 −0.24 −0.2 −0.2
Ulsan 0.21 0.22 0.19 0.17 0.17 −0.17 −0.17 −0.14 −0.12 −0.13
Mokpo 0.21 0.22 0.19 0.18 0.18 −0.13 −0.14 −0.11 −0.1 −0.1
Taehwa 0.27 0.28 0.25 0.23 0.24 −0.17 −0.19 −0.16 −0.14 −0.15

erated by the NIER during the KORUS-AQ field campaign
(Fig. 12). The level 2 data are used for AERONET AOD ob-
servations as cloud-free and quality-assured data. Figure 13
illustrates the time series of hourly AOD from our exper-
iments compared to hourly averages of AOD observations
from eight AERONET sites (black dots). At all sites, GOCI
(blue) produces the largest AOD at most of the high peaks,
while PM (green) and NODA (gray) simulate the small-
est AOD throughout the period. Regardless of relative AOD
values between the experiments, model forecasts are well
matched with observations at low AOD values but mostly
miss high AOD observations, especially during the high pol-
lution events for 24–27 May. This leads to the negative mean
bias (as f–o) in all experiments (shown in the legend), im-
plying that our forecasts produce AOD slightly lower than
the observed one as a whole. The RMSE and mean bias at a
total of 16 AERONET sites are summarized in Table 4, in-
dicating that GOCI has the smallest forecast error in AOD
nationwide.

Surface PM2.5 measurements from three NIER sites were
downloaded from https://www-air.larc.nasa.gov/cgi-bin/
ArcView/korusaq (last access: 17 December 2019) as raw
data with no quality control. They are provided as hourly
averages starting from 9 May and compared to our hourly
model output for 9–31 May (Fig. 14). These observations
look somewhat noisy, but our forecasts broadly follow them
throughout the period. Similar to the AOD verification
shown in Fig. 13, forecasts from GOCI produce the smallest
forecast mean bias among all the experiments in Olympic
Park (a) and Daejeon (b), predicting high surface PM2.5
concentrations between 24 and 26 May. But GOCI was

Figure 12. Map of AERONET sites (black dots) used for the verifi-
cation shown in Fig. 13. The three red open dots are the stations op-
erated by the NIER to measure surface PM2.5 concentrations during
the KORUS-AQ field campaign, which are used in the verification
illustrated in Fig. 14.

worse than other experiments in Ulsan (c), overestimating
surface PM2.5, especially during high pollution days.

In the assimilation system, raw data are not considered to
be reliable, but this verification is included for completeness
because there was no other instrument that reported surface
PM2.5 concentrations or all the precursors of PM2.5 concen-
trations to validate PM2.5 forecasts on the ground level.
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Figure 13. Hourly time series of total AOD at 500 nm from 00:00 UTC on 4 May to 23:00 UTC on 31 May at eight different AERONET
sites. Model values in different colors represent output every hour beginning at the initial time and ending at the 23rd hour of integration
patched together for each 00:00 UTC forecast. The bias (represented as f–o) averaged over the entire period is shown next to each experiment
name. AERONET observations represent hourly averages as black dots.

4.3 A heavy pollution case

The effect of assimilating different observations is most dis-
tinguishable in high pollution events, as demonstrated in
Fig. 11. During the KORUS-AQ period, there were about five
heavy pollution cases (when surface PM2.5 > 50 µg m−3, as
defined in Table 2) over South Korea. The longest and the
most severe pollution events occurred on 25–26 May 2016.
Figure 15 illustrates how air pollutants were transported from
China, associated with the strong synoptic weather systems
in the region for a few days.

As the analysis of our best experiment ALL showed, the
Korean Peninsula was positioned in the downstream region
of the upper-level trough at 500 hPa (in the left panel). In the
low troposphere, the center of the North Pacific High was
situated in the east of Japan, bringing lots of moisture to Ko-
rea at 00:00 UTC on 24 May 2016 and blocking the east-
ward movement of the surface low-pressure system located
north of Korea (centered around 46◦ N, 125◦ E), as shown in
Fig. 15d. With the slowly approaching upper-level westerlies,
these warm and moist conditions in the low troposphere pro-
vided a favorable environment for increasing air pollution in
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Figure 14. Same as Fig. 13, but for surface PM2.5 concentrations
from 00:00 UTC on 9 May to 23:00 UTC on 31 May at (a) Olympic
Park in Seoul, (b) Daejeon, and (c) Ulsan. The sites are marked
as red open dots in Fig. 12. The RMSE over the whole period is
written next to each experiment name, along with the mean bias
(represented as f–o) in parentheses.

the Korean Peninsula for the next few days. At 00:00 UTC on
25 May, the Shangdong area in China (shown as the largest
polluted area to the west of Korea) exceeded 150 µg m−3 in
surface PM2.5 (Fig. 15b). This area has high topography with
elevations higher than 3.5 km (in height above ground level;
a.g.l.), while most regions in South Korea, especially the
Seoul Metropolitan Area (SMA), are elevated near sea level.
Therefore, when slow and deep baroclinic systems are ap-
proaching the Korean Peninsula like these events, a deep pool
of highly polluted air can be advected from China as a whole
to substantially degrade the air quality in South Korea at least
for a day or two. This long-range transport case produced an
hourly maximum surface PM2.5 observation of 117 µg m−3

over the SMA in Korea at 00:00 UTC on 26 May 2016, as
shown in Fig. 16a.

One notable difference between observations (a) and all
the model simulations (b–f) in Fig. 16 is that 9 km forecasts
driven by 0.1◦× 0.1◦ anthropogenic emissions cannot sim-
ulate such a high spatial variability across stations. During
this heavy pollution event, there were dozens of missing ob-
servations, resulting in fewer stations in (a) than all the ex-
periments (b–f). With only 145 stations reporting high con-
centrations (e.g., surface PM2.5 > 50 µg m−3), the observed
distribution still shows a sharp gradient between the stations,
especially in the SMA. Consistent with all the previous fig-
ures, the assimilation of surface PM2.5 alone (in PM) under-
predicts surface PM2.5 (even more than NODA), while GOCI
overpredicts surface PM2.5 the most among all observation
types almost everywhere except for the SMA. MODIS re-
trievals slightly increase the concentrations from NODA (by
∼ 10 µg m−3), with the spatial distribution almost the same
as that of NODA. In the concurrent assimilation of all the ob-
servations (in ALL), a moderate overestimation is presented
everywhere, but higher levels of pollution in the SMA are not
simulated either. To resolve such a large variability between
urban and rural areas and to increase the sharpness of the
forecast accuracy, the use of higher grid resolutions (such as
3 km), more accurate emission data, and more sophisticated
aerosol chemistry mechanisms might be indispensable.

5 Conclusions and discussion

GOCI AOD retrievals provide reliable and consistent aerosol
information, monitoring air pollutants over the Korean
Peninsula at high resolution every day. One of the best ways
of utilizing such invaluable observations is to inject them into
the forecast system through data assimilation and better ini-
tialize numerical forecasts. For the successful assimilation
of real observations, especially retrievals from satellites, ex-
tra attention should be paid to processing the data properly
based on the characteristics. The spatial and temporal rep-
resentativeness of GOCI retrievals was carefully examined
and the corresponding data processing was conducted before
assimilation in this study. We averaged all the pixels over
each grid box at 27 km resolution (e.g., superobing) instead
of thinning them randomly, for instance.

It is worth noting several challenges in the assimilation of
AOD retrievals for improving the prediction of surface PM2.5
concentrations: (i) AOD is not directly associated with PM2.5
concentrations on the ground. Although the two datasets can
be highly correlated in specific conditions such as cloud-free,
low boundary layer heights, and low relative humidity, the
overall correlation is low (∼ 0.3) in the present study and a
direct impact on each other cannot be expected. (ii) An obser-
vation operator for AOD has errors due to the simplification
and limited aerosol specifications in the community radiative
transfer model (CRTM). (iii) There is significant model er-

Atmos. Chem. Phys., 20, 6015–6036, 2020 https://doi.org/10.5194/acp-20-6015-2020



S. Ha et al.: Improving air quality forecasting 6031

Figure 15. The GSI 3D-Var analyses at 27 km resolution in domain 1 in the ALL experiment for 3 d from 24 to 26 May 2016 at 00:00 UTC
(top to bottom). (a–c) The horizontal distribution of surface PM2.5 (µg m−3; filled), geopotential height (contours every 40 m), and horizontal
winds (m s−1; gray vectors) at 500 hPa illustrates that the long-range transport of air pollution from China causes the heavy pollution over
South Korea. (d–f) Mean sea level pressure (contours every 4 hPa), 2 m temperature (K; filled), relative humidity (> 90 %; pink dots), and
horizontal winds (m s−1; gray vectors) at 850 hPa represent the weather system in the low troposphere at the same time.
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Figure 16. Horizontal distribution of 24 h forecast in 9 km simulations of PM2.5 at the lowest level in each experiment compared to (a) ob-
servations from 361 stations in South Korea valid at 00:00 UTC on 26 May 2016.

ror, which is presumably one of the most critical issues. In
the 3D-Var assimilation, in particular, the model estimates of
AOD, a column-integrated quantity, are strongly constrained
by the model error structure of each aerosol species both hor-
izontally and vertically.

Even with these challenges, however, satellite-based AOD,
especially from geostationary satellites like GOCI, can be ex-
tremely useful for improving the prediction of air pollution
on a daily basis. In the situation in which air quality can be
largely affected by the long-range transport of air pollutants,
such consistent information on the wide upstream area is es-
sential but hard to obtain otherwise.

Using the GSI 3D-Var system coupled with the WRF-
Chem forecast model, we assimilated satellite AOD re-
trievals and surface PM2.5 observations for the month of
May 2016 during the KORUS-AQ period. Compared to the
baseline experiment (NODA), the simultaneous assimilation

of various observations consistently improved the prediction
of ground PM2.5 for 24 h forecasts, reducing systematic er-
ror and false alarms. The assimilation of ground PM2.5 alone
improved the analysis during the cycles, reducing the analy-
sis error to almost half the size compared to the experiment
without assimilation. However, the forecast error grew very
quickly over the next 12 h, underestimating PM2.5 at the sur-
face, especially in heavy pollution events during which the
forecast accuracy dropped from over 70 % to ∼ 30 % in only
4 h. Meanwhile, the GOCI AOD retrievals alone tended to
overestimate surface PM2.5 but significantly contributed to
improving air quality forecasts up to 24 h when assimilated
with surface PM2.5 observations. The effect of data assimi-
lation is most distinguishable and remarkable for high pollu-
tion events. During the month of May 2016, most heavy pol-
lution events were associated with long-range transport from
China. In such cases, it was particularly beneficial to moni-
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tor the wide upstream region using geostationary instruments
such as GOCI.

To assess the effect of data assimilation with respect to in-
dependent observations, 0–23 h forecasts from different ex-
periments are verified against AOD from AERONET sites
and ground PM2.5 measurements from the sites operated dur-
ing the KORUS-AQ field campaign. In this verification, the
assimilation of GOCI retrievals is the most effective in im-
proving the forecast performance at most sites, especially for
high pollution events.

Even with successful data assimilation, there are several
limitations in this study. First, the simple GOCART aerosol
scheme is well known for the underestimation of air pollu-
tants due to the lack of aerosol size distribution and sec-
ondary organic aerosol (SOA) formation. We had to use
the scheme for the assimilation of AOD retrievals since
the observation operator for AOD was only built for the
GOCART scheme in the GSI system. Next, as there is no
cross-covariance between aerosol and meteorological vari-
ables considered in the background error covariance esti-
mates, the influence of aerosols on meteorological variables
was not fully simulated in this study. Without the assimilation
of meteorological observations, it was not possible to make
an optimal estimate that is fully coupled between chemistry
and meteorology, although the meteorological information
was provided through the first guess and lateral boundary
conditions. Finally, the emission inventory used in this study
was based on the annual mean of 2010, which did not re-
flect the actual emissions for the year 2016, especially over
China. The large bias and uncertainties in the emission data
were particularly detrimental to the assimilation of surface
PM2.5 alone.

To overcome the systematic underestimation of the GO-
CART aerosol scheme in the assimilation context, there is
an ongoing effort for the development of a new interface for
more sophisticated aerosol schemes such as MOSAIC and/or
the Modal Aerosol Dynamics in Europe and the volatility
basis set (MADE–VBS; Ackermann et al., 1998; Ahmadov
et al., 2012) in the WRFDA system (Barker et al., 2012). This
would be advantageous for more realistic forecast behavior
in high-resolution applications.

The positive impact of data assimilation is generally lim-
ited to 24 h forecasts for three major reasons: first, most air
pollutants have a short lifetime due to dry and wet deposi-
tion and transformations through interactions with solar radi-
ation and clouds. Secondly, pollutant transport and transfor-
mations in chemical transport models are strongly driven by
external forcing, such as emissions, boundary conditions, and
meteorological fields. Lastly, there are large uncertainties in
aerosol- and gas-phase chemistry parameterized in chemical
transport models. Therefore, to extend the period of fore-
cast improvements, emission data need to be improved, and
large uncertainties in chemical and meteorological boundary
conditions should be minimized. It has been shown that the
estimation of emission inventories as part of the DA pro-

cedure can help extend the impact of data assimilation in
longer forecasts (Elbern et al., 2007; Kumar et al., 2019).
Also, more sophisticated aerosol and chemical mechanisms
might be able to improve air quality forecasting by reducing
model deficiencies (Chen et al., 2019). A simultaneous as-
similation of meteorological observations and measurements
of individual chemical species as well as particulate matter
would certainly be beneficial in both NWP and air quality
forecasting. To better account for high nonlinearities and un-
certainties of aerosol forecasting on small scales, more ad-
vanced analysis techniques such as ensemble or hybrid data
assimilation would be more desirable.

Code and data availability. The WRF-Chem v3.9.1 codes are
freely available from the University Corporation for Atmospheric
Research (https://www2.mmm.ucar.edu/wrf/users/downloads.html,
last access: 15 May 2020). The GSI v3.5 model codes
are publicly available from the Developmental Testbed Center
(https://dtcenter.org/com-GSI/users/downloads/index.php, last ac-
cess: 15 May 2020).

Author contributions. ZL helped formulate the study, and WS per-
formed initial test runs. YL and LC provided input datasets, par-
tially funding this study. SH designed and ran the experiments, an-
alyzed the results, and wrote the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. All the experiments presented here were per-
formed on the Cheyenne supercomputer at the National Cen-
ter for Atmospheric Research (NCAR). This work was jointly
supported by the National Science Foundation and the National
Institute of Environment Research (NIER) funded by the Min-
istry of Environment (MOE) of the Republic of Korea. We ac-
knowledge the use of the WRF-Chem preprocessor tool (mozbc,
fire_emiss, megan_bio_emiss, and anthro_emiss) provided by the
Atmospheric Chemistry Observations and Modeling Lab (ACOM)
of NCAR. The authors are also grateful to Seunghee Lee, Gang-
han Kim, and Myong-In Lee at UNIST in South Korea for their
help transferring the input data for our experiments. Dave Gill and
Wei Wang at MMM/NCAR helped us process data in WPS and tune
the WRF configuration, respectively. Special thanks should go to
Gabriele Pfister at ACOM/NCAR and Dan Chen at the China Me-
teorological Administration for their internal review, which greatly
improved the paper. Two anonymous reviewers also helped to im-
prove the clarify of the paper.

Financial support. This research has been supported by the Na-
tional Science Foundation (grant no. M0856145) and the Ministry
of Environment (MOE) of the Republic of Korea (grant no. NIER-
SP2018-252).

https://doi.org/10.5194/acp-20-6015-2020 Atmos. Chem. Phys., 20, 6015–6036, 2020

https://www2.mmm.ucar.edu/wrf/users/downloads.html
https://dtcenter.org/com-GSI/users/downloads/index.php


6034 S. Ha et al.: Improving air quality forecasting

Review statement. This paper was edited by Ilona Riipinen and re-
viewed by two anonymous referees.

References

Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A.,
Binkowski, F. S., and Shankar, U.: Modal aerosol dynam-
ics model for Europe: development and first applications, At-
mos. Environ., 32, 2981–2999, https://doi.org/10.1016/S1352-
2310(98)00006-5, 1998.

Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Mid-
dlebrook, A. M., de Gouw, J. A., Meagher, J., Hsie, E.-Y., Edger-
ton, E., Shaw, S., and Trainer, M.: A volatility basis set model
for summertime secondary organic aerosols over the eastern
United States in 2006, J. Geophys. Res.-Atmos., 117, D06301,
https://doi.org/10.1029/2011JD016831, 2012.

Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner,
D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J.,
Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre,
S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Ko-
rsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura,
A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S.
T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos,
S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang,
Y.: Online coupled regional meteorology chemistry models in
Europe: current status and prospects, Atmos. Chem. Phys., 14,
317–398, https://doi.org/10.5194/acp-14-317-2014, 2014.

Baklanov, A., Brunner, D., Carmichael, G., Flemming, J., Freitas,
S., Gauss, M., Hov, O., Mathur, R., Schlünzen, K. H., Seigneur,
C., and Vogel, B.: Key Issues for Seamless Integrated Chemistry–
Meteorology Modeling, B. Am. Meteorol. Soc., 98, 2285–2292,
https://doi.org/10.1175/BAMS-D-15-00166.1, 2017.

Barker, D., Huang, X.-Y., Liu, Z., Auligné, T., Zhang, X., Rugg,
S., Ajjaji, R., Bourgeois, A., Bray, J., Chen, Y., Demirtas, M.,
Guo, Y.-R., Henderson, T., Huang, W., Lin, H.-C., Michalakes,
J., Rizvi, S., and Zhang, X.: The Weather Research and Fore-
casting Model’s Community Variational/Ensemble Data Assim-
ilation System: WRFDA, B. Am. Meteorol. Soc., 93, 831–843,
https://doi.org/10.1175/BAMS-D-11-00167.1, 2012.

Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P.,
and Laskin, A.: Technical Note: Evaluation of the WRF-Chem
”Aerosol Chemical to Aerosol Optical Properties” Module using
data from the MILAGRO campaign, Atmos. Chem. Phys., 10,
7325–7340, https://doi.org/10.5194/acp-10-7325-2010, 2010.

Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R.,
Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez
Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J.,
Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data
assimilation in atmospheric chemistry models: current status and
future prospects for coupled chemistry meteorology models, At-
mos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-
15-5325-2015, 2015.

Chang, L.-S., Cho, A., Park, H., Nam, K., Kim, D., Hong, J.-
H., and Song, C.-K.: Human-model hybrid Korean air qual-
ity forecasting system, J. Air Waste Manage., 66, 896–911,
https://doi.org/10.1080/10962247.2016.1206995, 2016.

Chen, D., Liu, Z., Ban, J., Zhao, P., and Chen, M.: Retrospec-
tive analysis of 2015–2017 wintertime PM2.5 in China: re-

sponse to emission regulations and the role of meteorology, At-
mos. Chem. Phys., 19, 7409–7427, https://doi.org/10.5194/acp-
19-7409-2019, 2019.

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B.,
Duncan, B., Martin, R., Logan, J., Higurashi, A., and
Nakajima, T.: Tropospheric Aerosol Optical Thick-
ness from the GOCART Model and Comparisons with
Satellite and Sun Photometer Measurements, J. At-
mos. Sci., 59, 461–483, https://doi.org/10.1175/1520-
0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002.

Choi, M., Kim, J., Lee, J., Kim, M., Park, Y.-J., Holben, B., Eck, T.
F., Li, Z., and Song, C. H.: GOCI Yonsei aerosol retrieval version
2 products: an improved algorithm and error analysis with uncer-
tainty estimation from 5-year validation over East Asia, Atmos.
Meas. Tech., 11, 385–408, https://doi.org/10.5194/amt-11-385-
2018, 2018.

Chou, M.-D. and Suarez, M. J.: An efficient thermal infrared radia-
tion parameterization for use in general circulation models, Tech.
Memo 104606 [NTIS N95-15745], NASA, 1994.

Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael,
G. R.: The kinetic preprocessor KPP-a software environment for
solving chemical kinetics, Comput. Chem. Eng., 26, 1567–1579,
https://doi.org/10.1016/S0098-1354(02)00128-X, 2002.

Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emis-
sion rate and chemical state estimation by 4-dimensional
variational inversion, Atmos. Chem. Phys., 7, 3749–3769,
https://doi.org/10.5194/acp-7-3749-2007, 2007.

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfis-
ter, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison,
D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer,
C., Baughcum, S. L., and Kloster, S.: Description and eval-
uation of the Model for Ozone and Related chemical Trac-
ers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67,
https://doi.org/10.5194/gmd-3-43-2010, 2010.

Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A.,
Barnard, J. C., Chapman, E. G., Grell, G. A., and Peckham,
S. E.: Evolution of ozone, particulates, and aerosol direct ra-
diative forcing in the vicinity of Houston using a fully coupled
meteorology-chemistry-aerosol model, J. Geophys. Res.-Atmos.,
111, D21305, https://doi.org/10.1029/2005JD006721, 2006.

Friedl, M., McIver, D., Hodges, J., Zhang, X., Muchoney, D.,
Strahler, A., Woodcock, C., Gopal, S., Schneider, A., Cooper,
A., Baccini, A., Gao, F., and Schaaf, C.: Global land cover
mapping from MODIS: algorithms and early results, Remote
Sens. Environ., 83, 287–302, https://doi.org/10.1016/S0034-
4257(02)00078-0, 2002.

Grell, G. and Baklanov, A.: Integrated modeling for fore-
casting weather and air quality: A call for fully cou-
pled approaches, Atmos. Environ., 45, 6845–6851,
https://doi.org/10.1016/j.atmosenv.2011.01.017, 2011.

Grell, G., Peckham, S., Schmitz, R., McKeen, S., Frost, G., Ska-
marock, W. C., and Eder, B.: Fully coupled “online” chem-
istry within the WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.
I., and Geron, C.: Estimates of global terrestrial isoprene
emissions using MEGAN (Model of Emissions of Gases and
Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210,
https://doi.org/10.5194/acp-6-3181-2006, 2006.

Atmos. Chem. Phys., 20, 6015–6036, 2020 https://doi.org/10.5194/acp-20-6015-2020

https://doi.org/10.1016/S1352-2310(98)00006-5
https://doi.org/10.1016/S1352-2310(98)00006-5
https://doi.org/10.1029/2011JD016831
https://doi.org/10.5194/acp-14-317-2014
https://doi.org/10.1175/BAMS-D-15-00166.1
https://doi.org/10.1175/BAMS-D-11-00167.1
https://doi.org/10.5194/acp-10-7325-2010
https://doi.org/10.5194/acp-15-5325-2015
https://doi.org/10.5194/acp-15-5325-2015
https://doi.org/10.1080/10962247.2016.1206995
https://doi.org/10.5194/acp-19-7409-2019
https://doi.org/10.5194/acp-19-7409-2019
https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
https://doi.org/10.5194/amt-11-385-2018
https://doi.org/10.5194/amt-11-385-2018
https://doi.org/10.1016/S0098-1354(02)00128-X
https://doi.org/10.5194/acp-7-3749-2007
https://doi.org/10.5194/gmd-3-43-2010
https://doi.org/10.1029/2005JD006721
https://doi.org/10.1016/S0034-4257(02)00078-0
https://doi.org/10.1016/S0034-4257(02)00078-0
https://doi.org/10.1016/j.atmosenv.2011.01.017
https://doi.org/10.1016/j.atmosenv.2005.04.027
https://doi.org/10.5194/acp-6-3181-2006


S. Ha et al.: Improving air quality forecasting 6035

Ha, S.-Y. and Snyder, C.: Influence of Surface Observa-
tions in Mesoscale Data Assimilation Using an Ensem-
ble Kalman Filter, Mon. Weather Rev., 142, 1489–1508,
https://doi.org/10.1175/MWR-D-13-00108.1, 2014.

Han, Y., van Delst, P., Liu, Q., Weng, F., Yan, B., Treadon, R.,
and Derber, J.: JCSDA Community Radiative Transfer Model
(CRTM) – Version 1, NOAA tech. rep. NESDIS 122, 2006.

Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Dif-
fusion Package with an Explicit Treatment of Entrain-
ment Processes, Mon. Weather Rev., 134, 2318–2341,
https://doi.org/10.1175/MWR3199.1, 2006.

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W.,
Clough, S. A., and Collins, W. D.: Radiative forcing by
long-lived greenhouse gases: Calculations with the AER ra-
diative transfer models, J. Geophys. Res., 113, D13103,
https://doi.org/10.1029/2008JD009944, 2008.

Jackson, J. M., Liu, H., Laszlo, I., Kondragunta, S., Remer, L. A.,
Huang, J., and Huang, H.-C.: Suomi-NPP VIIRS aerosol algo-
rithms and data products, J. Geophys. Res.-Atmos., 118, 12673–
12689, https://doi.org/10.1002/2013JD020449, 2013.

Jiang, Z., Liu, Z., Wang, T., Schwartz, C. S., Lin, H.-C.,
and Jiang, F.: Probing into the impact of 3DVAR assimi-
lation of surface PM10 observations over China using pro-
cess analysis, J. Geophys. Res.-Atmos., 118, 6738–6749,
https://doi.org/10.1002/jgrd.50495, 2013.

Kalnay, E.: Atmospheric Modeling, Data Assimilation and Pre-
dictability, Cambridge Univ. Press, Cambridge, available at: http:
//cds.cern.ch/record/992314 (last access: 2 May 2018), 2003.

Kim, J., Kim, M., and Choi, M.: Monitoring Aerosol Proper-
ties in East Asia from Geostationary Orbit: GOCI, MI and
GEMS, 323–333, Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-319-59489-7_15, 2017.

Kleist, D. T., D. F. Parrish, J. C. D., Treadon, R., Wu, W.-S., and
Lord, S.: Introduction of the GSI into the NCEP Global Data
Assimilation System, Weather Forecast., 24, 1691–1705, 2009.

Kong, X., Forkel, R., Sokhi, R. S., Suppan, P., Baklanov, A.,
Gauss, M., Brunner, D., Barò, R., Balzarini, A., Chemel,
C., Curci, G., Jiménez-Guerrero, P., Hirtl, M., Honzak, L.,
Im, U., Pérez, J. L., Pirovano, G., San Jose, R., Schlünzen,
K. H., Tsegas, G., Tuccella, P., Werhahn, J., Z̆abkar, R.,
and Galmarini, S.: Analysis of meteorology-chemistry interac-
tions during air pollution episodes using online coupled mod-
els within AQMEII phase-2, Atmos. Environ., 115, 527–540,
https://doi.org/10.1016/j.atmosenv.2014.09.020, 2015.

Kumar, R., Delle Monache, L., Bresch, J., Saide, P. E., Tang,
Y., Liu, Z., da Silva, A. M., Alessandrini, S., Pfister, G.,
Edwards, D., Lee, P., and Djalalova, I.: Toward Improving
Short-Term Predictions of Fine Particulate Matter Over the
United States Via Assimilation of Satellite Aerosol Optical
Depth Retrievals, J. Geophys. Res.-Atmos., 124, 2753–2773,
https://doi.org/10.1029/2018JD029009, 2019.

Lee, H. J., Liu, Y., Coull, B. A., Schwartz, J., and Koutrakis,
P.: A novel calibration approach of MODIS AOD data to pre-
dict PM2.5 concentrations, Atmos. Chem. Phys., 11, 7991–8002,
https://doi.org/10.5194/acp-11-7991-2011, 2011.

Lee, J., Kim, J., Song, C. H., Ryu, J.-H., Ahn, Y.-H.,
and Song, C.: Algorithm for retrieval of aerosol optical
properties over the ocean from the Geostationary Ocean

Color Imager, Remote Sens. Environ., 114, 1077–1088,
https://doi.org/10.1016/j.rse.2009.12.021, 2010.

LeGrand, S. L., Polashenski, C., Letcher, T. W., Creighton, G. A.,
Peckham, S. E., and Cetola, J. D.: The AFWA dust emission
scheme for the GOCART aerosol model in WRF-Chem v3.8.1,
Geosci. Model Dev., 12, 131–166, https://doi.org/10.5194/gmd-
12-131-2019, 2019.

Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk param-
eterization of the snow field in a cloud model, J. Clim.
Appl. Meteorol., 22, 1065–1092, https://doi.org/10.1175/1520-
0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983.

Liu, Q. and Weng, F.: Advanced Doubling-Adding Method for Ra-
diative Transfer in Planetary Atmospheres, J. Atmos. Sci., 63,
3459–3465, https://doi.org/10.1175/JAS3808.1, 2006.

Liu, Z., Liu, Q., Lin, H.-C., Schwartz, C. S., Lee, Y.-H., and
Wang, T.: Three-dimensional variational assimilation of MODIS
aerosol optical depth: Implementation and application to a
dust storm over East Asia, J. Geophys. Res., 116, D23206,
https://doi.org/10.1029/2011JD016159, 2011.

McKeen, S., Grell, G., Peckham, S., Wilczak, J., Djalalova, I., Hsie,
E.-Y., Frost, G., Peischl, J., Schwarz, J., Spackman, R., Hol-
loway, J., de Gouw, J., Warneke, C., Gong, W., Bouchet, V., Gau-
dreault, S., Racine, J., McHenry, J., McQueen, J., Lee, P., Tang,
Y., Carmichael, G. R., and Mathur, R.: An evaluation of real-
time air quality forecasts and their urban emissions over east-
ern Texas during the summer of 2006 Second Texas Air Qual-
ity Study field study, J. Geophys. Res.-Atmos., 114, D00F11,
https://doi.org/10.1029/2008JD011697, 2009.

Miyazaki, K., Sekiya, T., Fu, D., Bowman, K. W., Kulawik,
S. S., Sudo, K., Walker, T., Kanaya, Y., Takigawa, M., Ogochi,
K., Eskes, H., Boersma, K. F., Thompson, A. M., Gaubert,
B., Barre, J., and Emmons, L. K.: Balance of Emission
and Dynamical Controls on Ozone During the Korea-United
States Air Quality Campaign From Multiconstituent Satellite
Data Assimilation, J. Geophys. Res.-Atmos., 124, 387–413,
https://doi.org/10.1029/2018JD028912, 2019.

Ochotta, T., Gebhardt, C., Saupe, D., and Wergen, W.: Adaptive
thinning of atmospheric observations in data assimilation with
vector quantization and filtering methods, Q. J. Roy. Meteor.
Soc., 131, 3427–3437, https://doi.org/10.1256/qj.05.94, 2005.

Pagowski, M., Grell, G. A., McKeen, S. A., Peckham, S. E., and
Devenyi, D.: Three-dimensional variational data assimilation of
ozone and fine particulate matter observations: some results us-
ing the Weather Research and Forecasting Chemistry model and
Grid-point Statistical Interpolation, Q. J. Roy. Meteor. Soc., 136,
2013–2024, https://doi.org/10.1002/qj.700, 2010.

Pang, J., Liu, Z., Wang, X., Bresch, J., Ban, J., Chen,
D., and Kim, J.: Assimilating AOD retrievals from
GOCI and VIIRS to forecast surface PM2.5 episodes
over Eastern China, Atmos. Environ., 179, 288–304,
https://doi.org/10.1016/j.atmosenv.2018.02.011, 2018.

Parrish, D. F. and Derber, J. C.: The National Meteorological
Center’s spectral statistical-interpolation analysis system, Mon.
Weather Rev., 120, 1747–1763, 1992.

Peterson, D., Hyer, E., Han, S.-O., Crawford, J. H., Park, R.,
Holz, R., Kuehn, R., Eloranta, E., Knote, C., Jordan, C. E., and
Lefer, B.: Meteorology influencing springtime air quality, pollu-
tion transport, and visibility in Korea, Elem. Sci. Anth., 7, 57,
https://doi.org/10.1525/elementa.395, 2019.

https://doi.org/10.5194/acp-20-6015-2020 Atmos. Chem. Phys., 20, 6015–6036, 2020

https://doi.org/10.1175/MWR-D-13-00108.1
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1002/2013JD020449
https://doi.org/10.1002/jgrd.50495
http://cds.cern.ch/record/992314
http://cds.cern.ch/record/992314
https://doi.org/10.1007/978-3-319-59489-7_15
https://doi.org/10.1016/j.atmosenv.2014.09.020
https://doi.org/10.1029/2018JD029009
https://doi.org/10.5194/acp-11-7991-2011
https://doi.org/10.1016/j.rse.2009.12.021
https://doi.org/10.5194/gmd-12-131-2019
https://doi.org/10.5194/gmd-12-131-2019
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.1175/JAS3808.1
https://doi.org/10.1029/2011JD016159
https://doi.org/10.1029/2008JD011697
https://doi.org/10.1029/2018JD028912
https://doi.org/10.1256/qj.05.94
https://doi.org/10.1002/qj.700
https://doi.org/10.1016/j.atmosenv.2018.02.011
https://doi.org/10.1525/elementa.395


6036 S. Ha et al.: Improving air quality forecasting

Pfister, G. G., Avise, J., Wiedinmyer, C., Edwards, D. P., Emmons,
L. K., Diskin, G. D., Podolske, J., and Wisthaler, A.: CO source
contribution analysis for California during ARCTAS-CARB, At-
mos. Chem. Phys., 11, 7515–7532, https://doi.org/10.5194/acp-
11-7515-2011, 2011.

Reale, O., McGrath-Spangler, E. L., McCarty, W., Holdaway, D.,
and Gelaro, R.: Impact of Adaptively Thinned AIRS Cloud-
Cleared Radiances on Tropical Cyclone Representation in a
Global Data Assimilation and Forecast System, Weather Fore-
cast., 33, 909–931, https://doi.org/10.1175/WAF-D-17-0175.1,
2018.

Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman,
R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS
Aerosol Algorithm, Products, and Validation, J. Atmos. Sci., 62,
947–973, https://doi.org/10.1175/JAS3385.1, 2005.

Rienecker, M., Rienecker, M., Suarez, M. J., Todling, R., Bacmeis-
ter, J., Takacs, L., Liu, H.-C., Gu, W., Sienkiewicz, M., Koster, R.
D., Gelaro, R., Stajner, I., and Nielsen, J. E.: The GEOS-5 Data
Assimilation System: Documentation of versions 5.0.1, 5.1.0,
and 5.2.0. NASA/TM-2008-104606, NASA Tech. Rep. Series on
Global Modeling and Data Assimilation, Tech. Note NASA/TM-
2008-104606, NASA, available at: https://ntrs.nasa.gov/search.
jsp?R=20120011955 (last access: 9 November 2018), 2008.

Saide, P. E., Kim, J., Song, C. H., Choi, M., Cheng, Y.,
and Carmichael, G. R.: Assimilation of next generation geo-
stationary aerosol optical depth retrievals to improve air
quality simulations, Geophys. Res. Lett., 41, 9188–9196,
https://doi.org/10.1002/2014GL062089, 2014.

Sandu, A. and Sander, R.: Technical note: Simulating chem-
ical systems in Fortran90 and Matlab with the Kinetic
PreProcessor KPP-2.1, Atmos. Chem. Phys., 6, 187–195,
https://doi.org/10.5194/acp-6-187-2006, 2006.

Schwartz, C. S., Liu, Z., Lin, H.-C., and McKeen, S. A.:
Simultaneous three-dimensional variational assimilation
of surface fine particulate matter and MODIS aerosol
optical depth, J. Geophys. Res.-Atmos., 117, D13202,
https://doi.org/10.1029/2011JD017383, 2012.

Tie, X., Madronich, S., Walters, S., Zhang, R., Rasch, P.,
and Collins, W.: Effect of clouds on photolysis and oxi-
dants in the troposphere, J. Geophys. Res.-Atmos., 108, 4642,
https://doi.org/10.1029/2003JD003659, 2003.

Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K.,
Zhang, Q., Salcedo, D., Molina, L. T., Worsnop, D. R., and
Molina, M. J.: Secondary organic aerosol formation from anthro-
pogenic air pollution: Rapid and higher than expected, Geophys.
Res. Lett., 33, L17811, https://doi.org/10.1029/2006GL026899,
2006.

Wang, M., Ahn, J.-H., Jiang, L., Shi, W., Son, S., Park, Y.-J., and
Ryu, J.-H.: Ocean color products from the Korean Geostation-
ary Ocean Color Imager (GOCI), Opt. Express, 21, 3835–3849,
https://doi.org/10.1364/OE.21.003835, 2013.

Wesely, M.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ.,
23, 1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4,
1989.

Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-
Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory
from NCAR (FINN): a high resolution global model to estimate
the emissions from open burning, Geosci. Model Dev., 4, 625–
641, https://doi.org/10.5194/gmd-4-625-2011, 2011.

Wu, W.-S., Purser, R. J., and Parrish, D. F.: Three-
Dimensional Variational Analysis with Spatially In-
homogeneous Covariances, Mon. Weather Rev.,
130, 2905–2916, https://doi.org/10.1175/1520-
0493(2002)130<2905:TDVAWS>2.0.CO;2, 2002.

Xiao, Q., Zhang, H., Choi, M., Li, S., Kondragunta, S., Kim, J., Hol-
ben, B., Levy, R. C., and Liu, Y.: Evaluation of VIIRS, GOCI,
and MODIS Collection 6 AOD retrievals against ground sunpho-
tometer observations over East Asia, Atmos. Chem. Phys., 16,
1255–1269, https://doi.org/10.5194/acp-16-1255-2016, 2016.

Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.:
Model for Simulating Aerosol Interactions and Chem-
istry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204,
https://doi.org/10.1029/2007JD008782, 2008.

Zhang, J. and Reid, J. S.: MODIS aerosol product analysis for
data assimilation: Assessment of over-ocean level 2 aerosol opti-
cal thickness retrievals, J. Geophys. Res.-Atmos., 111, D22207,
https://doi.org/10.1029/2005JD006898, 2006.

Zhang, J. and Reid, J. S.: A decadal regional and global trend anal-
ysis of the aerosol optical depth using a data-assimilation grade
over-water MODIS and Level 2 MISR aerosol products, Atmos.
Chem. Phys., 10, 10949–10963, https://doi.org/10.5194/acp-10-
10949-2010, 2010.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li,
X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He,
K., and Zhang, Q.: Trends in China’s anthropogenic emissions
since 2010 as the consequence of clean air actions, Atmos. Chem.
Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-
2018, 2018.

Atmos. Chem. Phys., 20, 6015–6036, 2020 https://doi.org/10.5194/acp-20-6015-2020

https://doi.org/10.5194/acp-11-7515-2011
https://doi.org/10.5194/acp-11-7515-2011
https://doi.org/10.1175/WAF-D-17-0175.1
https://doi.org/10.1175/JAS3385.1
https://ntrs.nasa.gov/search.jsp?R=20120011955
https://ntrs.nasa.gov/search.jsp?R=20120011955
https://doi.org/10.1002/2014GL062089
https://doi.org/10.5194/acp-6-187-2006
https://doi.org/10.1029/2011JD017383
https://doi.org/10.1029/2003JD003659
https://doi.org/10.1029/2006GL026899
https://doi.org/10.1364/OE.21.003835
https://doi.org/10.1016/0004-6981(89)90153-4
https://doi.org/10.5194/gmd-4-625-2011
https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
https://doi.org/10.5194/acp-16-1255-2016
https://doi.org/10.1029/2007JD008782
https://doi.org/10.1029/2005JD006898
https://doi.org/10.5194/acp-10-10949-2010
https://doi.org/10.5194/acp-10-10949-2010
https://doi.org/10.5194/acp-18-14095-2018
https://doi.org/10.5194/acp-18-14095-2018

	Abstract
	Introduction
	The WRF-Chem forecast model and the GSI 3D-Var analysis system
	WRF-Chem forecast model
	The GSI 3D-Var analysis system
	Cost function
	Observation operators


	Cycling experiments
	Model configurations and cycling
	Observations
	Surface PM2.5
	AOD retrievals and observation preprocessing


	Results
	Observation impact during the cycles
	Observation impact on 24h forecasts
	A heavy pollution case

	Conclusions and discussion
	Code and data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

