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Abstract. Continuous efforts have been made to monitor at-
mospheric CO2 mole fractions as it is one of the most in-
fluential greenhouse gases in Earth’s atmosphere. The atmo-
spheric CO2 mole fractions are mostly determined by CO2
exchanges at the Earth’s surface (i.e., surface CO2 flux). In-
verse modeling, which is a method to estimate the CO2 ex-
changes at the Earth’s surface, derives surface CO2 fluxes
using modeled and observed atmospheric CO2 mole frac-
tion data. Although observation data are crucial for success-
ful modeling, comparatively fewer in situ observation sites
are located in Asia compared to Europe or North Amer-
ica. Based on the importance of the terrestrial ecosystem of
Asia for global carbon exchanges, more observation stations
and an effective observation network design are required.
In this paper, several observation network experiments were
conducted to optimize the surface CO2 flux of Asia using
CarbonTracker and observation system simulation experi-
ments (OSSEs). The impacts of the redistribution of and ad-
ditions to the existing observation network of Asia were eval-
uated using hypothetical in situ observation sites. In the case
of the addition experiments, 10 observation stations, which
is a practical number for real implementation, were added
through three strategies: random addition, the influence ma-
trix (i.e., self-sensitivity), and ecoregion information within
the model. The simulated surface CO2 flux in Asia in sum-
mer can be improved by redistributing the existing observa-
tion network. The addition experiments revealed that con-
sidering both the distribution of normalized self-sensitivity
and ecoregion information can yield better simulated surface
CO2 fluxes compared to random addition, regardless of the
season. This study provides a diagnosis of the existing ob-

servation network and useful information for future obser-
vation network design in Asia to estimate the surface CO2
flux and also suggests the use of an influence matrix for de-
signing CO2 observation networks. Unlike other previous ob-
servation network studies with many numerical experiments
for optimization, comparatively fewer experiments were re-
quired in this study. Thus, the methodology used in this study
may be used for designing observation networks for monitor-
ing greenhouse gases at both continental and global scales.

1 Introduction

CO2 is one of the most influential greenhouse gases in
Earth’s atmosphere (Lacis et al., 2010). Thus, monitoring
CO2 is very important to understand and constrain CO2 in
the atmosphere. To monitor atmospheric CO2 precisely, con-
tinuous efforts are necessary. Inverse modeling, one of the
methods to complete this mission, uses observed atmospheric
CO2 mole fraction data and transport models to estimate the
sources and sinks of surface CO2 flux (Enting, 2002; Gur-
ney et al., 2002). Bayesian synthesis (Enting, 2002), four-
dimensional variational data assimilation (4DVar; Cheval-
lier et al., 2009a, b, 2010; Kou et al., 2017), and ensemble
Kalman filter (EnKF; Peters et al., 2005, 2007, 2010; Feng et
al., 2009, 2016; Kang et al., 2011, 2012; Peylin et al., 2013;
Kim et al., 2014a, b, 2017, 2018a, b) methods have been
implemented and utilized to conduct inverse modeling. By
comparing 13 inverse modeling systems, Peylin et al. (2013)
showed that simulation results were similar to each other for
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regions with many observations, but dissimilar for regions
with sparse observation coverage (e.g., the tropics and South-
ern Hemisphere).

The terrestrial system in the Northern Hemisphere is cru-
cial for global carbon exchanges, and Asia covers the largest
area in the Northern Hemisphere (Hayes et al., 2011; Le
Quéré et al., 2018). Asia also includes the Siberian region,
which represents one of the significant areas for sources and
sinks of atmospheric CO2 (Schulze et al., 1999; Houghton
et al., 2007; Tamocai et al., 2009; Kurganova et al., 2010;
Schepaschenko et al., 2011; Siewert et al., 2015; Kim et
al., 2017). Thus, the precise estimation of the surface CO2
flux in Asia is highly necessary and required to fully un-
derstand global carbon exchanges. However, comparatively
fewer in situ observation sites are located in Asia com-
pared to Europe and North America. Although the Center
for Global Environmental Research (CGER) of the National
Institute for Environmental Studies (NIES) in Japan, collab-
orating with the Russian Academy of Science (RAS), has
built nine tower observation sites (Japan–Russia Siberian Tall
Tower Inland Observation Network, JR-STATION) in Asia,
and several studies have been conducted using continuously
observed atmospheric CO2 and CH4 mole fractions since
2002 (Saeki et al., 2013; Sasakawa et al., 2010, 2013; Kim
et al., 2017), the towers of the JR-STATION are mainly lo-
cated in the Siberian region. In addition, eight stations of
the JR-STATION are located in western Siberian. These JR-
STATION sites, therefore, do not seem to be well-suited for
optimizing the surface CO2 flux for the entire Asia region,
and in situ observation sites in Asia are still fewer compared
to those in Europe or North America, even when the JR STA-
TION sites are considered.

In the meantime, the satellite-retrieved dry-air column-
average mole fraction of CO2 (XCO2) could be used to sup-
plement observations in the sparse observation regions, in-
cluding Asia (Chevallier et al., 2009a, b, 2010; Maksyutov et
al., 2013; Reuter et al., 2014; Feng et al., 2016). However, by
comparing CO2 mole fractions observed in four World Mete-
orological Organization (WMO) Global Atmosphere Watch
(GAW) stations in China to satellite-retrieved products from
the Greenhouse Gases Observing Satellite (GOSAT), Cheng
et al. (2018) reported that satellite-retrieved CO2 mole frac-
tions showed similar seasonal variations to those of in situ
observations, but the magnitudes retrieved from the satellite
were comparatively lower than those of in situ observations.
Assimilating XCO2 data alone is therefore generally less ef-
fective than assimilating in situ observations (Chevallier et
al., 2009a). In contrast, Maksyutov et al. (2013) noted that
uncertainties in surface CO2 flux estimations in sparse in situ
observation regions could be reduced when in situ obser-
vations and GOSAT observation data were used simultane-
ously. In particular, Fischer et al. (2017) showed that uncer-
tainties in surface CO2 flux estimation could be further de-
creased, even for the regions with in situ observation sites,
when in situ observations and satellite-retrieved observations

are used together. Thus, in situ observation networks need to
be well established to better utilize non-in situ observations
like XCO2.

Observation system simulation experiments (OSSEs), us-
ing simulated observation data, provide an opportunity to
evaluate the impact of observation data from the current and
potential observation sites on the performance of the model-
ing system (Patra et al., 2003; Yang et al., 2014; Byrne et al.,
2017; Wang et al., 2018). Thus, OSSEs can be used to eval-
uate the performance of current observation networks and to
design future observation networks. Although several stud-
ies have been conducted to achieve this aim, most observa-
tion network design studies were restricted to comparatively
smaller national scales such as Australia, California in the
USA, and South Africa (Ziehn et al., 2014, 2016; Lucas et
al., 2015; Nickless et al., 2015). These studies suggest an op-
timized network using the incremental optimization (IO) and
the genetic algorithm (GA). For methods that require the full
computation of the inversion for each network choice, GA
and IO methods are not efficient in designing the observation
network due to time and computing restraints. Thus, the net-
work design method needs to be appropriate to the inversion
method being used.

The influence matrix (i.e., analysis sensitivity or self-
sensitivity) denotes the sensitivity of the analysis to the ob-
servations (Cardinali et al., 2004; Liu et al., 2009; Kim et al.,
2014a, 2017). Similar to the numerical weather prediction
(NWP), the relative impact of each CO2 mole fraction obser-
vation for the model analysis equivalent CO2 mole fraction
induced by the optimized surface CO2 flux can be calculated
(Kim et al., 2014a, 2017) and used as a strategy for selecting
potential sites of CO2 mole fraction observations. The influ-
ence matrix could be a very efficient and intelligent strategy
to select observation sites because the calculated impact of
observation on the CO2 estimation is used to select obser-
vation sites. Although Wang et al. (2018) showed the poten-
tial impact of adding observation sites on the existing 14CO2
sites in Europe using OSSEs, the potential 14CO2 observa-
tion sites were not chosen based on specific selection strate-
gies. Moreover, up to this point there have been few studies
on diagnosing the current CO2 mole fraction observation net-
work and evaluating the impact of adding and redistributing
in situ CO2 mole fraction observation sites in Asia. Consid-
ering the importance of the Asia region for global carbon
exchange, studies on the observation network design in Asia
to accurately estimate the surface CO2 flux are highly nec-
essary. Such observation network studies could also provide
helpful information for researchers and administrators who
design the future observation network under practical condi-
tions.

In this study, many OSSEs were conducted using Carbon-
Tracker (CT) to identify a better in situ observation network
for the purpose of optimizing surface CO2 flux estimation
in Asia. Based on the hypothetical simulated observations,
redistribution and addition experiments were performed to
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evaluate the performance of the existing observation network
and the impact of additional observation sites, respectively.
In the case of addition experiments, random addition and
addition based on influence matrix (self-sensitivity) as well
as ecoregion information of the model were considered as
strategies, as alternatives to IO and GA that have been used
in previous studies. Section 2 briefly introduces the CT, influ-
ence matrix, hypothetical observations, experimental frame-
work, and verification methods. Section 3 presents the results
of the observation network design experiments, and Sect. 4
provides a summary and the conclusions of this study.

2 Methodology

2.1 CarbonTracker and data assimilation methods

CT2013B, developed by the Earth System Research Labora-
tory (ESRL) at the National Oceanic and Atmospheric Ad-
ministration (NOAA), was used for this study. CT2013B es-
timates the surface CO2 flux using inverse modeling and has
been widely used to calculate surface CO2 fluxes in North
America, Europe, and Asia (Peters et al., 2004, 2005, 2007,
2010; Kim et al., 2012, 2014a, 2014b, 2016, 2017, 2018a, b;
Cheng et al., 2013).

CT2013B consists of a priori flux modules, a transport
model (TM5), observation data, and EnKF data assimilation.
The estimated surface CO2 fluxes are mainly calculated by
scaling fluxes from the flux modules composed of biosphere,
ocean, fossil fuel, and fire fluxes. The optimized grid-point
surface CO2 fluxes within TM5 were derived as follows:

F (x,y, t)= λr ·Fbio (x,y, t)+ λr ·Focean (x,y, t)

+Fff (x,y, t)+Ffire (x,y, t) , (1)

where Fbio (x,y, t), Focean (x,y, t), Fff (x,y, t), and
Ffire (x,y, t) denote a priori emissions of the biosphere,
ocean, fossil fuel, and fires, respectively; λr is the scaling
factor with a 1-week resolution for ecoregions; and x, y, and
t denote the zonal direction, the meridional direction, and
time, respectively. λr is used for optimization of the surface
CO2 flux through interactions with a priori emissions of the
biosphere and the ocean. Thus, EnKF data assimilation in
CT2013B optimizes not surface CO2 fluxes but the scaling
factor. This means that the optimization of the scaling
factors that were assigned to the ecoregions of the earth is
crucial for the estimation of simulated surface CO2 fluxes.
The ecoregions are defined as the mix of the modified 19
vegetation types from Olson et al. (1992) and 11 TransCom
regions (Gurney et al., 2002) on land, with 30 ocean regions.
As all 19 vegetation types are not used for the 11 TransCom
regions, the number of effective ecoregions of the earth is
156 (Peters et al., 2010).

TM5 is an off-line transport model used to calculate the
transport of CO2 (Krol et al., 2005), which utilizes the
atmospheric fields of the ERA-Interim reanalysis data of

the European Centre for Medium-Range Weather Forecasts
(ECMWF). TM5 utilizes the estimated surface CO2 fluxes
at each grid point based on Eq. (1) to calculate the spa-
tiotemporal distribution of the model atmospheric CO2 con-
centrations. From the estimated surface CO2 fluxes at each
grid point, the model atmospheric CO2 concentrations at the
times and locations of the observation data are calculated,
and these are used for the data assimilation process. The hor-
izontal resolution of TM5 is 3◦× 2◦ globally and the nested
horizontal grid is 1◦×1◦ over Asia, with a verification region
inside of the nested domain over Asia (Fig. 1). The number
of ecoregions in the verification region is 40, of which 36
are Asian ecoregions (Fig. 1b) and 4 are ecoregions of Eu-
rope. Since the proportion of the 4 European ecoregions is
approximately 0.5 % of the verification region (Table 3), the
verification region was considered to be located over Asia.
A two-way nested grid was used to optimize surface CO2
fluxes in Asia. The model run including both forward and in-
version runs was done globally with nesting over Asia and
verification was done over the verification region located in
Asia. Table 1 summarizes the priori flux emissions used for
the flux module and describes the TM5 setup.

An ensemble square root Kalman filter (EnSRF), one
of the EnKF data assimilation methods (Evensen, 1994;
Whitaker and Hamill, 2002), was employed in this study to
optimize the scaling factor. EnSRF assimilates observation
data one by one, and updates the analysis of ensemble mean
and perturbations separately based on the following equa-
tions:

xa
t = xb

t +K
(
yo
−H

(
xb
t

))
, (2)

x′a
i = x′b

i − k̃H
(
x′b
i

)
, (3)

where xa and xb describe the analysis and background value
of the state vector (x), x and x′ are the ensemble mean and
perturbation of the state vector, yo is the observation vector,
and H describes the observation operator that transforms the
state vector from the model space to the observation space.
TM5 acts as the observation operator in CT2013B (Krol et
al., 2005; Peters et al., 2005; Kim et al., 2016, 2018a). K and
k̃ denote the Kalman gain matrix and the reduced Kalman
gain calculated as follows:

K=
(

PbHT
)(

HPbHT
+R

)−1
, (4)

k̃=K ·α, (5)

where Pb is the background error covariance, R is the ob-
servation error covariance for each observation, and α is a
scalar value that is multiplied to Kalman gain matrix at every
calculation of the analysis, defined as

α =

(
1+

√
R

HPbHT+R

)−1

. (6)
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Figure 1. The distribution of (a) the nested TM5 model domain over Asia (black solid rectangle) and verification domain (black dashed
rectangle) and (b) ecoregions in Asia used in this study.
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Table 1. The model configuration and a priori fluxes used in this study.

Prior flux Biosphere Carnegie-Ames-Stanford Approach Global Fire Emission Database (CASA-GFED)
v3.1 (van der Werf et al., 2006, 2010)

Ocean Jacobson et al. (2007)

Fossil fuel CASA-GFED v3.1 (van der Werf et al., 2006, 2010)

Fires Carbon Dioxide Information and Analysis Center (CDIAC; Boden et al., 2010) and
Emission Database for Global Atmospheric Research (EDGAR, European Commis-
sion, 2009) databases

Model Transport Model 5 (TM5) using ERA-Interim reanalysis

Model resolution Domain 1(3◦× 2◦) Globe
Domain 2(1◦× 1◦) Asia (12◦ S–70◦ N, 30–168◦ E)

Table 2. Brief description of the experiments conducted in this study.

Exp. name No. of stations Description

CNTL 7 The control experiment that uses the observation site information in Asia of the existing 7 NOAA
observation network sites.

CNTL_MOD 7 The same as the CNTL except for modifying observation station height information for hypothetical
observations.

REDIST 7 The experiment that redistributes 7 observation sites at random in Asia.

ADD 17 The experiment that adds 10 observation sites at random to the existing 7 NOAA observation network
sites.

SS 17 The experiment that adds 10 observation sites to the existing 7 NOAA observation network sites with
the self-sensitivity information.

ECOSS 17 The experiment that adds 10 observation sites to the existing 7 NOAA observation network sites with
the self-sensitivity and ecoregion information (1–2 stations for each ecoregion)

NSS 17 The experiment that adds 10 observation sites to the existing 7 NOAA observation network sites with
the normalized self-sensitivity information.

NECOSS1 17 The experiment that adds 10 observation sites to the existing 7 NOAA observation network sites with
the normalized self-sensitivity and ecoregion information (1–2 stations for each ecoregion).

NECOSS2 17 The experiment that adds 10 observation sites to the existing 7 NOAA observation network sites with
the normalized self-sensitivity and ecoregion information (1 station per ecoregion).

ALL 905 The experiment that adds observation sites at horizontal 2◦ intervals on land to the existing 7 NOAA
observation network sites.

CNTL_18 18 The control experiment that uses the observation site information in Asia of the existing 18 NOAA
observation network sites.

ADD_18 28 The experiment that adds 10 observation sites at random to the existing 18 NOAA observation net-
work sites.

NSS_18 28 The experiment that adds 10 observation sites to the existing 18 NOAA observation network sites
with the normalized self-sensitivity information.

NECOSS1_18 28 The experiment that adds 10 observation sites to the existing 18 NOAA observation network sites
with the normalized self-sensitivity and ecoregion information (1–2 stations for each ecoregion).
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Table 3. The information of the ecoregions in the verification domain (see also Fig. 1b) and the distribution of observation sites for the SS
and ECOSS experiments.

Ecoregion index TransCom region Land ecosystem type Count Proportion (%) SS ECOSS

137 Eurasia temperate Grass/shrub 744 19.36 2
115 Eurasia boreal Conifer forest 657 17.1 2
140 Eurasia temperate Semitundra 262 6.82 1
147 Eurasia temperate Crops 248 6.45 1
123 Eurasia boreal Northern taiga 228 5.93 1
157 Tropical Asia Tropical forest 222 5.78 1
145 Eurasia temperate Deserts 200 5.2
117 Eurasia boreal Mixed forest 150 3.9 1
118 Eurasia boreal Grass/shrub 122 3.17 1
136 Eurasia temperate Mixed forest 122 3.17
121 Eurasia boreal Semitundra 95 2.47
166 Tropical Asia Crops 80 2.08
135 Eurasia temperate Broadleaf forest 62 1.61
141 Eurasia temperate Fields/woods/savanna 59 1.54
143 Eurasia temperate Forest/field 58 1.51 1
171 Tropical Asia Water 54 1.41
125 Eurasia Boreal Wetland 45 1.17 1
162 Tropical Asia Forest/field 44 1.14
122 Eurasia boreal Fields/woods/savanna 42 1.09
154 Tropical Asia Broadleaf forest 39 1.01 1
155 Tropical Asia Mixed forest 37 0.96
156 Tropical Asia Grass/shrub 36 0.94
124 Eurasia boreal Forest/field 35 0.91
134 Eurasia temperate Conifer forest 34 0.88
116 Eurasia boreal Broadleaf forest 33 0.86
128 Eurasia boreal Crops 24 0.62 1
138 Eurasia temperate Tropical forest 19 0.49 1
160 Tropical Asia Fields/woods/savanna 15 0.39
146 Eurasia temperate Shrub/tree/succulent 12 0.31
144 Eurasia temperate Wetland 11 0.29 1
139 Eurasia temperate Scrub/woods 10 0.26 1
163 Tropical Asia Wetland 9 0.23 2
152 Eurasia temperate Water 8 0.21
130 Eurasia boreal Wooded tundra 5 0.13 1
133 Eurasia boreal Water 5 0.13
191 Europe Conifer forest 5 0.13
193 Europe Mixed forest 4 0.1
194 Europe Grass/shrub 4 0.1
197 Europe Semitundra 3 0.08
201 Europe Wetland 1 0.03

By calculating the ensemble mean and perturbation indepen-
dently, the underestimation of the analysis error covariance
could be prevented (Whitaker and Hamill, 2002; Kim et al.,

2012). PbHT and HPbHT can be calculated as follows:

PHT
≈

1
m− 1

(
x′

1,x
′
2, · · ·,x

′
m

)
·
(
Hx′

1,Hx′
2, · · ·,Hx′

m

)T
, (7)

HPbHT
≈

1
m− 1

(
Hx′

1,Hx′
2, · · ·,Hx′

m

)
·
(
Hx′

1,Hx′
2, · · ·,Hx′

m

)T
, (8)

where m is the number of ensemble members.
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Unlike the approach of NWP, the time for CO2 dispersing
around the atmosphere needs to be considered for CO2 data
assimilation. Accordingly, a time lag is introduced in updat-
ing the scaling factor during the data assimilation process
to consider the information for analysis time as well as for
pre-analysis time. A time lag of 5 weeks is employed in this
study, consistent with previous studies (Peters et al., 2007,
2010; Kim et al., 2012, 2014a, b, 2017).

In the EnSRF, the covariance localization method is nec-
essary to reduce the impact of the sampling error due to the
limited size of the ensemble and to avoid filter divergence
due to the underestimation of the background error covari-
ance (Houtekamer and Mitchell, 2001). Because calculating
the physical distance between scaling factors is not possible,
instead of the covariance localization method, a statistical
method is applied in this study. In this method, a Student’s t
test is applied to the correlations between the ensemble of the
model CO2 concentrations and the ensemble of the scaling
factors, and the Kalman gain matrix is then made to be zero
for the cases where it has an insignificant statistical t value
(i.e., 95 % significance level), to exclude those insignificant
impacts (Peters et al., 2007).

The optimized mean scaling factor after one analysis cycle
is used as one of the prior mean scaling factors for the next
analysis step as follows:

λb
t =

(
λa
t−2+ λ

a
t−1+ 1

3

)
, (9)

where λb
t is a prior mean scaling factor for the current anal-

ysis step, and λa
t−2 and λa

t−1 denote posterior mean scaling
factors of previous analysis cycles. The information of cur-
rent analysis propagates to the next step using Eq. (9) (Peters
et al., 2007).

2.2 Influence matrix

The influence matrix of the EnKF system can be calculated
as described in Liu et al. (2009) and Kim et al. (2014a). The
analysis of the state vector and the influence matrix (So) that
shows the contribution of the observation vector (yo) to the
analysis at the observation space (ya) (i.e., the projection of
analysis state vector xa on the observation space or model
analysis equivalent to observations at observation locations)
can be defined as follows:

xa
=Kyo

+ (In−KH)xb, (10)

So
=
∂ya

∂yo =KTHT
= R−1HPaHT, (11)

where In is the identity matrix (n is the size of analysis or
background state vector). The influence matrix is propor-
tional to the analysis error covariance and inversely propor-
tional to the observation error covariance. Using Eq. (8), So

is expressed as follows:

So
= R−1HPaHT

=
1

m− 1
R−1 (HXa)(HXa)T, (12)

where HXa is the analysis of the ensemble perturbation at
the observation space. The ith component of HXa is defined
as follows:

HXa
i
∼= h

(
xa
i

)
−

1
m

m∑
i=1

h
(
xa
i

)
, (13)

where xa
i is the ith member of the analysis ensemble, and

h(·) denotes the linearized or non-linearized observation op-
erators. Following Liu et al. (2009), we assume no correla-
tions between observation errors, and the diagonal element
of this influence matrix (i.e., self-sensitivity) is calculated as
follows:

So
jj =

∂ya
j

∂yo
j

=

(
1

m− 1

)
1
σ 2
j

m∑
i=1

(
HXa

i

)
j
·
(
HXa

i

)
j
, (14)

where σ 2
j is the observation error variance for the j th obser-

vation.
According to Liu et al. (2009) and Kim et al. (2014a), So

represents the sensitivity of the analysis state vector ya to
the observation state vector yo in the observation space (i.e.,
location). So has a value between 0 and 1, which shows the
contribution of a CO2 observation to the analyzed CO2 at the
observation site. If So is close to 0, the analysis is mainly
derived from the background. In contrast, the influence of
observation data to the analysis increases as So goes to 1.
The self-sensitivity was used as a criterion for selecting the
observation locations in designing the observation network.

2.3 Simulated hypothetical observation and
experimental setup

In this paper, simulated hypothetical observations were cre-
ated and used to design the observation network. Simulated
hypothetical observations with similar values and seasonal
variations compared to real CO2 observations were generated
by averaging model CO2 mole fractions from the experiment
conducted with real NOAA observation data (EXTASI) and
model CO2 mole fractions from the experiment with a fixed
scaling factor of 1 (SF1). In the EXTASI experiment, the real
CO2 mole fraction data were used to update the scaling fac-
tors in Eq. (1) to estimate the surface CO2 fluxes. In contrast,
in the SF1 experiment, the scaling factors were fixed as 1.

Figure 2 shows the station-averaged time series of CO2
mole fractions from real observations (OBS), EXTASI, SF1,
and an average (i.e., simulated hypothetical observations:
TRUE, hereafter) of EXTASI and SF1. The time series of
EXTASI is the closest to that of OBS, whereas that of SF1
with a static scaling factor (i.e., 1) differs from OBS, particu-
larly in summer. Kim et al. (2017, 2018) have shown that the
largest difference in surface CO2 flux estimation between ex-
periments with different settings appears in summer, which is
associated with a more sensitive response of inversion results
to the inversion model configurations for the active season
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Figure 2. Time series of CO2 concentration from hypothetical ob-
servations, model simulations, and real observations. The gray solid
line (OBS) denotes the value of real observation data, the black solid
line indicates the value from the EXTASI experiment, the blue solid
line denotes the value of the SF1 experiment, and the red solid line
(AVG) denotes the average of the EXTASI and SF1, which was re-
garded as TRUE observation data in this study.

of the terrestrial ecosystem. The time series of TRUE is lo-
cated between that of EXTASI and SF1, which implies that
the difference between TRUE and OBS is smaller compared
with that between SF1 and OBS. TRUE is the simulated hy-
pothetical observation that is similar to the EXTASI assim-
ilating real NOAA observation data, but is not the same as
the EXTASI. This setup prevents EXTASI from having an
advantage in the observation network experiments. If TRUE
is the same as EXTASI, then assimilating TRUE data at the
observation locations used in EXTASI would render the ob-
servation network used in EXTASI the optimal network in
terms of several verification measures used in this study. One
limitation of this choice of hypothetical data is that it uses
the same spatial distribution of fluxes within an ecoregion as
used in the inversion method, whereas in reality the within-
region flux distribution could be different.

Each hypothetical observation site has one CO2 obser-
vation per day and exists within the limited Asia domain
shown in Fig. 1. The simulated values around afternoon (i.e.,
13:00 local standard time, LST) in the midlatitudes in the
Northern Hemisphere are averaged and utilized as TRUE
data. The observation height of TRUE data at each site is
set to 5 m greater than the model elevation of the grid point
in order to use the observation operator for flask observa-
tion developed in NOAA. Moreover, each observation site is
more than 1000 km apart from other sites, located lower than
2000 m above sea level, and located on the land regions in the
TransCom Region from Gurney et al. (2002). This configura-
tion was made to consider real-world constraints to optimize
the surface CO2 fluxes in Asia. Observation error for the CO2
observations was set to 3 ppm, consistent with the previous
setting of 3 ppm for continuous observation site types (Peters
et al., 2007; Kim et al., 2014b, 2017).

All simulation results were produced under identical con-
ditions except for the observation locations and data. A total

of 150 ensemble members were used for data assimilation,
and experiments were carried out from 27 September 2007 to
4 January 2009. The first 3 months of the experiments were
considered as the spin-up period; thus the analysis was con-
ducted from 27 December 2007 to 4 January 2009.

As the experimental results depend on the distribution of
observation sites, appropriate choices of the observation net-
work are important. Experiments are therefore configured to
investigate the impact of redistributing observation sites of
CT2013B (hereafter, existing observation sites or network)
and that of adding extra observation sites to the existing
observation network based on random, self-sensitivity, and
ecoregion information. Figure 3 shows the hypothetical ob-
servation networks used in this study. Figure 3a presents the
distribution of seven observation sites in Asia from the ob-
servation network of CT2013B, which are mostly located be-
tween 30 and 45◦ N. The experiment and simulation results
using this observation network were denoted as CNTL. Since
the CNTL could have disadvantages due to the use of real
observation information (i.e., the observation height of sim-
ulated sites are always above 5 m from model topography,
but this is not the case for CNTL), an additional experiment
identical to CNTL, except that the observation heights were
assigned above 5 m from the model topography in the same
way as for hypothetical observations, was also conducted and
denoted as CNTL_MOD. Figure 3b, c, and d show the dis-
tribution of three observation networks, in which the seven
observation sites in Asia are randomly redistributed subject
to a minimum spacing of 1000 km. To obtain general results
without sampling error, each random redistribution experi-
ment was performed three times with different sets of ran-
domly distributed observation sites, as denoted in previous
observation network studies (e.g., Yang et al., 2014). The
average of three random redistribution experiments was de-
noted as REDIST, to check the impact of the reallocation of
the existing observation network.

Figure 3e–m suggest the distributions of the observation
networks to examine the impact of adding additional obser-
vation sites to the existing observation network. Note that
all additional sites are also subject to the 1000 km separa-
tion criterion. The 10 extra observation sites were added as
this number seems realistically viable for the future, consid-
ering the cost of operating and maintaining CO2 observation
sites. Specifically, Fig. 3e–h show the distribution of three
observation networks with an additional 10 observation sites
added randomly to the existing observation network. The av-
erage of these three experiments was denoted as ADD. The
experiment adding 10 observation sites to the existing ob-
servation network based on self-sensitivity is denoted as the
SS experiment (Fig. 3h). The experiment adding 10 observa-
tion sites to the existing observation network based on both
self-sensitivity and ecoregion information is denoted as the
ECOSS experiment (Fig. 3i). The ECOSS experiment was
conducted as the scaling factor in CT2013B is updated based
on ecoregion, thus only considering self-sensitivity makes
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Figure 3. The distribution of observation sites in each observation network: (a) the CNTL and CNTL_MOD, (b–d) the REDIST, (e–g) the
ADD, (h) the SS, (i) the ECOSS, (j) the NSS, (k) the NECOSS1, (l) the NECOSS2, and (m) the ALL experiment. Red dots denote the
observation sites of the NOAA observation network and black dots denote the hypothetical observation sites. Note that cases (b–l) require a
minimum 1000 km spacing between sites.

the added observation sites cluster in a specific ecoregion
and causes disadvantages in optimizing the scaling factor.
As the self-sensitivity is generally inversely proportional to
the number of assimilated observations (Kim et al., 2014a,
2017), the self-sensitivity normalized by the number of as-
similated observations is also considered and utilized. Fig-

ure 3j–l show the distributions of the observation network for
three experiments that used the normalized self-sensitivity
as the selection criterion for added observation sites. The
NSS experiment (Fig. 3j) used only the normalized self-
sensitivity as the selection strategy. The observation sites
of the NECOSS1 (Fig. 3k) and NECOSS2 (Fig. 3l) exper-
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iments were added based on the normalized self-sensitivity
and ecoregion information. The NECOSS1 experiment allo-
cated one or two observation sites per ecoregion, whereas
NECOSS2 allocated one observation site per ecoregion. In
addition, the observation networks that have observation sites
at every 2◦ interval on the land (Fig. 3m, ALL experiment)
are suggested as the reference to examine the maximum pos-
sible impact of additional observation sites. In the ALL ex-
periment, the observation locations that are located 2000 m
above the mean sea level over the Tibetan Plateau are not in-
cluded due to their difficult accessibility and maintenance as
practical observing sites.

The normalized self-sensitivity for the j th observation is
defined as follows:

NSo
jj =

Nj

NALL
×So

jj , (15)

where NALL denotes the total count of observation sites of
the ALL experiment, and Nj is the number of observation
sites that have the same ecoregion as the j th observation site
in the ALL experiment. Thus, normalized self-sensitivities
were calculated by multiplying self-sensitivities by the ratio
of the number of observation sites in a specific ecoregion to
that in the ALL experiment.

The effect of the redistribution of the existing observation
network and adding additional observation sites on the ex-
isting observation network can be diagnosed through the ex-
periments detailed above. The method of adding observation
sites in the experiments using self-sensitivity and ecoregion
information is described in more detail in Sect. 3. Table 2 de-
scribes the list of observation network experiments and their
relevant information.

2.4 Verification method

The nested model domain over Asia and the verification area
(−9.5◦ S–66.5◦ N, 60.5–149.5◦ E) are shown in Fig. 1. The
optimized surface CO2 flux in each experiment was verified
against the hypothetical surface CO2 fluxes corresponding to
TRUE. Weekly surface CO2 fluxes were analyzed to evalu-
ate the performance of observation network experiments be-
cause the scaling factor has a weekly resolution. The Pearson
product-moment correlation coefficient (pattern correlation,
PC) and the root mean square difference (RMSD) were com-
pared and calculated as follows:

PC=

n∑
i=1

(
EXPi −EXP

)(
TRUEi −TRUE

)
√√√√( n∑

i=1

(
EXPi −EXP

)2)( n∑
i=1

(
TRUEi −TRUE

)2) , (16)

RMSD=

√√√√1
n

n∑
i=1

(EXPi −TRUEi)2, (17)

where EXPi and TRUEi are the surface CO2 fluxes at the ith
model grid point of an experiment and TRUE, respectively,
and n is the total number of model grid points in the verifica-
tion domain shown in Fig. 1.

To investigate the reduction of uncertainties for each ex-
periment after data assimilation, uncertainty reduction (UR;
Peters et al., 2005; Meirink et al., 2008; Chevallier et al.,
2009b; Feng et al., 2009; Kim et al., 2014a, 2017, 2018b)
was calculated as:

UR=
(

1−
σEXP

σCNTL

)
× 100, (18)

where σCNTL and σEXP denote 1σ standard deviations of the
optimized scaling factor for the CNTL and an experiment.
The UR was used to check the improvement of observation
network experiments by comparing the posterior uncertain-
ties of experiments with those of CNTL (i.e., the reference
experiment).

3 Results

3.1 Effect of an observation network with observation
sites redistributed randomly

Figure 4 shows the time series of the 3-week moving av-
erage of RMSD for surface CO2 fluxes from the CNTL,
CNTL_MOD, and REDIST experiments. The RMSDs of all
three experiments are larger in summer, which may be caused
by the larger surface CO2 fluxes in this season as seen in the
strong drawdown of CO2 mole fractions shown in Fig. 2. The
time series of RMSDs of CNTL and CNTL_MOD have sim-
ilar variations except for a slight phase shift, whereas that
of REDIST shows a comparatively smaller increase in the
RMSD in the summer. Specifically, the maximum RMSD of
CNTL is 201 in mid-July and that of CNTL_MOD is 192
early in July, but that of REDIST is 127 at the beginning of
June. In addition, the maximum and minimum RMSDs of
three redistribution experiments are mostly smaller than the
RMSDs of CNTL and CNTL_MOD. Thus, REDIST is better
than CNTL in simulating surface CO2 fluxes in Asia in sum-
mer.

REDIST clearly outperforms CNTL and CNTL_MOD in
summer, and an overall improvement is also observed from
the comparison of the three experiments. This implies that
merely redistributing current observation sites in Asia could
have more benefits in optimizing surface CO2 fluxes. This
result seems to be somewhat attributable to the fact that most
observation sites in Asia in the NOAA observation network
of CT2013B are located in midlatitudes (∼ 35–45◦ N).

Furthermore, CNTL and CNTL_MOD are not much dif-
ferent in simulating surface CO2 fluxes, which implies that
the selection strategy of observation height in making hypo-
thetical observations does not greatly affect the evaluation of
the various observation networks. The real height informa-
tion of the NOAA observation network in CNTL is therefore
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Figure 4. Time series of the 3-week moving average of RMSD of
surface CO2 flux (gC m−2 yr−1) for the CNTL (black solid line),
CNTL_MOD (cyan solid line), and REDIST (blue solid line) exper-
iments. The blue shaded band denotes the minimum and maximum
RMSD across three random redistribution experiments.

used for existing observation sites in Asia, and the observa-
tion height of additional hypothetical sites is set to 5 m above
the model topography in the following experiments.

3.2 Effect of an observation network with extra
observation sites added randomly

Figure 5 presents the time series of the 3-week moving aver-
age of RMSD for surface CO2 fluxes from the CNTL, ADD,
and ALL experiments, which clearly show the effect of ran-
domly added observation sites. The three experiments show
larger RMSD values in the summer compared to other sea-
sons, which is similar to the previous random redistribution
experiments in Sect. 3.1. The RMSDs of ADD and ALL with
more observation sites generally remain low during the sim-
ulation period. Except in summer, the time series of RMSD
of ADD is similar to or slightly lower than that of CNTL.
In summer, the maximum RMSD of ADD is reduced to
109, maintaining lower values during the summer and not
showing any sudden increase. In addition, the maximum and
minimum RMSDs of three addition experiments are mostly
smaller than the RMSD of CNTL. ALL has the minimum
RMSD among the three experiments throughout the simula-
tion period and reaches a maximum of only 34 in early July.
Since this number does not exceed the minimums of CNTL
and ADD, the ALL experiment can be regarded as the best
observation network. This suggests that an accurate and sta-
ble optimization of surface CO2 fluxes in Asia is possible if
CO2 observation sites are sufficient.

The result of the observation network experiments with
randomly added extra observation sites (i.e., ADD) also im-
plies that the seven observation sites in Asia described in
CT2013B do not seem to be sufficient to fully optimize the
surface CO2 fluxes in the region. Although the ADD experi-
ment with 10 randomly added extra observation sites shows
an improvement in optimization, more observation sites are
necessary for optimizing surface CO2 fluxes in Asia, consid-
ering the result of the ALL experiment. Moreover, the simu-
lation result of the ADD experiment does not much outper-

Figure 5. The same as Fig. 4 except for the CNTL (black solid line),
ADD (dark green solid line), and ALL (purple solid line) experi-
ments. The green shaded band denotes the minimum and maximum
RMSD across three random addition experiments.

form that of the REDIST experiment, although more obser-
vations were used. This implies that further consideration is
required when adding observation sites to the existing ob-
servation network. Thus, rather than just adding observation
sites randomly, selecting and adding more influential obser-
vation sites for Asia is crucial to construct an efficient surface
CO2 observation network.

3.3 Effect of an observation network with extra
observation sites added using self-sensitivity and
ecoregion information

Considering the simulation results of Sect. 3.2, the addition
of extra observation sites to the existing observation sites
could improve the performance in simulating surface CO2
fluxes in Asia. In particular, the ALL experiment, which
added many observation sites under the given modeling
framework, shows a high level of reproducibility of TRUE.
However, adding more than 900 observation sites in Asia
does not seem to be possible in real situations. Moreover,
the expected effect from the extra observation sites may not
be effective if the additional observations are not influential.
Thus, the efficient selection and supplementation of obser-
vation sites is inevitable considering these constraints under
realistic conditions.

In this study, self-sensitivity information obtained from
the ALL experiment and ecoregion information used in
CT2013B were used as additional strategies for the purpose
of adding possible efficient observation sites in Asia. Since
the self-sensitivity is the metric showing the impact of ob-
servations at each observation site for the model simulation
results, as stated in Sect. 2.2, it can be used as a strategy for
selecting potential observation sites. In addition, the propor-
tion of each ecoregion in the Asia domain can also be utilized
as a strategy in choosing observation sites, as the calculation
of surface CO2 fluxes is based on the scaling factor for each
ecoregion in CT2013B, and the scaling factor updated in the
data assimilation process has the possibility to be more af-
fected by the observation sites located in the same ecoregion
(CarbonTracker Documentation CT2013B Release, 2015).
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Figure 6. The spatial distribution of self-sensitivities (%) during the
experimental period obtained from the ALL experiment.

Figure 6 shows the spatial distribution of self-sensitivity
from the ALL experiment. Although the self-sensitivity of
each observation site varies from the others, four influential
regions with high sensitivities are located in western Siberia,
the southern part of the Tibetan Plateau, and southeastern and
northeastern Asia. The highest (lowest) self-sensitivity of
the hypothetical observation sites is 4.02 % (0.04 %). Thus,
the likelihood of using observations located in the afore-
mentioned four regions increases when considering the self-
sensitivity as the selection strategy. In contrast, the observa-
tion sites located in southwestern Asia and eastern Siberia
are rarely chosen for the optimization due to the low value of
self-sensitivity.

The self-sensitivity used for the SS and ECOSS exper-
iments is the pure self-sensitivity without considering the
number of assimilated observations. The 10 observation sites
of the SS experiment were selected by employing self-
sensitivity from the numerical order (highest first) and fol-
lowing the addition criteria (i.e., 1000 km distance between
sites and observation height 5 m above the model topogra-
phy) used in Sect. 2.3. For the ECOSS experiment, the pro-
portions of ecoregions in the Asia verification domain were
calculated from the model grid points. Following this, the
observation sites were selected from the order of principal
ecoregions with self-sensitivity information. Specifically, the
land ecoregion information, omitting that of the oceans and
deserts, was utilized for the selection criteria as the land in
the Northern Hemisphere is crucial for the global carbon
exchange. Table 3 displays the proportions of ecoregions
in the Asia verification domain and the distribution of ob-
servation sites in SS and ECOSS. As the ecoregions with
115 (conifer forest, Eurasia boreal) and 137 (grass/shrub,
Eurasia temperate) indices constitute relatively large propor-

Figure 7. The same as Fig. 4 except for the ADD (dark green solid
line), SS (yellow solid line), and ECOSS (red solid line) experi-
ments. The green shaded band denotes the minimum and maximum
RMSD across three random addition experiments.

tions of the ecoregions in Asia (Table 3), two observation
sites were assigned for each of these two ecoregions. The
other ecoregions have one observation site per ecoregion.
When selecting the aforementioned two and one observa-
tion sites in the ecoregions, the observation sites with the
highest self-sensitivities were selected. The observation sites
of SS are mostly located in ecoregions that constitute lower
proportions compared to those of ECOSS because the self-
sensitivity is generally inversely proportional to the number
of assimilated observations, as shown in Kim et al. (2014a,
2017). Selected sites are listed in Table 4.

The time series of the 3-week moving average of RMSD
of the simulated surface CO2 fluxes for the ADD, SS, and
ECOSS experiments are shown in Fig. 7, which shows
the impact of additional observation sites considering self-
sensitivity information. The ECOSS experiment that consid-
ered both self-sensitivity and ecoregion information main-
tains lower RMSD than the ADD experiment over the ex-
perimental period. In addition, the maximum and minimum
RMSDs of three addition experiments are mostly larger than
the RMSD of ECOSS. Compared to ADD and CNTL, the
SS experiment demonstrates slight improvement in the other
seasons except summer, whereas the ECOSS experiment
demonstrates improvement over the whole experimental pe-
riod. To confirm that the improvement is not just from in-
cluding the ecoregion information, an additional test was
performed using the same regions as ECOSS and the loca-
tions of lowest self-sensitivity in those regions. The resulting
RMSD is similar to ADD and SS, confirming that both high
self-sensitivity and ecoregion information are needed to give
the improved results of ECOSS compared to randomly added
observation sites.

The increased RMSD of SS during the spring–summer pe-
riod compared to that of ADD seems to be related to the DA
method used in CT2013B. As most observation sites added in
SS are located in the ecoregions with relatively small propor-
tions of the Asia domain (Table 3), they may have disadvan-
tages in optimizing the scaling factor of major ecoregions.
This is somewhat relevant to the distribution of observation
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Table 4. The locations and self-sensitivities for the observation sites in the SS and ECOSS experiments.

SS ECOSS

TransCom Land ecosystem SS TransCom Land ecosystem SS
region type Lat Long (%) region type Lat Long (%)

Eurasia temperate Tropical forest 26.5 96.5 4.02 Eurasia temperate Grass/shrub 26.5 92.5 0.87
Tropical Asia Wetland 4.5 114.5 3.83 Eurasia temperate Grass/shrub 28.5 118.5 0.65
Tropical Asia Wetland −5.5 138.5 3.29 Eurasia boreal Conifer forest 58.5 62.5 1.35
Eurasia temperate Forest/field 6.5 80.5 3.17 Eurasia boreal Conifer forest 46.5 142.5 1.28
Eurasia temperate Scrub/woods 24.5 74.5 2.48 Eurasia temperate Semitundra 44.5 54.5 0.29
Eurasia boreal Wooded tundra 66.5 78.5 2.32 Eurasia temperate Crops 10.5 76.5 0.96
Eurasia boreal Crops 56.5 84.5 1.99 Eurasia boreal Northern taiga 66.5 80.5 1.12
Eurasia boreal Wetland 60.5 62.5 1.91 Tropical Asia Tropical forest 8.5 126.5 1.17
Eurasia temperate Wetland 46.5 124.5 1.87 Eurasia boreal Mixed forest 52.5 118.5 0.68
Tropical Asia Broadleaf forest 18.5 104.5 1.75 Eurasia boreal Grass/shrub 56.5 86.5 0.87

sites in the ALL experiment, which has observation sites at
2◦ intervals, consequently leading to the uneven distribution
of observation sites (i.e., major ecoregions with more ob-
servation sites and minor ecoregions with fewer observation
sites) in Asia. As the self-sensitivity generally has an inverse
relationship with the number of assimilated observations, the
self-sensitivities of major ecoregions are typically lower than
those of minor ecoregions, as shown in Table 4.

The simulation results of SS and ECOSS confirm that in-
fluential observation sites for optimizing surface CO2 fluxes
in Asia certainly exist, and the self-sensitivity information
could be used for designing the observation network. The
ECOSS experiment especially, which considers both self-
sensitivity and ecoregion information, shows a better perfor-
mance compared to the SS experiment, which suggests that
considering characteristics of the specific model and data as-
similation configurations can also contribute to the improve-
ment in optimization. This further implies that an observation
network based on the self-sensitivity and ecoregion informa-
tion could be better for optimizing surface CO2 fluxes in Asia
than that based on randomly added observation sites, though
the same number of observations are used.

3.4 Effect of an observation network with extra
observation sites added using normalized
self-sensitivity and ecoregion information

As stated in Sect. 3.3, using the pure self-sensitivities ac-
quired from the ALL experiment for observation network
studies could be inappropriate in certain situations because
they were derived from an uneven number of sites for
each ecoregion. Thus, self-sensitivity could be normalized
(Eq. 15) and used for the selection of observation sites. Ta-
ble 5 shows the information for observation sites in the NSS,
NECOSS1, and NECOSS2 experiments that used the nor-
malized self-sensitivities as the selection strategy. The ob-
servation sites of the NSS experiment are located only in
the 115 (conifer forest) and 137 (grass/shrub) ecoregions.

This is because they have higher normalized sensitivities
than other regions as they constitute large proportions of the
ecoregions of Asia, as shown in Table 3. Additionally, the
NECOSS1 and NECOSS2 experiments were conducted to
examine the impact of additional observation sites depend-
ing on the choice of ecoregion. For the NECOSS1 experi-
ment, two observation sites were added to the 115 (conifer
forest) and 137 (grass/shrub) ecoregions and one observa-
tion site each was allocated to the other 6 ecoregions. In con-
trast, the NECOSS2 experiment allotted one observation site
to each ecoregion. The observation sites in NECOSS1 and
NECOSS2 in the ecoregions were selected by the order of
highest normalized sensitivities in each ecoregion. Note that
the 1000 km site separation criterion is still applied.

Figure 8 shows the time series of the 3-week moving av-
erage of RMSD of the simulated surface CO2 fluxes for
the ADD, NSS, NECOSS1, and NECOSS2 experiments,
which shows the impact of using normalized self-sensitivities
for the selection of additional observation sites. The NSS,
NECOSS1, and NECOSS2 experiments show lower RMSDs
compared to the ADD experiment. The RMSD of NSS is
lower than that of ADD for most of the time, which is dif-
ferent from SS that showed a degradation in summer and
little improvement in other seasons compared to ADD in
Fig. 7. Moreover, the NECOSS1 and NECOSS2 experi-
ments that additionally considered the ecoregion informa-
tion demonstrate a further reduction in RMSD, especially in
summer. The NECOSS1 and NECOSS2 experiments have a
slightly lower RMSD than ECOSS that considered pure self-
sensitivities and ecoregion information. The NECOSS1 and
NECOSS2 experiments do not show significant differences
since the two networks are quite similar.

The simulation results using the normalized self-
sensitivities reconfirm that the self-sensitivity information
could be used in designing the observation network. By con-
sidering the DA method of CT2013B that optimizes scaling
factors assigned in ecoregions, the experiments using nor-
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Figure 8. The same as Fig. 4 except for the ADD (dark green
solid line), NSS (dark orange solid line), NECOSS1 (dark red solid
line), and NECOSS2 (navy blue solid line) experiments. The green
shaded band denotes the minimum and maximum RMSD across
three random addition experiments.

malized self-sensitivities could make simulations better than
those using pure self-sensitivity. In addition, the additional
consideration of ecoregion in the experiments using nor-
malized self-sensitivities also contributes to improvements,
which implies that the model’s characteristics, such as ecore-
gion information, could also be one of the factors to be used
in designing the surface CO2 observation network.

3.5 Horizontal distributions of RMSD and uncertainty
reduction

Figure 9 shows the spatial distribution of the average of
weekly RMSD calculated from the surface CO2 fluxes in
Asia for the whole year; the distribution for summer is sim-
ilar. The CNTL shows the highest RMSD among the ex-
periments, with peaks mainly located in the Siberian area
(Fig. 9a). The REDIST experiment shows a decrease in the
high RMSD of the Siberian area shown in CNTL, but the
RMSDs of eastern China and the southeastern part of the Ti-
betan Plateau (the Indochina Peninsula) increase slightly, and
the RMSDs of northern India and the northeastern part of
Asia remain nearly unchanged compared to CNTL (Fig. 9b).
The distribution of RMSD in the ADD experiment is fairly
similar to that of REDIST, except for the decrease in the
RMSD near the Tibetan Plateau and in southeastern Asia
(Fig. 9c). Such a spatial distribution of RMSD in the ADD
experiment implies the need for supplementing observation
sites efficiently. Figure 9d clearly shows the reduction in the
RMSD of northern India and the southeastern region of the
Tibetan Plateau in the SS experiment compared to the RE-
DIST and ADD experiments. This proves the impact of con-
sidering self-sensitivity information for observation network
studies. However, the performance of the SS experiment on
some Siberian inland areas is poorer than those of the RE-
DIST and ADD experiments, due to the relative absence of
observation sites for that region. The ECOSS experiment us-
ing the ecoregion information shows comparatively lower
RMSD in the Asia domain, except for the southeastern part
of the Tibetan Plateau and northeastern Asia (Fig. 9e). The
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RMSD distribution of the NSS experiment confirms that the
RMSD of the Siberian area is much reduced compared to
that of the SS experiment, though its overall pattern is sim-
ilar (Fig. 9f). The RMSDs of the NECOSS1 and NECOSS2
experiments are analogous to that of the ECOSS experiment
(Fig. 9g). This can be attributed to the fact that most obser-
vation sites in those three experiments are identical (Tables 4
and 5). The simulated RMSD of the ALL experiment is the
lowest in most of the domain among all sensitivity experi-
ments (Fig. 9i). Such simulation results reconfirm that the
observation network in Asia needs to be organized in a more
efficient way to gain better optimization results of surface
CO2 fluxes.

Figure 10 shows the UR derived from the experiments,
which corresponds with the previous results. Compared to
the CNTL experiment, the uncertainty of the REDIST exper-
iment is much reduced in the Siberian area, but the impact of
REDIST is low south of 50◦ N (Fig. 10a). Such a result seems
to be related with the high UR values in the Siberian region
in CNTL, because most observation sites in CNTL are lo-
cated from 30 to 45◦ N. The ADD experiment with randomly
added sites demonstrates slightly more UR for the inland
Siberian area and the nearby areas of the Tibetan Plateau,
including China and India, than REDIST (Fig. 10b). How-
ever, the UR in the Asian midlatitudes is still lower than that
in other Asian regions. Although the SS and ECOSS exper-
iments have the same number of observation sites compared
with the ADD experiment, the overall UR in the Asia do-
main in SS and ECOSS is higher than that of ADD (Fig. 10b,
c, and d). The uncertainty in the SS experiment, which has
comparatively more observation sites in India and southeast-
ern Asia, is clearly reduced for that area. In contrast, the
ECOSS experiment retaining comparatively more observa-
tion sites in the inland areas of Asia shows higher UR in the
land areas, although UR in India and southeastern Asia is
lower than that in the SS experiment. The experiments us-
ing normalized self-sensitivities generally show distinct un-
certainty reductions in inland Asia, although the UR of India
and southeastern Asia in NSS is slightly lower than that of SS
(Fig. 10e). This is because the observation sites of NSS are
located only in the 115 (conifer forest) and 137 (grass/shrub)
ecoregions. Although the UR distributions of the NECOSS1
and NECOSS2 experiments are generally similar to those of
the ECOSS experiment, the uncertainties in India and south-
eastern Asia decrease further in NECOSS1 and NECOSS2
(Fig. 10f and g). The UR of the ALL experiment increases
compared to those of other experiments as a number of ob-
servation sites in ALL sufficiently cover the Asian domain
(Fig. 10h).

Table 6 summarizes the overall scores of the simulations
conducted in this study. The PC is generally high due to
the hypothetical observations associated with the flux dis-
tributions within ecoregions. The CNTL (ALL) experiment
shows the lowest (highest) PC among the simulations. The
PC of other experiments range between these. In contrast,

the CNTL (ALL) experiment shows the high (lowest) RMSD
among the simulations. The statistics shown in Table 6 recon-
firm the impacts of redistributing current observation sites
and adding extra observation sites discussed in this study.
Firstly, the height specification for hypothetical observations
does not seem to be very influential for the results of OSSEs
as only small differences were observed between the results
of CNTL and CNTL_MOD. The impact of redistribution is
noticeable because the performance of the REDIST experi-
ment was generally better than that of the CNTL experiment.
Moreover, the comparison between ADD, SS, and ECOSS
reaffirms that adding more observation sites to the existing
sites is effective in optimizing surface CO2 fluxes, and the
addition strategy needs to be more effective to have better
optimization results for surface CO2 fluxes. Moreover, the
NSS, NECOSS1, and NECOSS2 experiments that used both
normalized self-sensitivities and ecoregion information show
that the normalized self-sensitivity and configuration of the
data assimilation and model can be utilized as appropriate
strategies in designing an observation network that enhances
simulation results. The simulation result of the ALL exper-
iment seems to suggest a possible limit of the improvement
when using the DA method in CT2013B.

3.6 Additional experiments with more surface
observation sites

Until now, the seven observation sites in Asia from the ob-
servation network of CT2013B were used to evaluate sev-
eral strategies to determine an effective observation network
for optimizing surface CO2 fluxes in Asia. Currently, surface
CO2 mole fraction observations from 18 observation sites are
used for CT2017 (Fig. 11). In this section, the experimental
results based on 18 observation sites similar to those based on
seven observation sites above are shown to reaffirm the va-
lidity of the normalized self-sensitivity and ecoregion infor-
mation as selection strategies for potential observation sites.
Descriptions of additional experiments are shown in Table 2.
Instead of CNTL, ADD, NSS, and NECOSS1 based on seven
sites, CNTL_18, ADD_18, NSS_18, and NECOSS1_18 are
configured.

Figure 12 shows the time series of the 3-week moving
average of RMSD of the simulated surface CO2 fluxes for
the ALL, CNTL_18, ADD_18, NSS_18, and NECOSS1_18
experiments, which shows the impact of using normalized
self-sensitivities for the selection of additional observation
sites. CNTL_18 with 11 more sites shows a better perfor-
mance when compared to CNTL shown in Fig. 4, and other
experiments with 10 more observation sites compared to
CNTL_18 show more improved results. The experiments
with 10 more observation sites are located between the ALL
and CNTL_18, and NECOSS1_18 shows the lower RMSD
(37.889) compared with the RMSD of ADD_18 (39.368) and
the RMSD of NSS_18 (39.133). The impact of using normal-
ized self-sensitivities and ecoregions in determining observa-

www.atmos-chem-phys.net/20/5175/2020/ Atmos. Chem. Phys., 20, 5175–5195, 2020



5190 J. Park and H. M. Kim: Design of CO2 observation network to optimize surface CO2 fluxes

Figure 9. The spatial distribution of the average of weekly RMSD of surface CO2 fluxes (gC m−2 yr−1) for (a) the CNTL, (b) the REDIST,
(c) the ADD, (d) the SS, (e) the ECOSS, (f) the NSS, (g) the NECOSS1, (h) the NECOSS2, and (i) the ALL experiments.

Table 6. The averaged statistics of surface CO2 fluxes (gC m−2 yr−1) for the experiments conducted in this study.

Exp. name CNTL CNTL_MOD REDIST ADD SS ECOSS NSS NECOSS1 NECOSS2 ALL

PC 0.965 0.966 0.973 0.977 0.98 0.984 0.983 0.987 0.986 0.998
RMSD 70.06 70.528 60.547 54.708 53.572 45.388 47.034 41.9 42.218 15.947

tion sites is still shown in the additional experiments based
on 18 observation sites, although the improvement is slightly
reduced compared to the experiments based on 7 observation
sites. The lower improvement in the experiments based on 18
observation sites compared to those based on 7 observation
sites seems to be associated with the locations of 11 addi-
tional observation sites, mostly in Siberian regions, where
there is a lack of observation data in CNTL, and for which
there high sensitivities in Fig. 6 and high RMSD in Fig. 9a
can be seen.

4 Conclusions

In this study, observation system simulation experiments us-
ing hypothetical observations were conducted to investigate

the potential for an effective observation network for opti-
mizing surface CO2 fluxes in Asia. Several experiments, in-
cluding redistributing existing stations and adding observa-
tion stations to the existing observation network, were con-
ducted to assess the performance of the current observation
network and the impact of additional observation sites. For
the addition experiment, random addition and addition strate-
gies based on self-sensitivities, normalized self-sensitivities,
and ecoregion information were tested and compared. The
performance of each observation network was evaluated
from statistics calculated from simulated surface CO2 fluxes
and the uncertainty reduction.

The results indicate that further optimization of the sur-
face CO2 fluxes in Asia could be made by redistributing
existing observation sites, given that the RMSD of the re-
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Figure 10. The spatial distribution of uncertainty reduction (%) for (a) the REDIST, (b) the ADD, (c) the SS, (d) the ECOSS, (e) the NSS,
(f) the NECOSS1, (g) the NECOSS2, and (h) the ALL experiment, against the CNTL experiment.

distributed experiment was reduced by 12.8 % compared to
the experiment using the existing observation network (i.e.,
CNTL). The RMSD of the random addition experiment was
reduced by 21.9 % compared to CNTL. Although the exper-
iment based on only self-sensitivity information was not bet-
ter than that based on randomly added observation sites, the
experiment based on both self-sensitivity and ecoregion in-
formation reduced the RMSD by 35.2 % compared to that
of CNTL. Moreover, the experiment based on both normal-
ized self-sensitivity and ecoregion information further re-
duced the RMSD by approximately 40 % compared to that of
CNTL. Thus, the normalized self-sensitivity and ecoregion
information could be used as strategies to select observation
sites to construct the surface CO2 observation network. The
additional experiments based on 18 observation sites used
for CT2017 also show similar results compared to the ex-
periments based on 7 observation sites used for CT2013B,
which reaffirms the validity of the normalized self-sensitivity
and ecoregion information as selection strategies for poten-
tial observation sites.

Although the simulation results showed an improvement
in performance, the results also suggested that adding 10 ex-

tra observation sites in Asia may not be sufficient to fully
optimize surface CO2 fluxes, and more observation sites are
required. Reliable observation data from some satellite sen-
sors could supplement the model simulations on the basis of
continuous surface observation sites. As the quality of satel-
lite observation data increases, the observation network de-
sign for both surface and satellite observation data using the
strategies (i.e., normalized self-sensitivity and ecoregion in-
formation) of this study will be investigated in the future.

The normalized self-sensitivity combined with the ecore-
gion information was useful in designing observation net-
work in CarbonTracker. Although the ecoregion information
may not be effective in other inversion systems that do not in-
vert surface CO2 flux based on ecoregion, several strategies
need to be considered and combined to get the best results
in observation network design, depending on the character-
istics of the platform (or system) used in designing obser-
vation network. The self-sensitivity could be used alone or
adjusting to inversion systems used. Nevertheless, to evalu-
ate the impact of ecoregion information on the results of this
study, the observation network design using another inver-
sion system (possibly without using the same ecoregion as
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Figure 11. The distribution of observation sites of CNTL_18 in
Asia domain: red dots denote 7 observation sites of CT2013B and
blue dots denote additional 11 observation sites of CT2017.

Figure 12. The same as Fig. 4 except for the CNTL_18 (blue solid
line), ADD_18 (dark green solid line), NSS_18 (dark orange solid
line), NECOSS1_18 (dark red solid line), and ALL (purple solid
line) experiments.

CarbonTracker) as well as using hypothetical observations
from another inversion system needs to be addressed in the
future.

This study suggests a method to design and evaluate the
observation network to optimize surface CO2 fluxes at the
continental scale without a myriad of simulations (iterations)
of the genetic algorithm or the incremental optimization used
in previous studies. Thus, this approach could constitute a
practical method to conduct such simulations with relatively
limited computer resources. The observation network design
method in this study could also be used to design an obser-
vation network to optimize global surface CO2 fluxes.
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