

Supplement of

High levels of primary biogenic organic aerosols are driven by only a few plant-associated microbial taxa

Abdoulaye Samaké et al.

Correspondence to: Abdoulaye Samaké (abdoulaye.samake2@univ-grenoble-alpes.fr) and Jean Martins (jean.martins@univ-grenoble-alpes.fr)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

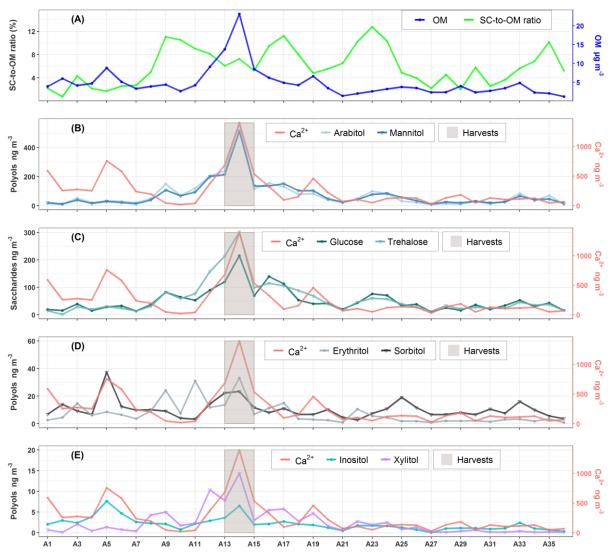


Figure S1: Atmospheric concentrations of carbonaceous components in PM₁₀. Temporal variations of primary sugar compounds in composite PM₁₀ and calcium concentrations along with daily agricultural activities performed around the study site.

 Table S1: Identification of PM₁₀ composite sample. Some daily filter samples were pooled together to from the composite samples used in MiSeq sequencing analysis.

Sampling date	Sample identifier	
12/06/2017 14/06/2017	Al	
15/06/2017	A2	
16/06/2017 17/06/2017	A3	
18/06/2017 19/06/2017	A4	
22/06/2017 23/06/2017	A5	
24/06/2017 25/06/2017	A6	
26/06/2017	Α7	
27/06/2017 28/06/2017	A8	
29/06/2017 30/06/2017	A9	
01/07/2017	A10	
02/07/2017 03/07/2017	A11	
04/07/2017 06/07/2017	A12	
07/07/2017	A13	
08/07/2017	A14	
09/07/2017	A15	
10/07/2017	A16	
11/07/2017 12/07/2017 14/07/2017 15/07/2017 17/07/2017 18/07/2017 22/07/2017 23/07/2017	A17	
14/07/2017 15/07/2017	A18	
17/07/2017 18/07/2017	A19	
22/07/2017 23/07/2017	A20	
24/07/2017	A21	
25/07/2017 26/07/2017	A22	
27/07/2017	A23	
28/07/2017 29/07/2017	A24	
30/07/2017 31/07/2017	A25	
01/08/2017	A26	
02/08/2017 03/08/2017	A27	
06/08/2017 07/08/2017	A28	
08/08/2017	A29	
09/08/2017 10/08/2017	A30	
13/08/2017 15/08/2017	A31	
16/08/2017	A32	
17/08/2017	A33	
18/08/2017	A34	
19/08/2017	A35	
20/08/2017 21/08/2017	A36	

Table S2: Minimum number of MOTUs reads per sample types. Unless specified otherwise, samples are randomly normalized to the smallest number of reads for within and between sample comparisons.

	Aerosols (PM ₁₀)	Leaves	Surface soils
Fungi	7 223	6 628	4 287
Bacteria	2 865	16 502	5 043

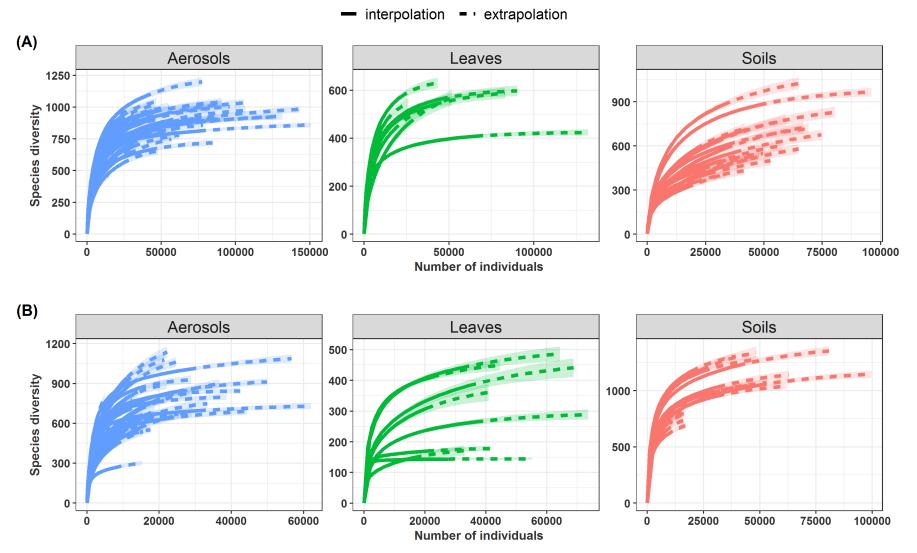


Figure S2: Rarefaction curves of MOTUs abundance grouped by types of samples. (A) Fungal and (B) bacterial MOTUs. Solid curves represent the observations while the dashed ones show the interpolation.

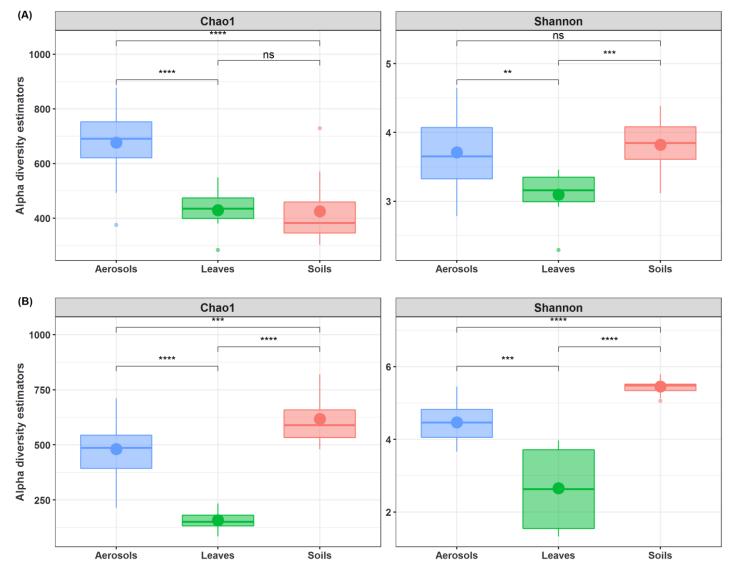


Figure S3: Statistical comparisons of MOTUs richness and diversity across different types of samples. (A) Fungal and (B) bacterial MOTUs abundance. Data sets are rarefied at the same sequencing depth for each library.

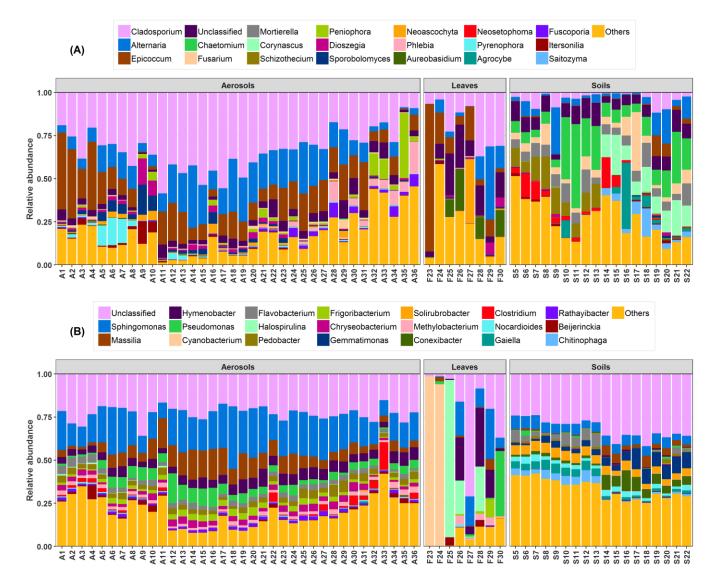


Figure S4: Temporal dynamics of microbial relative abundance (normalized to sum 1). Only the most pronounced top 21 of respectively (A) fungal (B) and bacterial genera are labelled.

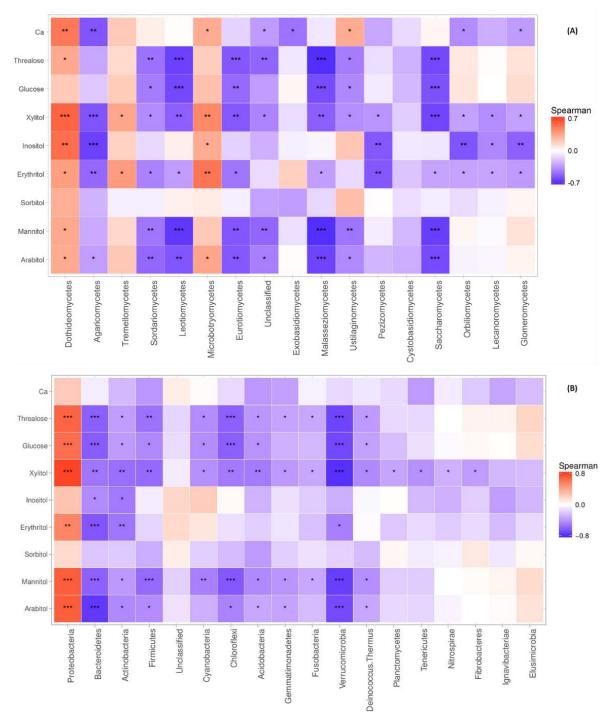


Figure 5 : Heatmap of Spearman's rank correlation between SCs and abundance of airborne communities at the study site. (A) Fungal class-level and and (B) bacterial phylum-level, respectively. Only genera with relative abundance ≥ 1 are shown.

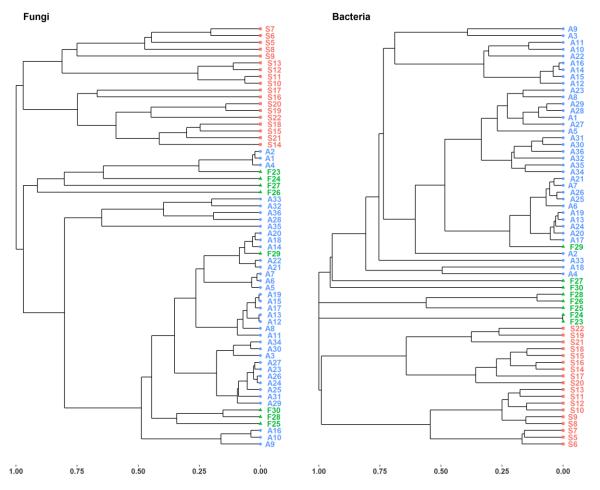


Figure 6 : Unsupervised hierarchical clustering of all samples (Aerosols, Leaves and Soils) based on Horn distance matrix. Dissimilarity matrixes have been calculated on the rarefied MOTUs tables.

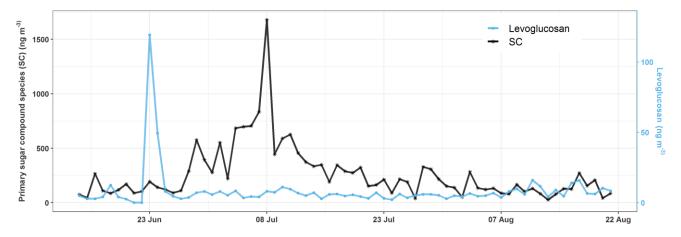


Figure 7 : Temporal covariation cycles of daily particulate levoglucosan and primary sugar compounds during the sampling campaign period.