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Abstract. Fine particulate matter (PM2.5) and surface
ozone (O3) are major air pollutants in megacities such as
Delhi, but the design of suitable mitigation strategies is chal-
lenging. Some strategies for reducing PM2.5 may have the
notable side effect of increasing O3. Here, we demonstrate
a numerical framework for investigating the impacts of mit-
igation strategies on both PM2.5 and O3 in Delhi. We use
Gaussian process emulation to generate a computationally
efficient surrogate for a regional air quality model (WRF-
Chem). This allows us to perform global sensitivity analysis
to identify the major sources of air pollution and to gener-
ate emission-sector-based pollutant response surfaces to in-
form mitigation policy development. Based on more than
100 000 emulation runs during the pre-monsoon period (peak
O3 season), our global sensitivity analysis shows that lo-
cal traffic emissions from the Delhi city region and regional
transport of pollution emitted from the National Capital Re-
gion (NCR) surrounding Delhi are dominant factors influ-
encing PM2.5 and O3 in Delhi. They together govern the
O3 peak and PM2.5 concentration during daytime. Regional
transport contributes about 80% of the PM2.5 variation dur-
ing the night. Reducing traffic emissions in Delhi alone (e.g.
by 50 %) would reduce PM2.5 by 15 %–20 % but lead to a

20 %–25 % increase in O3. However, we show that reduc-
ing NCR regional emissions by 25 %–30 % at the same time
would further reduce PM2.5 by 5 %–10 % in Delhi and avoid
the O3 increase. This study provides scientific evidence to
support the need for joint coordination of controls on local
and regional scales to achieve effective reduction in PM2.5
whilst minimising the risk of O3 increase in Delhi.

1 Introduction

Exposure to air pollutants increases morbidity and mortality
(J. Huang et al., 2018; WHO, 2013). The urban air quality
in India, especially in Delhi, is currently among the poorest
in the world (WHO, 2013, 2016a, b). In addition to the lo-
cal impacts, the Indian monsoon can transport air pollutants
to remote oceanic regions, inject them into the stratosphere
and redistribute them globally (Lelieveld et al., 2018). This
makes the impact of Indian air pollution wide-ranging re-
gionally and globally, and it has interactions with climate and
ecosystems worldwide (Menon et al., 2002; Gao et al., 2019).

PM2.5 (particulate matter with an aerodynamic diameter of
less than 2.5 µm) is a major air pollutant, causing increases in
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disease (Pope et al., 2009; Gao et al., 2015; Stafoggia et al.,
2019) and reduced visibility (Mukherjee and Toohey, 2016;
Wang and Chen, 2019; Khare et al., 2018). The population of
India experiences high PM2.5 exposure, and this is responsi-
ble for ∼ 1 million premature deaths per year (Conibear et
al., 2018; Gao et al., 2018). Residential emissions are esti-
mated to contribute ∼ 50 % of PM2.5 concentrations and to
cause more than 0.5 million annual mortalities across India
(Conibear et al., 2018). Previous studies reported an annual
averaged PM2.5 loading of 110–140 µg m−3 in Delhi dur-
ing 2015–2018, leading to ∼ 10000 premature deaths per
year in the city (Chen et al., 2019; Chowdhury and Dey,
2016; WHO, 2016a). In Delhi, the traffic sector (∼ 50 %) and
the domestic sector (∼ 20 %) are the major local contribu-
tors to PM2.5 (Marrapu et al., 2014). Efforts to control traffic
emissions in Delhi in recent years by introducing an alternat-
ing “odd–even” licence plate policy have led to reductions in
PM2.5 of less than 10 % (Chowdhury et al., 2017). This in-
dicates that there is an urgent need for a coordinated plan to
mitigate PM2.5 pollution (Chowdhury et al., 2017).

Surface ozone (O3), another major air pollutant, is damag-
ing to health and reduces crop yields (Ashworth et al., 2013;
Lu et al., 2018; Kumar et al., 2018). The risks of respiratory
and cardiovascular diseases are increased from short-term
exposure to high ambient O3 and from long-term exposure
at low levels (WHO, 2013; Turner et al., 2016; Fleming et
al., 2018). Oxidation of volatile organic compounds (VOCs)
in the presence of nitrogen oxides (NOx) is the main source
of surface ozone. Rapid economic development in India has
greatly increased the emissions of these O3 precursors (Dun-
can et al., 2016), leading to significant increases in O3 es-
pecially during the pre-monsoon period (Ghude et al., 2008).
Hourly maximum O3 reaches as much as 140 ppbv during the
pre-monsoon season in Delhi (Ghude et al., 2008), compara-
ble to the most polluted regions in China (150 ppbv; Wang et
al., 2017) and higher than the most polluted areas in the US
(110 ppbv; Lu et al., 2018).

Mitigation of PM2.5 pollution may lead to an increase in
surface ozone because the dimming effect of aerosols and re-
moval of hydroperoxy radicals are reduced, facilitating O3
production (X. Huang et al., 2018; Li et al., 2018; Hollaway
et al., 2019). Furthermore, co-reduction of NOx and PM2.5
emissions may increase O3 in cities where O3 production is
in a VOC-limited photochemical regime (Ran et al., 2009;
Xing et al., 2017, 2018). This has recently been reported in
a number of Asian megacities, e.g. Shanghai (Silver et al.,
2018), Beijing (Wu et al., 2015; Liu et al., 2017; Chen et al.,
2018) and Guangzhou (Liu et al., 2013). Delhi and coastal
cities in India, which are known to be VOC-limited (Sharma
et al., 2017), may face increased O3 as a side effect of emis-
sion controls focused on PM2.5. Therefore, studies of miti-
gation strategies that target both PM2.5 and O3 are urgently
needed (Chen et al., 2018), particularly as urban air pollution
in India has been much less well studied than in many other
countries.

To investigate the impacts of mitigation strategies with re-
spect to both PM2.5 and O3, we demonstrate a framework
for generating emission-sector-based pollutant response sur-
faces using Gaussian process emulation (O’Hagan and West,
2009; O’Hagan, 2006). The response surfaces describe how
the pollutants, i.e. PM2.5 and O3, will respond to the changes
in emissions from different sectors. We conduct global sen-
sitivity analysis to identify the dominant emission sectors
controlling PM2.5 and O3 and then generate sector-based re-
sponse surfaces to quantify the impacts on PM2.5 and O3 of
emission reductions. In contrast to simple sensitivity analysis
varying one input at a time, this allows full exploration of the
entire input space, accounting for the interactions between
different inputs (Pisoni et al., 2018; Saltelli et al., 1999).
Conventionally, chemical transport models (CTMs) are used
to calculate the impacts on pollutants concentrations of dif-
ferent mitigation scenarios. However, the computational ex-
pense of CTMs makes them unsuitable for performing global
sensitivity analysis or generating response surfaces, which
usually require thousands of model runs. To overcome this
difficulty, source–receptor relationships (Amann et al., 2011)
or computationally efficient surrogate models, trained on a
limited number of CTM simulations, are used to replace the
expensive CTM. These approaches have been used to per-
form sensitivity and uncertainty analysis of regional air qual-
ity models (Pisoni et al., 2018), assessment of regional air
quality plans (Zhao et al., 2017; Xing et al., 2017; Pisoni et
al., 2017; Thunis et al., 2016), and sensitivity and uncertainty
analysis of global and climate simulations (Ryan et al., 2018;
Lee et al., 2012, 2016). Here, we use the surrogate model to
explore the sensitivity of PM2.5 and O3 to sector-based emis-
sion controls in Delhi for developing a mitigation strategy
addressing both pollutants.

In this study, we demonstrate the value of such a frame-
work for supporting decision makers in determining better
mitigation strategies. We give examples of its use in inves-
tigating impacts of mitigation scenarios on PM2.5 and O3
pollution in Delhi and demonstrate that regional joint co-
ordination of emission controls over National Capital Re-
gion (NCR) of Delhi is essential for an effective reduction
of PM2.5 whilst minimising the risk of O3 increase.

2 Materials and methods

2.1 WRF-Chem model baseline simulation

WRF-Chem (v3.9.1) – an online, fully coupled chemistry
transport model (Grell et al., 2005) – has been widely used
in previous studies of air quality across India (Marrapu et
al., 2014; Mohan and Gupta, 2018; Gupta and Mohan, 2015;
Mohan and Bhati, 2011). The model has also been used to
estimate the health burden (Conibear et al., 2018; Ghude et
al., 2016) and reduction in crop yields (Ghude et al., 2014)
from the exposure to PM2.5 and O3 over India.
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Figure 1. Map of simulation domains, modified from © Google Earth.

In this study, we focus on the hot and dry pre-monsoon
period in Delhi, when average temperatures are around
32 ◦C and relative humidity (RH) is about 35 % (Ojha et al.,
2012). O3 approaches its annual peak in the pre-monsoon
period due to strong solar radiation (Ghude et al., 2008; Ojha
et al., 2012). During the pre-monsoon period, desert dust
can contribute significantly to particulate matter in Delhi
(Kumar et al., 2014a, b). Here, we perform WRF-Chem
simulation for the period of 2–15 May 2015 (with 2 addi-
tional days for spin-up), when Delhi was not significantly
influenced by dust storms, according to MODIS obser-
vations (https://earthdata.nasa.gov/earth-observation-data/
near-real-time/hazards-and-disasters/dust-storms, last ac-
cess: 16 December 2019). Strong dust storms started to
influence the Indo Gangetic Plain on 21–24 April and
19 May 2015, respectively. This minimises the uncertainties
resulting from dust storm simulation and permits a stronger
focus on anthropogenic emissions. Resuspended dust from
road traffic is also a major contributor to PM2.5 in Delhi, and
this is estimated and included in the emission inventory, as
described below.

The model configuration follows the study of Marrapu et
al. (2014), and the parameterisations used are listed in Ta-
ble 1. Three nested domains are used, with coverage of south-
ern Asia (45 km resolution), the Indo Gangetic Plain (15 km
resolution), and the National Capital Region (5 km resolu-
tion; see Fig. 1). A test simulation with a fourth domain over
Delhi at 1.67 km resolution suggests that a further increase

in resolution does not substantially improve model perfor-
mance (details in Sect. S1 in the Supplement), and this is in
line with results from a previous study (Mohan and Bhati,
2011). The Carbon Bond Mechanism version Z (CBMZ; Za-
veri and Peters, 1999) coupled with the MOSAIC (Zaveri et
al., 2008) aerosol module with four size bins is used to rep-
resent gaseous chemical reaction and aerosol chemical and
dynamical processes. We neglect wet scavenging and cloud
chemistry processes here, as the impact of these is likely to
be negligible during the dry pre-monsoon period over India.
No precipitation was recoded in Delhi during the simulation
period.

The initial and boundary conditions for chemical species
are provided from MOZART-4 global results (https://www.
acom.ucar.edu/wrf-chem/mozart.shtml, last access: 16 De-
cember 2019). Our baseline simulation is driven by
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) meteorological data, as we find that these
reproduce regional meteorology better than those from the
National Centers for Environmental Prediction (NCEP) over
India, consistent with a recent study (Chatani and Sharma,
2018). The ECMWF reanalysis dataset (ERA-Interim) as-
similates observations with a number of nearly 107 per day
(Dee et al., 2011) and is used for grid nudging and as initial
and boundary conditions for WRF-Chem at horizontal and
temporal resolutions of 0.75◦× 0.75◦ and 6 h, respectively.
The wind pattern and temperature over Delhi in May 2015
are generally captured well in simulations driven by either
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Table 1. Configuration of WRF-Chem.

Physics WRF option

Microphysics Lin scheme (Lin et al., 1983)
Surface layer MM5 similarity
Boundary layer Yonsei University Scheme (YSU) (Hong et al., 2006)
Cumulus Grell 3-D

Urban Three-category Urban Canopy Model (UCM)
Shortwave radiation Goddard shortwave (Chou et al., 1998)
Longwave radiation Rapid radiative transfer model

Chemistry and aerosol Chem option

Gas-phase mechanism CBMZ (Zaveri and Peters, 1999)
Aerosol module MOSAIC with four bins (∼ 40 nm to 10 µm)

(Zaveri et al., 2008)
Photolysis rate Fast-J photolysis scheme (Wild et al., 2000)

Emission inventories

Anthropogenic emissions SAFAR-2015 Delhi and EDGAR-HTAP v2.2
Biogenic emissions MEGAN (Guenther et al., 2006)
Biomass burning emissions FINN (Wiedinmyer et al., 2011)

meteorological dataset, but the model captures the variation
in relative humidity much better (R = 0.7) with ECMWF
data than with NCEP data (R = 0.4; negative bias of 20 %–
40 %). A more detailed discussion is provided in Sect. S2.

The high-resolution Fire INventory from NCAR (FINN;
Wiedinmyer et al., 2011) is adopted to provide biomass
burning emissions. Interactive biogenic emissions are in-
cluded using the Model of Emissions of Gases and Aerosols
from Nature (MEGAN; Guenther et al., 2006). The global
Emission Database for Global Atmospheric Research with
Task Force on Hemispheric Transport of Air Pollution
(EDGAR-HTAP; Janssens-Maenhout et al., 2015) ver-
sion 2.2 (year 2010) at 0.1◦× 0.1◦ resolution is used to rep-
resent anthropogenic emissions apart from over Delhi, where
they are represented by a high-resolution monthly inventory
for 2015 developed under the System of Air Quality and
Weather Forecasting and Research (SAFAR) project (Sahu
et al., 2011, 2015). In the absence of a diurnal variation
in emissions specific to Delhi, we adopt diurnal variations
from Europe in this study (Denier van der Gon et al., 2011).
The SAFAR inventory provides emission fluxes of PM10,
PM2.5, black carbon, organic carbon, NOx , CO, SO2 and
NMVOCs (non-methane volatile organic compounds) from
five sectors, including power (POW), industry (IND), domes-
tic and residential (DOM), traffic (TRA), and wind-blown
dust (WBD) from roads. Wind-blown dust includes dust re-
suspended from vehicle movement on paved and unpaved
roads (Sahu et al., 2011) and is therefore closely related to
traffic emissions, and we combine this into the traffic sector
for our study.

The NMVOC emissions are speciated according to the
EDGAR (v4.3.2) global inventory (Huang et al., 2017) and

are then lumped for the CBMZ chemistry scheme. The spe-
ciation mapping is detailed in Table 2 and described below,
and a toolkit has been developed to perform this mapping.
Emissions of alcohols and ethers are split 20 % : 80 % be-
tween methanol and ethanol by mass and then converted into
molar emissions with a fractionation based on Murrells et
al. (2009). Emissions of paraffin carbon (PAR) are calcu-
lated by converting mass emissions from each VOC group
into molar emissions and then multiplying by the number of
paraffin carbons in order to conserve carbon. Hexanes and
higher alkanes are converted into molar emissions of hex-
ane and then multiplied by 6 to give PAR emissions. Other
alkenes are mapped to molar emissions of butane, and this is
then apportioned between terminal olefin carbons (OLET),
internal olefin carbons (OLEI) and PAR on a molar ratio of
1 : 1 : 4, following Zaveri and Peters (1999). Ketones are split
60 % : 40 % by mass between acetone (KET) and methyl-
ethyl ketone (MEK) and then converted into molar emissions
with fractions based on Murrells et al. (2009). As MEK is
not included in the CBMZ mechanism, we apportion molar
emissions of MEK equally between KET and PAR.

2.2 Observational network

Air quality and meteorological monitoring networks are op-
erated in Delhi under the SAFAR project coordinated by
IITM (Ministry of Earth Sciences, government of India).
Measurements of PM2.5, O3 and NOx during the May 2015
simulation period are available from six monitoring sta-
tions in Delhi: Dr. CV Raman University (CVR), Delhi
University (DEU), Indira Ghandi International Airport Ter-
minal 3 (AIR), Aya Nagar (AYA), NCMRWF (NCM) and
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Table 2. Map of NMVOC from EDGAR emission to CBMZ scheme.

EDGAR name Description CBMZ (mol)

VOC1 Alcohols 20 % CH3OH
80 % C2H5OH

VOC2 Ethane C2H6
VOC3 Propane PAR*3
VOC4 Butane PAR*4
VOC5 Pentane PAR*5
VOC6 Hexanes and other alkanes PAR*6
VOC7 Ethene ETH
VOC8 Propene OLET+PAR
VOC9 Ethyne PAR*2
VOC10 Isoprene ISOP
VOC11 Monoterpenes ISOP*2
VOC12 Other alkenes OLEI*0.5+OLET*0.5+PAR*2
VOC13 Benzene TOL-PAR
VOC14 Toluene TOL
VOC15 Xylenes XYL
VOC16 Trimethylbenzenes XYL+PAR
VOC17 Other aromatics XYL+PAR
VOC18 Esters RCOOH
VOC19 Ethers 20 % CH3OH

80 % C2H5OH
VOC21 Formaldehyde HCHO
VOC22 Other aldehydes ALD2
VOC23 Ketones 60 % KET

40 % KET+PAR
VOC24 Alkanoic acids RCOOH

Pusa (PUS). The instruments are calibrated and measure-
ments are quality controlled in the SAFAR project (http:
//safar.tropmet.res.in, last access: 16 December 2019); more
details are given in previous studies (Sahu et al., 2011; Beig
et al., 2013; Aslam et al., 2017). Site locations are shown in
Fig. 2, and measured variables are given in Table S1 in the
Supplement.

2.3 Global sensitivity analysis of urban air pollution

We perform global sensitivity analysis (GSA; Iooss and
Lemaître, 2015) to quantify the sensitivity of modelled out-
puts (PM2.5 and O3 for this study) to changes in the model
inputs, which for this study are emissions from the differ-
ent emission sectors. One-at-a-time sensitivity analysis is a
common way of calculating model sensitivity and involves
varying a single model input while the other inputs are fixed
at nominal values, e.g. Wild (2007). While one-at-a-time ap-
proach is relatively easy to implement, it assumes that the
model response to different inputs is independent, and this
can lead to biased results (Saltelli et al., 1999; Pisoni et al.,
2018; Carslaw et al., 2013). GSA overcomes the problems of
the one-at-a-time approach by averaging over the other inputs
rather than fixing them at specific values. This allows calcu-
lation of first-order sensitivity indices (SIs) for each variable,

Figure 2. SAFAR inventory of total PM2.5 emissions. The locations
of measurement sites over Delhi are marked by black dots, and the
Delhi city region is marked by a red box. This figure is modified
from OpenSteetMap. © OpenStreetMap contributors 2019. Dis-
tributed under a Creative Commons BY-SA License.
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corresponding to the ith input variable and the j th output
point, given by Eq. (1) (Ryan et al., 2018):

SIi,j =
Var

[
E

(
yj |xi

)]
Var

(
yj

) × 100%, (1)

where xi is the ith element of the input, and yj is the j th el-
ement of the output. “E(·)” and “Var(·)” denote the math-
ematical functions that calculate the expectation and vari-
ance, respectively. The simplest way of computing SIi,j is
by brute force, but this is also the most computationally in-
tensive (Ryan et al., 2018).

The extended Fourier amplitude sensitivity test (eFAST),
first developed by Saltelli et al. (1999), is a commonly used
approach to perform GSA and calculate SIs and is adopted
in this study because of its high efficiency. A basic overview
and detailed equations of the eFAST method are given in
the Sect. 2.2.2 of Ryan et al. (2018). A challenge of using
eFAST is that it typically requires thousands of model runs.
To overcome this, we employ a computationally cheaper sur-
rogate model in place of our expensive simulation model
WRF-Chem. A surrogate model is a simple model (usually
statistical) which can map the inputs to the outputs of the
simulation model with sufficiently good accuracy, given the
same inputs. In this study, we choose a type of surrogate
model called a Gaussian process emulator, which works like
a function for multidimensional interpolation and has been
used extensively in many areas of applied science (Carslaw
et al., 2013; Koehler and Owen, 1996; Queipo et al., 2005;
Vanuytrecht and Willems, 2014; Vu et al., 2015; Degroote et
al., 2012) and uncertainty assessments of atmospheric mod-
els (Lee et al., 2011, 2012, 2016). Gaussian process emula-
tors typically require a relatively small number of runs of the
computationally expensive model to generate; this is in con-
trast to other surrogate modelling approaches, such as neural
networks, which typically require thousands of model runs to
train them. For a basic overview of a Gaussian process emu-
lator, see O’Hagan (2006); a detailed introduction and equa-
tions are also given in the Sect. 2.3 of Ryan et al. (2018). Be-
fore using the emulator in place of the WRF-Chem model to
carry out the thousands of model runs required for GSA, we
train the emulator using a relatively small number of WRF-
Chem model runs. Following previous studies (Carslaw et
al., 2013; Lee et al., 2016), a maximin Latin hypercube
space-filling design is employed to select the designs of train-
ing runs for WRF-Chem. Latin hypercube sampling is a sta-
tistical method for generating a near-random sample of pa-
rameter values from a multidimensional distribution (Shields
and Zhang, 2016). Here, we search through 100 000 Latin
hypercube random designs to find the optimal one, where the
parameter space is filled most effectively. This ensures that
the sets of inputs chosen cover as large a fraction of the input
space as possible. Full details (including R codes) of how to
generate the Gaussian process emulator, eFAST method and
GSA can be found in Ryan et al. (2018).

In this study, we focus on a limited number of the emis-
sion sectors to demonstrate the effectiveness of the approach:
domestic or residential emissions in Delhi (DOM), traffic
emissions in Delhi (TRA, including WBD), power and in-
dustry in Delhi (POW+ IND), and total emissions in the
NCR outside Delhi. NCR represents the contribution of re-
gional transport to pollution in Delhi. According to the SA-
FAR emission inventory, the total PM2.5 emissions of DOM,
TRA, POW+IND and NCR are about 1.8, 6.1, 3.1 and 8.5 Gg
per month in May 2015, respectively. The Gaussian process
emulator is trained using 20 executions of the WRF-Chem
model, with emission scaling drawn from a variation range of
0 %–200 % for each of the four specified sectors (Table S2).
Emulation of the impacts of mitigation scenarios on PM2.5
and O3 can be performed in minutes on a laptop, in contrast
to simulations with WRF-Chem, which require a few days
on a high-performance computing cluster. The accuracy of
the emulator as a surrogate of the WRF-Chem model is eval-
uated using a “leave-one-out” cross validation (Bastos and
O’Hagan, 2009). This involves training the emulator using
19 out of the 20 sets of inputs and outputs from the WRF-
Chem model runs and then evaluating the emulator against
the 20th simulation. This process is carried out for each of
the 20 sets of inputs and outputs. Given that the output space
is multidimensional (i.e. modelled O3 and PM2.5 varied spa-
tially and in time), the emulator is validated by comparing
10 000 (random samples varied spatially and in time) emu-
lator output values against the corresponding output values
of the WRF-Chem model. The emulator validation plot is
shown in Fig. 3. Modelled and emulated O3 and PM2.5 lie
very close to the 1 : 1 line with R2 values of more than 95 %,
as shown in Fig. 3, indicating that the emulation provides
an accurate representation of the input–output relationship
of the WRF-Chem model.

2.4 Response surfaces

Response surfaces are useful for investigating the relation-
ship between model inputs and outputs, in this case between
sectoral emissions and modelled pollutant concentrations.
They have been widely applied for air quality studies and
policymaking (EPA, 2006a, b, Zhao et al., 2017; Xing et al.,
2017). Here, we analyse the responses of PM2.5 and O3 to
changes in emissions from each sector of between 0 % and
200 %. The computationally efficient Gaussian process em-
ulation enables us to generate response surfaces without the
computational burden of a large number of runs of the WRF-
chem model.

2.5 Outline of analysis

We use the WRF-Chem model to simulate the hourly con-
centrations of O3 and PM2.5 over the Delhi region during 2–
15 May 2015 and evaluate the results against observations.
We perform a simple sensitivity analysis to investigate the
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Figure 3. Validation of Gaussian process emulator with WRF-Chem model. (a) PM2.5; (b) O3. The green dashed line indicates the 1 : 1 line.

Figure 4. Average diurnal patterns of pollutants during the 2–15 May 2015 simulation period. (a) Modelled and observed PM2.5 and model
PBL height (PBLH), (b) O3, (c) results of sensitivity studies for PM2.5, and (d) results of sensitivity studies for O3. (a) and (c) are for site
CVR, and (b) and (d) are for site AIR (marked in Fig. 2). The sensitivity runs “noFire” and “noBIO” show model results without biomass
burning and biogenic emissions, respectively, and “noDiurnal” shows model results with constant anthropogenic emissions rates throughout
the day.

contributions of biomass burning and biogenic emissions to
PM2.5 and O3 in Delhi. We then conduct a global sensitiv-
ity analysis, using the eFAST method (see Sect. 2.3) along
with Gaussian process emulation to determine the sensitiv-
ity of modelled O3 and PM2.5 concentrations to changes in
the dominant anthropogenic emission sectors. Finally, we
generate response surfaces to identify appropriate mitiga-
tion strategies for reducing PM2.5 while minimising the risks
from O3 increase.

3 Results and discussion

3.1 Model performance

The WRF-Chem model captures the general magnitude and
variation in PM2.5 well (Fig. 4a), with a mean bias and er-
ror of about −3.5 % and 11 %, respectively and an index of
agreement (Willmott et al., 2012) of 75 %. The frequency dis-
tributions of modelled PM2.5 are also similar to the observa-
tions, with differences in mean and median concentrations
of less than 10 %, although high concentration spikes are
missed by the model (Fig. S1 in the Supplement). The mod-
elled PM2.5 peaks at around 09:00 LT (local time) because
the rush hour enhances traffic emissions before the planetary
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boundary layer (PBL) height has increased (Fig. 4a). This is
also seen in the modelled results at DEU (Fig. S2), which
is closer to a motorway and shows a more intense PM2.5
peak in the morning rush hour. PM2.5 is overestimated during
the morning rush hour (around 09:00 LT) and underestimated
during the early morning (03:00–05:00 LT; Figs. 4a and S2).
This may suggest that there is an earlier rush hour or more
traffic activity at night in Delhi than in European cities, since
we adopted European diurnal emission patterns in this study
in the absence of local information. Detailed studies of traf-
fic emissions and their variation in Delhi would help improve
these model simulations.

The modelled chemical composition of PM2.5 is shown
in Fig. S3. Secondary inorganic aerosol (SIA), including
sulfate, nitrate and ammonium, only contributes ∼ 25 % of
aerosol mass in our simulation. In the absence of particle
inorganic composition measurements during the simulation
period, we compare our results with a previous modelling
study of Delhi during the post-monsoon season (Marrapu et
al., 2014), which also shows a ∼ 25 % contribution of SIA
to PM2.5 loading, in line with our results. Furthermore, our
results are also consistent with an observational study, which
reported the mass fraction of organic matter (usually calcu-
lated as 1.4 times organic carbon, OC) and elemental car-
bon (usually equivalent to black carbon in modelling studies;
Chen et al., 2016b) in PM2.5 of ∼ 20 % and ∼ 6 % in Delhi
during May 2015, respectively (Sharma et al., 2018).

The model captures the peak O3 well, with a bias of less
than 5 %, although it underestimates O3 during night-time
(Fig. 4b). In general, the diurnal pattern and magnitude of
O3 are captured by WRF-Chem (Fig. 4b), with a normalised
mean bias and error of about −20 % and 35 %, respectively,
and an index of agreement of 65 %. The underestimation
during night-time is likely to be because NOx is overesti-
mated by a factor of 2–3 at night (Fig. S4), and the excess
NO depletes O3. This is indicated by the frequency distribu-
tion of O3 and NOx (Fig. S5), where the median values of
observed O3 and NOx are matched well by the model. How-
ever, the higher peaks of modelled NOx concentration lower
the modelled O3 levels, indicating that Delhi is in the VOC-
limited photochemical regime. Similar results are found at
AYA (Fig. S6). The larger underestimation of O3 at NCM
(Fig. S5d; industrial environment site) suggests that NOx

emission from the industry sector may be overestimated.

3.2 Impacts of biogenic and biomass burning emissions

Before exploring the importance of the four selected anthro-
pogenic emission sectors on PM2.5 and O3 in Delhi dur-
ing the simulation period, we investigate the contributions
from other factors (biomass burning and biogenic emissions).
We turn off these sources in the WRF-Chem simulation and
find that there is a negligible contribution from biogenic
emissions to PM2.5 concentrations over Delhi in this sea-
son (Fig. 4c and d). It is worth noting that biogenic emis-

sions may contribute to secondary organic aerosol (SOA) in
Delhi, but the formation of SOA is not represented well by
the CBMZ–MOSAIC chemistry–aerosol mechanisms used
in this study. However, this weakness is not expected to have
a major influence on our pre-monsoon results; as described
above, the difference of organic matter fraction between sim-
ulation and observation (Sharma et al., 2018) in May 2015 is
less than 5%. About 10% of PM2.5 in Delhi is derived from
biomass burning during the simulation period. Crop burning
in Haryana and Punjab states is a major source of this (Jethva
et al., 2018; Cusworth et al., 2018). In contrast, there is a
negligible contribution from biomass burning to O3. How-
ever, there is a 15 %–20 % contribution to O3 from biogenic
emission of VOCs, highlighting the fact that O3 production
in Delhi is strongly VOC-limited.

3.3 Effect of the diurnal variation in emissions

In order to investigate the competing influences of meteorol-
ogy and human activities on the diurnal patterns of PM2.5
and O3 over Delhi, we test the effect of removing the diur-
nal variation in anthropogenic emissions (“noDiurnal”; see
Fig. 4c and d). Modelled PM2.5 concentrations are very sim-
ilar to the “baseline” run during daytime, when the PBL is
well developed, with differences of less than 5 %. This sug-
gests that meteorological processes such as vertical mixing,
advection and transport are the dominant factors controlling
PM2.5 in the daytime. In contrast, freshly emitted pollutants
are trapped at night when the PBL is shallow, and concen-
trations are very sensitive to the emission flux so that the
diurnal pattern of emissions is the dominant factor at night.
The PM2.5 concentration is almost doubled in the early morn-
ing (03:00–09:00 LT; Fig. 4c), when the PBL is shallow and
emissions in the noDiurnal case are higher. There is also a
large increase in NOx in the early morning (Fig. S4), which
leads to greater depletion of O3 (Fig. 4d). However, the con-
centration of O3 is about 20 %–25 % higher during the ozone
peak hour in the afternoon in the noDiurnal case, as the day-
time NOx emissions are less (Fig. S4). This sensitivity test
also highlights the VOC-limited nature of O3 production in
Delhi.

3.4 Sensitivity analysis of pollutants in Delhi

The importance of each anthropogenic emission sector to
pollutant concentrations in Delhi is investigated using global
sensitivity analysis and indicated by global sensitivity in-
dices (SIs), as shown in Fig. 5. The sensitivity index is a mea-
sure of the contribution of the variation in pollutants from
one emission sector to the total variation across all four sec-
tors considered here. A larger SI indicates a larger influence
from the corresponding sector to the modelled average sur-
face PM2.5 or O3 over the Delhi city region (marked in Fig. 2)
in this study.
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Figure 5. Averaged diurnal pattern of global sensitivity indices during the 2–15 May simulation period. (a) PM2.5; (b) O3. The PM2.5 and
O3 results are averaged over Delhi city region (marked with red box in Fig. 2). The morning and evening rush hours and the period of peak
ozone are marked with the boxes to highlight the notable changes in contribution from each emission sector.

Figure 6. Annual emission of different sectors in Delhi from SAFAR inventory. (a) PM2.5; (b) NOx . The emissions of black carbon, organic
carbon, non-methane VOC (NMVOC) and SO2 are given in Fig. S13.

The PM2.5 concentration is most sensitive to emissions
from the NCR region surrounding Delhi, with a sensitivity
index higher than 50 % most of time (Fig. 5a) and reaching
80 %–90 % and ∼ 60 % during 03:00–07:00 LT and 12:00–
17:00 LT, respectively. During the rush hours in the morning
and evening, the sensitivity to NCR emissions is lower, while
the sensitivity to Delhi traffic emissions increases by∼ 30 %.
Around 10:00 LT, local traffic emissions and emissions from
NCR have a similar effect on PM2.5. In contrast, local traf-
fic emissions dominate the PM2.5 in Delhi around 20:00 LT,
with a sensitivity contribution of up to∼ 80 %. This is caused
by the collapse of the PBL in the evening rush hour at around
20:00 LT, which enhances the sensitivity to fresh local emis-
sions. Local traffic emissions contribute ∼ 60 % of primary
PM2.5 emission in Delhi (Fig. 6a), which remains concen-
trated in the PBL during rush hours. In contrast, the fully
developed PBL in the daytime mixes air down from the free
troposphere (Chen et al., 2016a), where regional transport of
pollutants from NCR can be important. This could explain
the second peak in the sensitivity to NCR emissions (50 %–
60 %) during the afternoon (Fig. 5a).

The variation in O3 in the Delhi city region is overwhelm-
ingly dominated by local traffic emissions, with a sensitiv-
ity index higher than 80 % at night-time (Fig. 5b), when O3

and traffic emissions are anti-correlated. Traffic contributes
∼ 75 % of total NOx emission in Delhi (Fig. 6b), and the
shallow PBL during the night traps the NOx . This removes
O3 through chemical reaction in the absence of solar radia-
tion. As the PBL develops in the morning, the sensitivity of
O3 to traffic decreases and the sensitivity to NCR emissions
increases. The sensitivity to NCR emissions reaches its high-
est point (70 %) when the PBL is fully developed at around
15:00 LT. As discussed above, the downward mixing of air
from the free troposphere and dilution of local emissions in
the fully developed PBL could be the reason for this. The
O3 peak coincides with the highest PBL at this time because
photolysis and development of the PBL are both driven by
solar radiation. The development of the PBL increases the
contribution from regional transport, and precursors emit-
ted from the NCR are one of the dominant contributors to
the peak of O3 in Delhi. NOx , mainly originating from traf-
fic emissions, is underestimated by ∼ 30 % during the O3
peak period (Fig. S4). This uncertainty can propagate into the
Gaussian process emulator and could lead to underestimation
of the influence of traffic on peak O3 but is not expected to
change the nature of our conclusion about the predominance
of regional transport and local traffic emissions. In addition,
it is noteworthy that the NOx-rich urban plume from Delhi
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has a substantial influence on O3 in downwind regions across
the NCR as well, as discussed in Sect. S3.

3.5 Mitigation strategies

To demonstrate a framework for developing better mitiga-
tion strategies for addressing both PM2.5 and O3 pollution
in Delhi, emission-sector-based pollutant response surfaces
are generated using Gaussian process emulation (Fig. 7). For
local emissions in Delhi, we focus mainly on traffic and res-
idential sectors here because we find that power and indus-
trial emissions have a more limited influence on PM2.5 and
O3 concentrations in Delhi (Fig. 5). A range of different mit-
igation strategies are analysed, aiming at mitigating PM2.5
pollution whilst minimising the risk of O3 increase.

We find that the responses of PM2.5 and O3 to each emis-
sion sector are nearly linear in Delhi. The response surfaces
show that reducing local traffic emissions in Delhi leads to
an efficient decrease in PM2.5 loading (Fig. 7a) but increases
O3 greatly (Fig. 7b). Reducing local domestic emissions de-
creases PM2.5 loading less than reducing traffic but without
increasing O3. The small impact on O3 may be because do-
mestic emissions are not a major source of NOx , contribut-
ing only 15 % of that from traffic (Fig. 6). A 10 %–20 %
reduction in NOx is expected when reducing local domes-
tic emissions by 50 %; however a 35 %–45 % reduction is
seen for a 50 % reduction in local traffic emissions (Fig. S7).
In addition, VOC is reduced more than NOx when control-
ling domestic emissions, as the VOC / NOx emission ratio
(kg kg−1) is 1.8 in contrast to a ratio of 0.4 for traffic emis-
sions. Greater reduction of VOC suppresses the increase in
O3 in Delhi, which is a VOC-limited environment. A reduc-
tion in local traffic emissions alone of 50 % could decrease
Delhi PM2.5 loading by 15 %–20 %, but this would also in-
crease O3 by 20 %–25 %. We note that our model may un-
derestimate the influence of traffic emissions on O3 to some
extent, as described above (Sect. 3.4), suggesting that the
ozone increase could be stronger than we predict. To pre-
vent the side effect of increasing O3 by controls on traffic
emissions, regional cooperation would be required to reduce
emissions in the NCR region surrounding Delhi by 25 %–
30 %, which also permits a further reduction of PM2.5 by
5 %–10 % (Fig. 7c and d). This is consistent with a recent
study showing that∼ 60 % of PM2.5 in Delhi originates from
outside (Amann et al., 2017). We test this by performing an
additional run with WRF-Chem, using emission reductions
of 50 % and 30 % for sectors of local traffic and the sur-
rounding NCR region, respectively. We compare the WRF-
Chem results of the additional run and the base case (without
change of emissions) against the corresponding results from
Gaussian process emulator (Fig. S8). We find that the PM2.5
and O3 results from the model runs lie within 5 % of those
estimated with the emulator and with R2 higher than 95 %,
demonstrating the high quality of the emulation approach
adopted here and underlining its deeper value for identify-

ing mitigation approaches. The suggested regional joint mit-
igation with NCR surrounding Delhi is in line with a recent
study for mitigating PM2.5 in Beijing, which showed that re-
gional coordination over the North China Plain could lead
to a reduction in PM2.5 of up to 40 % in winter (Liu et al.,
2016).

4 Summary

Previous studies have shown that emission controls focusing
on mitigation of PM2.5 may result in substantial increases
in surface ozone over urban areas that are in a VOC-limited
photochemical environment. Comprehensive studies of miti-
gation strategies with respect to both PM2.5 and O3 are ur-
gently required but are limited in India. In this study, we
demonstrate a numerical framework for informing emission-
sector-based mitigation strategies in Delhi that account for
multiple pollutants.

By using Gaussian process emulation with an air qual-
ity model (WRF-Chem), we generate a computationally ef-
ficient surrogate model for performing global sensitivity
analysis and calculating emission-sector-based pollutant re-
sponse surfaces. These enable us to exhaustively investigate
the impacts of different mitigation scenarios on PM2.5 and
O3 in Delhi, which help decision makers choose better miti-
gation strategies. Global sensitivity analysis shows that pol-
lutants originating from the National Capital Region (NCR)
surrounding Delhi and local traffic emissions are the major
contributors of PM2.5 and O3 in Delhi. They co-dominate
the O3 peak and PM2.5 in Delhi during daytime, while the
regional transport governs PM2.5 during the night, in line
with a recent study showing that ∼ 60 % of PM2.5 in Delhi
originates from outside (Amann et al., 2017). Controlling lo-
cal traffic emissions in Delhi would have the notable side
effect of increasing O3, at least in the pre-monsoon and sum-
mer period (peak O3 season) that we consider here. This is
in line with recent increases in O3 seen in China (Silver et
al., 2018; Li et al., 2018). The Chinese experience suggests
that regional joint coordination is required to effectively mit-
igate PM2.5 pollution in Beijing (Liu et al., 2016). Our pol-
lutant response surfaces go one step further and suggest that
joint coordinated emission controls with the NCR region sur-
rounding Delhi would be required to not only achieve a more
ambitious reduction of PM2.5 but also to minimise the risk of
O3 increases. In the regional joint coordination, residential
energy use could be a dominant emission sector over a large
region in India (Conibear et al., 2018).

5 Discussion

The experiences of developed countries (Dooley, 2002; EPA,
2011) and recently in China (J. Huang et al., 2018; Wang
et al., 2019) show that regional joint coordination can be
achieved by changing energy infrastructure (e.g. replacing
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Figure 7. Response surfaces for PM2.5 and ozone concentrations over Delhi city region, averaged over 2–15 May 2018. (a) Daily average
of PM2.5 concentrations as a function of local traffic and domestic emissions in Delhi, (b) peak hourly ozone concentrations as a function
of local traffic and domestic emissions in Delhi, (c) daily average of PM2.5 concentrations as a function of local traffic emissions in Delhi
and emissions in NCR region surrounding Delhi, and (d) peak hourly ozone concentrations as a function of local traffic emissions in Delhi
and emissions in NCR region surrounding Delhi. The star indicates current conditions, and the arrows show the effect of possible emission
controls.

fossil fuel by renewable energy and natural gas), desulfurisa-
tion and denitrification technologies, popularisation of new
energy vehicles, strict control of vehicle exhaust, and reduc-
ing road and construction dust. Further studies with more de-
tailed information on specific emission sectors and strategies
for clean-technology development and popularisation would
permit deeper insight into air pollution mitigation approaches
suitable for Delhi. These are needed to address both PM2.5,
which has a higher impact on public health (e.g. J. Huang
et al., 2018), and O3, which greatly impacts regional ecol-
ogy and agriculture (e.g. Avnery et al., 2011). A more com-
prehensive evaluation of the health and economic benefits of
different mitigation strategies would greatly help Indian deci-
sion makers, and the framework we have demonstrated here
would provide a strong foundation for this.

Data availability. NCEP FNL operational model global
tropospheric analyses (ds083.2) were downloaded from
https://rda.ucar.edu/data/ds083.2/ (NCEP/National Weather
Service/NOAA/U.S. Department of Commerce, 2000),
and sea surface temperature data were downloaded from
https://polar.ncep.noaa.gov/sst/ (NCEP SST, 2019). ECMWF
interim reanalyses (ERA-Interim) were downloaded from

http://apps.ecmwf.int/datasets/data/interim-full-daily (ECMWF,
2019). MOZART-4 global model results were downloaded
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(NCAR, 2019). The FINN biomass burning emissions dataset
was downloaded from http://bai.acom.ucar.edu/Data/fire/
(Wiedinmyer et al., 2011). Toolkits for emission process-
ing are available from https://github.com/douglowe/WRF_
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