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Abstract. The use of satellite aerosol optical thickness
(AOT) from imaging spectrometers has been successful in
quantifying and mapping high-PM2.5 (particulate matter with
a mass < 2.5 µm diameter) episodes for pollution abatement
and health studies. However, some regions have high PM2.5
but poor estimation success. The challenges in using AOT
from imaging spectrometers to characterize PM2.5 world-
wide was especially evident in the wintertime San Joaquin
Valley (SJV). The SJV’s attendant difficulties of high-albedo
surfaces and very shallow, variable vertical mixing also oc-
cur in other significantly polluted regions around the world.
We report on more accurate PM2.5 maps (where cloudiness
permits) for the whole winter period in the SJV (19 Novem-
ber 2012–18 February 2013). Intensive measurements by in-
cluding NASA aircraft were made for several weeks in that
winter, the DISCOVER-AQ (Deriving Information on Sur-
face Conditions from COlumn and VERtically Resolved Ob-
servations Relevant to Air Quality) California mission.

We found success with a relatively simple method based
on calibration and checking with surface monitors and a char-
acterization of vertical mixing, and incorporating specific un-
derstanding of the region’s climatology. We estimate PM2.5
to within ∼ 7 µg m−3 root mean square error (RMSE) and
with R values of ∼ 0.9, based on remotely sensed multi-
angle implementation of atmospheric correction (MAIAC)
observations, and certain further work will improve that ac-
curacy. Mapping is at 1 km resolution. This allows a time
sequence of mapped aerosols at 1 km for cloud-free days.
We describe our technique as a “static estimation.” Esti-
mation procedures like this one, not dependent on well-

mapped source strengths or on transport error, should help
full source-driven simulations by deconstructing processes.
They also provide a rapid method to create a long-term cli-
matology.

Essential features of the technique are (a) daily calibration
of the AOT to PM2.5 using available surface monitors, and
(b) characterization of mixed layer dilution using column wa-
ter vapor (CWV, otherwise “precipitable water”). We noted
that on multi-day timescales both water vapor and particles
share near-surface sources and both fall to very low values
with altitude; indeed, both are largely removed by precipita-
tion. The existence of layers of H2O or aerosol not within the
mixed layer adds complexity, but mixed-effects statistical re-
gression captures essential proportionality of PM2.5 and the
ratio variable (AOT /CWV). Accuracy is much higher than
previous statistical models and can be extended to the whole
Aqua satellite data record. The maps and time series we show
suggest a repeated pattern for large valleys like the SJV – pro-
gressive stabilization of the mixing height after frontal pas-
sages: PM2.5 is somewhat more determined by day-by-day
changes in mixing than it is by the progressive accumulation
of pollutants (revealed as increasing AOT).

1 Introduction

The San Joaquin Valley (SJV) is an important agricultural
area, characterized by poor air quality (Fig. 1). The SJV
gives an example of a region with frequent air pollution
episodes, challenged by difficulties as varied particle charac-
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teristics with hard-to-quantify sources from domestic burn-
ing and spatially distinct ammonia and nitrate precursors.
The 60 840 km2 area (with approximately 4 million resi-
dents) is located southeast of San Francisco, between the
Coastal Mountains to the west and the Sierra Nevada to
the east (Sorek-Hamer et al., 2013). Figure 1 describes the
particularly high particulate pollution characterizing the San
Joaquin Valley. Previous studies in this region reported a
range of correlations between satellite-borne aerosol optical
thickness (AOT) and daily/hourly collocated ground PM2.5
(particulate matter with a mass < 2.5 µm diameter) mea-
surements in this region. Using linear tools resulted in lit-
tle or no correlation (Engel-Cox et al., 2004; Ballard et al.,
2008; Justice et al., 2009), while applying non-linear meth-
ods improved the correlation to R = 0.71 (Sorek-Hamer et
al., 2013).

More broadly, atmospheric PM pollution in the respirable
range, PM2.5, has been recognized as a major threat to hu-
man health for some time (Brunekreef and Holgate, 2002;
Dominici et al., 2006; Franklin, 2007; Kloog et al., 2013;
Schwartz, et al., 1996; Zanobetti et al., 2009). Epidemio-
logical studies have been hampered by the availability of
relatively few PM2.5 measurement stations relative to the
broad dispersal of populations affected. A variety of methods
have been employed to estimate exposure, e.g., proximity-
based methods using a geographic information system (GIS),
interpolation between sparse monitoring sites, land-use re-
gression models, line- or area-dispersion plume models,
3-D atmospheric source-and-transport models, and models
using information from imaging satellites, often including
also land-use regression and proximity (Sorek Hamer et al.,
2016). Sparse PM2.5 monitoring spatial networks may limit
our ability to accurately assess human exposures to PM2.5,
since concentrations measured at an outdoor site may be less
representative of the subjects’ exposures as the distance from
the monitor increases (Bell et al., 2007; Lee et al., 2011).

For this reason, there has been extensive development of
techniques to make the best use of satellite-borne optical ex-
tinction, as seen from moderate-resolution atmospheric im-
agers. AOT is typically reported as a vertical column in-
tegral of extinction above the ground footprint observed.
Methods using AOT to assess exposure to PM showed early
successes, but certain regions remained very poorly charac-
terized (Engel-Cox et al., 2004; Liu et al., 2009; Gupta et
al., 2006; Koelemeijer et al., 2006; Hoff and Christopher,
2009). Engel-Cox (2004) found correlations of AOT with
PM2.5 for valleys along the US Pacific coast that ranged from
−0.2 to +0.3; i.e., very little variance is explained. Multi-
angle Imaging SpectroRadiometer (MISR) technology aided
greatly (Liu et al., 2007) but yields mostly monthly averages
over years (van Donkelaar et al., 2010), limiting event and
epidemiological analysis.

AOT may be strongly affected by particles encountered
well above the planetary boundary layer (PBL) and differ-
ent particulate composition. In addition, cloud cover severely

limits the actual spatial coverage of AOT (Ford and Heald,
2016). Yet, in spite of these limitations (Jin et al., 2019),
AOT has been employed extensively for assessing PM con-
centrations (e.g., Liu et al., 2018; Franklin et al., 2017; van
Donkelaar et al., 2015, 2016; Kloog et al., 2015, 2014; Hu
et al., 2014; Sorek-Hamer et al., 2013; Hoff and Christopher
2009).

In regard to the SJV, considerable work has been pub-
lished, since it was the site of two major intensive stud-
ies: CRPAQS (California Regional PM10/PM2.5 Air Qual-
ity Study; Chow et al., 2006) and DISCOVER-AQ Cali-
fornia (Deriving Information on Surface Conditions from
COlumn and VERtically Resolved Observations Rele-
vant to Air Quality; https://www-air.larc.nasa.gov/missions/
discover-aq/discover-aq.html (last access: 1 October 2019);
more references below and on the web site). There was
a very useful analysis of particle composition for a well-
instrumented Fresno surface site for this period (Young et
al., 2016). This study added detail to the Watson and Chow
(2002) analysis of an earlier intensive study of the area,
in particular, the striking dominance of nitrate and organic
aerosols in a regular diel pattern. Watson and Chow reference
several publications describing that intensive study. Johnson
et al. (2014) made a three-dimensional modeling study of
methane emissions that also helps describe the mixed layer of
the specific DISCOVER-AQ period. Lidar gives a very help-
ful view of complexities of submicron particle abundance
and properties within the mixed layer and the uniformity of
the mixed layer top (Sawamura et al., 2017).

Application of modeling with satellite AOT columns from
different satellite platforms for the DISCOVER-AQ (in-
cluded within our study period) was able to achieve R2

∼

0.8). These results were achieved for just the DISCOVER-
AQ period of ∼ 6 weeks and with separate subregions of
the central SJV. They highlight the complexity of composi-
tion and source-driven simulation (Friberg et al., 2018). The
Friberg publication is highly recommended as a comparison
to this effort and has extensive references regarding the SJV
and the details required for source-driven modeling.

There are several related goals in producing PM2.5
maps and assessing their accuracy. The work of Friberg
et al. (2018) primarily aimed to constrain the Community
Multi-scale Air Quality model (CMAQ) downwind of the
surface air quality stations and, in particular, to constrain
particle type as much as possible, along with concentra-
tion, using MISR constraints (Ralph Kahn, personal com-
munication, 2019). Our goal was to produce a large set of
maps characterizing one winter in a particular setting, inland
Mediterranean valleys, with the aim of allowing air pollu-
tion professionals to understand particulate episodes and to
improve sources and simulation details (e.g., transport er-
ror) for source-driven models. Goals of the Dalhousie group
are to improve annual average exposure: they see that as
the principal driver for health effects (van Donkelaar et al.,
2010, 2015, 2016). A main goal of NASA’s Multi-Angle
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Figure 1. (a) Annual average PM2.5 (24 h average) by county as observed for 2014 (source: EPA: “What is particle pollution and what
types of particles are a health concern?”; https://www.epa.gov/pmcourse/what-particle-pollution, last access: 1 October 2019). The original
description reads as follows: “US counties with high annual mean particle pollution concentrations in 2015. This map depicts fine particle
pollution concentrations by US county for 2015 based on long-term (annual) average concentrations. The map’s color key is based on
categories of the Air Quality Index (AQI) (see Patient Exposure and the Air Quality Index). All orange and red areas exceeded the annual
ambient air quality standards for fine particle pollution during 2015.” (b) The 98th percentile concentrations by count for 2014 from the same
source. The original description reads as follows: “All orange and red areas exceeded the 24 h ambient air quality standards for fine particle
pollution during 2015. The map illustrates how likely it may be for a particular area to experience air quality advisories for particle pollution
based on short-term averaging.” The San Joaquin Valley comprises the area in red and the adjoining counties to the northeast and southwest;
details are shown in later maps.
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Figure 2. (a) Conceptual figure describing the fair-weather planetary boundary layer (PBL) top for successive days in a clear-weather PM2.5
episode motivating this study; see text. (b) Simulation in the National Oceanic and Atmospheric Administration (NOAA) Rapid Refresh
(RAP) model of PBL height for momentum at three SJV PM2.5 stations (red: Tranquility, gray: Hanford, green: Bakersfield). Periods from
11:00 to 15:30 UTC approximate the mixed layer for that period and time following, although advection may change the concentrations
mixing to that height. Maximum PBL-top altitude may not be accurate for the station, but the shape of diel profile is appropriate.

Imager for Aerosols (MAIA) mission is similarly deliver
new data for an each-day mapping of PM2.5 exposure suf-
ficient for full studies of health effects (Diner et al., 2018,
https://maia.jpl.nasa.gov/, last access: 15 November 2019).
In pursuit of that goal for the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Aqua dataset, we will indi-
cate some preliminary, meteorology-based ideas for estimat-
ing high aerosol concentration when clouds prevent the use
of remote sensing data.

Due to the complex meteorology of the San Joaquin flows
and uncertainties surrounding the sources of ammonia, ni-
trogen oxides, and residential-burning smoke, we attempt to
separate out some certain aspects of complex 3-D source-
driven modeling (Bey et al., 2001; Nolte, 2015; Appel et

al., 2017; Friberg et al., 2018) with a “static model” which
does not attempt to simulate transport but rather uses obser-
vational records related to vertical mixing and AOT. The spa-
tial maps produced can give a more detailed check on the 3-D
process modeling. They also allow the whole MODIS record
of winters to be analyzed efficiently so as to reveal patterns
and trends. We emphasize this and further extension the in-
terpretation of satellite radiances, attempting to remain close
to physical interpretations by using both multi-angle imple-
mentation of atmospheric correction (MAIAC) AOT and col-
umn water vapor (CWV) retrievals. MAIAC CWV (Lya-
pustin et al., 2018) retrievals have been quite acceptability
validated with the AErosol RObotic NETwork (AERONET)
CWV measurements in higher CWV environments (Martins
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et al., 2017, 2018). It has not been previously recognized as a
tool for improving ground PM estimation and, in particular,
in the SJV.

1.1 Data

1.1.1 MAIAC AOT and CWV

MAIAC is an operational algorithm developed for MODIS
Collection 6 (C6) data (Lyapustin et al., 2011a, b). This al-
gorithm applies a dynamical time series technique to de-
rive the MODIS surface bidirectional reflectance factor and
atmospheric retrievals at a 1 km resolution, such as AOT,
and CWV (Lyapustin et al., 2008, 2011b). MAIAC AOT re-
trievals present an expected error within 15 % and relatively
good correlation coefficient (R) with AERONET measure-
ments in the study area (Lyapustin et al., 2018).

MAIAC data have been used from both Terra and Aqua
satellite with a daily overpass at ∼ 10:30 and ∼ 13:30 UTC
(+ ca. 1.5 h), respectively. Data have been obtained for the
period of winter 2012–2013 (November 2012–April 2013).
We surveyed this entire period and included, for estimation,
all wintertime high-PM2.5 episodes for this specific winter,
selecting 19 November–18 February, as described in several
later figures (discussed in context: Figs. 3, 4, and 7).

1.1.2 AERONET AOT and CWV

AERONET is a global network of automatic Sun-and-sky ra-
diometers for aerosol monitoring (Holben et al., 1998). Di-
rect Sun measurements are used to compute the AOT val-
ues at seven wavelengths (340, 380, 440, 500, 675, 870,
1020 nm), while CWV retrievals are derived from the 940 nm
channel (Schmid et al., 2006). The AERONET data were ob-
tained for the study period with cloud-screened and quality-
assured at V3 Level 2 products. The AERONET AOT values
were interpolated to 550 nm using quadratic fits on a log–
log scale. Details on instruments and monitoring sites of the
DISCOVER-AQ campaign are available at: http://www.nasa.
gov/mission_pages/discover-aq/instruments/index.html (last
access: 1 September 2019). Archived DISCOVER-AQ data
are available on the NASA LaRC Science Data for Atmo-
spheric Composition website: http://www-air.larc.nasa.gov/
index.html (last access: 1 September 2019).

1.1.3 Ground PM2.5 concentrations

Hourly ground PM2.5 concentrations were obtained from
the US Environmental Protection Agency (EPA) at ±60 min
from the satellite overpass. Data were obtained from sta-
tions that reported non-negative PM values over the whole
study period (https://aqs.epa.gov/aqsweb/airdata/download_
files.html#Raw, last access: 15 August 2019).

1.1.4 PBL

Momentum-based PBL depth, 10 m wind, and some CWV
quantities for the model were taken from the archive of the
National Oceanic and Atmospheric Administration (NOAA)
Rapid Refresh (RAP) model available for this period. (The
choice of MAIAC or RAP estimates is discussed later.) The
model archive had a nominal 13 km resolution resolved at a
1 h time interval, so that model quantities could be matched
closely to the satellite overpass times. Unreported examina-
tion of the AERONET data for the period suggested that the
temporal resolution of the MAIAC AOT was quite accurate.
The High Spectral Resolution Lidar 2 (HSRL2) aerosol data
as described by Sawamura et al. (2017) suggested that depths
of afternoon mixing tops were adequately described by a
13 km resolution model, as were adjacent spirals of the
NASA P3-B aircraft as described by Michael Shook (Shook
et al., 2013; see also the Supplement). AOT could however
vary on relatively short distance scales, e.g., within 0–2 km
of roadways when winds were parallel to the road. We shall
see the consequential variations in estimated PM2.5 later in
the processed results.

2 Motivating meteorological perspective

Koelenmeijer et al. (2006) give a succinct description of the
relationship between AOT and dry particle mass. We adopt
their simplification describing the relationship of AOT to
PM2.5 using a simple equation where all particles are ide-
alized as evenly mixed throughout a layer mixing to sen-
sors near the ground, and the thickness of the mixed layer
is 1zML:

PM2.5 = f (AOT)=
AOT

1zML ·M(Composition, RH)
. (1)

The factor in the denominator, M (for “magnification”), de-
scribes the relationship of the optical extinction to “dry par-
ticle mass smaller than 2.5 µm aerodynamic diameter” which
is the motivated definition of PM2.5. (PM2.5 also has a defi-
nition of a US “Federal Reference Method” which is formu-
lated to approximate the physical definition as closely as pos-
sible.) The factorM then is a function of particle composition
and the extinction coefficients bExt associated with the com-
ponents, one of which may be largely absorbed water. Par-
ticle composition and ambient relative humidity (RH) then
interact with each other to determine the water content. It is
significant that RH is a function of temperature and therefore
altitude, with highest RH at the top of a well-mixed layer.

This work emphasizes and attempts to exploit features of
regional aerosol haze palls that parallel features of aerosol
mass and a different measure of water vapor.

Figure 2 illustrates a conceptual idea of the fair-weather
simulation that we focus on. Both regional particulate pol-
lution and water vapor originate from the Earth’s surface.
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Figure 3. (a) Locations of stations in the SJV used; color coding allows nearby stations to be identified. (b) Matrix plot of PM2.5 as measured
at all instances of overpass at the sites for the period 19 November 2012 through 18 February 2013. The x axis has variable spacing in time;
tick marks indicate successive days. Another view that summarizes the variability of observed PM2.5 is shown in Fig. 4a.

Each tends to create relatively well-mixed layers over sev-
eral days, transported most significantly by a repeated daily
cycle of mixing. The mixing of momentum is most active
from just before noon to the mid-afternoon, creating an af-
ternoon mixed layer, and water vapor and aerosol most typi-
cally mix well up to this layer. Turbulent mixing depths vary
from day to day, and these can create lofted layers of pollu-
tion cut off from the surface on the day of AOT and CWV
observation. Flows in the SJV can be greatly influenced by
the nearby mountains, with flows day and night, promot-
ing some upslope transport of material which can recircu-
late, detached from mixing on following days. Consideration
of subsidence of air into the San Joaquin mixed layer sug-
gests a flow-through time for aerosol and water of 2–3 d for
some situations (Caputi et al., 2018). Mixing of entrained and
mixed layer air allows for continued accumulation of pollu-
tant aerosol in the valley as Fig. 2 shows.

Particles and water vapor are emitted and accumulate in
the same region, and they are mixed similarly each day
at midday and in the afternoon by convective stirring. The
height of mixing can be determined by variations in the buoy-
ancy flux from the surface and varying vertical subsidence
velocities, responding to larger-scale weather patterns, dur-
ing successive days. Figure 2 does not show the effect of
particle transport or water vapor transport for a specific lo-

cation, but for the PBL top, which is strongly controlled by
local heat and water vapor fluxes at the surface.

If the mixing height is lower on succeeding days, then any
water vapor and any particles at the top of the mixed layer
are trapped in an “elevated layer” which does not mix to the
surface. Other common ways in which elevated layers can be
formed are mixing along the side of the valley (small-scale
anabatic and katabatic winds) and by differential transport,
i.e., wind shear. Fires, power plant plumes, and long-distance
synoptic transport can form layers that are quite separated at
higher altitudes in the troposphere. Eventually, there is re-
moval of both species. Wet removal of particles is particu-
larly effective, and the specific humidity of the air is very ef-
fectively removed by the condensation accompanying cool-
ing and rising, according to the Clausius–Clapeyron equa-
tion. Similar processes then limit the vertical spread of parti-
cles and specific humidity.

3 Expected variability of the AOT–PM2.5 relationship

Water vapor molecules also accumulate in the atmosphere
over a period of several days (typically a somewhat longer
period), and both aerosols and water vapor are cleared
from a particular place by cloud removal processes (vent-
ing, rainfall) and by air mass replacement. In the case of
high-pressure systems in which air pollution episodes oc-
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cur, such replacement is a common feature. If the other vari-
ables are available by measurement, e.g., airplane measure-
ment such as in DISCOVER-AQ (https://discover-aq.larc.
nasa.gov/data.html, last access: 15 August 2019), Eq. (1) can
be solved for1zML, defining an equivalent mixing height for
particles. Similarly, we can write equivalent mixing depth of
water vapor, 1zeH2O:

1ze H2O =
∫ Top

0 ρH2O(z)dz
/
ρH2O(ML, RTP)

= CWV
/
ρH2O(ML, STP), (2)

where CWV is in g cm2, ρH2O(z) and ρH2O (ML, RTP) cor-
respond to the vertically distributed water vapor and appro-
priately average water density of the mixed layer. CWV is
available from the MAIAC analyses yielding AOT. Making
the assumption that the heights are the nearly equivalent for
water vapor and aerosol, we may write

PM2.5 = f (AOT)=
AOT
CWV

ρH2O(ML, RTP)
M (Composition, RH)

. (3)

PM2.5 is calculated at EPA reference temperature (25 ◦C)
and pressure (1 atm), water vapor quantities in g cm−3, and
1ze H2O in centimeters.

Work reported by Shook et al. (2018) described the ver-
tical distribution of trace species with a vertical coordinate
normalized to this estimated afternoon mixed layer top. This
suggested to us that water vapor had vertical distributions
that were usefully similar. The decline of water vapor was
not as sharp, often showing a rapid decrease; the drop in scat-
tering was dramatically rapid.

We found in ensuing work that approximating
ρH2O(ML, RTP) by ρH2O (z= 0,current conditions)
added only a small amount to the variance explained by
the regression given other limitations of the approximation.
(Possibly relative humidity effects or the correlation of water
density with temperature could be complicating correlated
factors.)

We calibrate the f (AOT) relationship using data at of-
ficial PM2.5 stations and make the calibration daily. It is
our observation that f varies only over a small range when
there are several MODIS observations on the same day, and
that it varies in a limited way between neighboring stations
in a local region. The definition of “region” is based on
that similarity, and it suggests similarity of 1zML and M ,
i.e., similar aerosol characteristics and boundary layer be-
havior. This similarity does not apply when the wind shifts
greatly between times or between stations, e.g., when a
front passes. Fortunately for our understanding of pollution
episodes, frontal passage days tend not to have high PM2.5.

We distill these understandings when we formulate a re-
gression equation:

PM2.5is = (a+βi)
(
AOTis

/
CWVis

)
+αi+ εis, (4)

where the subscript i describes “instance” or calendar date,
and subscript s describes “station”, so that AOT and PM2.5
form a two-dimensional table.

Given the independent nature of i and s, the regression
must be solved by mixed-effects methods described below.
The subscript s needs to only be independent of i, so later we
will use it to denote “situation” or the hour of the day when
there are many observations made at one station on one day
i. It is not assumed that the consecutive order of the day ob-
servations necessarily describes any continuity in i. Observa-
tions show that there is often continuity, but that the continu-
ity is quickly broken when frontal passages or rain affect the
region.

Writing Eq. (3) in the form used for mixed-effects models,
we separate a general term from the terms that depend on i
or calendar date.

PM2.5is = a ·AOTis
/

CWVis+ c

+
(
αi+βi ·AOTis

/
CWVis

)
+ εis (5)

A commonly used shorthand is the Wilkinson and Rogers
(1973) form, accepted by many software packages:

PM2.5 ∼ AOT/CWV+ (AOT/CWV+ 1|DOY), (6)

where DOY describes the calendar date subscript i. This for-
malism also describes the columns of the regression matrix
to be solved.

It is tempting to generalize this relationship to recognize
that there is often correlated behavior between stations but
with some constant offset:

PM2.5is = a ·AOTis
/

CWVis+ c

+
(
αi+βi ·AOTis

/
CWVis

)
+ γs+ εis. (7)

However, if one allows such variations at monitoring sta-
tions, it can be difficult to decide what values of γs to use
between stations. This is an attempt to describe “subregion-
ality”, that is, similar behavior within a region modified by
slight and geographically coherent variations which allow
spatial interpolation.

For those not familiar with mixed-effects models, we men-
tion that the procedure is similar to the use of dummy vari-
ables, where coefficients ui multiply a set of discriminating
variables, equal to 1 when i takes on the value of a particular
instance/day, and 0 for all other instances. The mixed-effects
techniques similarly solves a much larger regression equation
but has better theoretical development. Note that the number
of observations is Ni times Ns, while the number of param-
eters is linear in Ni and Ns, where N signifies the number
of instances. When Ni and Ns > 5, the problem becomes in-
creasingly overdetermined.

This basic understanding does not fully explain the suc-
cess of the mixed-effects model that we observed for the
San Joaquin Valley. Furthermore, analyses of the Baltimore–
Washington DC area not described here suggest that it works
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more broadly. Both aerosol and especially water vapor often
exhibit layers not in continual contact with surface monitors.
These we will call “elevated layers”. In situ measurements
on aircraft and also lidar measurements from ground lidars
looking downward from aircraft (Sawamura et al., 2017) and
satellite lidar (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation; CALIPSO) reveal aerosol layers with
significant optical thickness above the mixing layer. Simi-
larly, airborne measurements in the DISCOVER-AQ inten-
sive measurements of 2013 suggest a fraction of water vapor
lies above the mixed layer for water. Allow these portions
of total AOT and CWV layers to be quantified as AOTe and
CWVe (“e” stands for elevated). There can be several indi-
vidual layers. AOTe and CWVe refer to the total amounts of
extinction and water vapor mass. Thus, there is an approxi-
mate equation upon which to base regression estimation:

PM2.5 =
(AOT−AOTe)
(CWV−CWVe)

ρH2O(ML, RTP)
M(Composition, RH)

. (8)

While elevated layers of water and aerosol are common, we
will see that it appears that this regression equation allows
rather good fits. This can happen when AOTe� AOT and
CWVe� CWV to a sufficient degree, or else when there are
approximate linear (slope plus intercept) relationships ob-
taining between the numerator and denominator of Eq. (8).
Essentially, the terms are absorbed into constant parame-
ters for the day, αi and βi, along with other parameters like
M . AOTe and CWVe are considered to be essentially con-
stant over the region. In fact, this degree of constancy can
be taken to define the “region” of application. Transforming
these terms into constants, αi and βi, works under an implicit
assumption of uniformity in AOTe and CWVe throughout the
region or at least a uniform linear dependence with AOT and
CWV.

4 Observations and an overview of pollution episode
trends

In this section, we will show how components of a mixed-
effects model that utilize CWV contribute to its explanatory
power. We examine the relationships and predictive ability
for PM2.5 observed at SJV measurement stations for the win-
ter season encompassing high-pollution periods, 19 Novem-
ber 2012 to 17 February 2013. Stations from Bakersfield in
the south to Stockton in the north were included. Figure 3b
shows several episodes affecting most of the valley; one pe-
riod with more stations reporting includes the DISCOVER-
AQ period. This period has additional P3-B aircraft data
which motivated this work but are too lengthy to describe
in this publication.

Figure 3a shows the locations of all stations used in this
work; the stations include much of the valley from Stockton
to Bakersfield. Some of the stations labeled “DAQ” were in
operation only during the DISCOVER-AQ California period.

A color wheel was used to assign colors to the stations on the
graph; this allows identification of stations’ latitude, longi-
tude, and proximity in later graphs comparing observations
and our fitted values. Figure 3b describes the rise and fall
of PM2.5 pollution using the station reports. The rows rep-
resent stations and are arranged north to south. Several ma-
jor episodes are immediately seen, as well as differences in
their intensity and timing of development. The DISCOVER-
AQ observations were limited to the period shown, 8 January
through 10 February 2013. Differences between the PM2.5
values observed at nearby stations, one DISCOVER-AQ and
one California Air Resources Board (labeled “EPA” for the
dataset origin), give an impression of local variability; differ-
ences between observations at Clovis are quite apparent.

5 Which information contributes to PM2.5 maps

Using the MAIAC 1× 1 km estimates for each day for the
location of each aerosol monitoring station and the PM2.5
measured at overpass time for that day, we may solve the
estimation equation (Eq. 6).

The complete simulation of PM2.5 measurement at all sta-
tions where MAIAC data allowed is shown in Fig. 4b. The
technique can be used for all years and the whole area of
the SJV where MODIS data are available. We used the com-
plete model as described in Eq. (6), with “slopes” and “in-
tercepts” but without any time-independent spatial variation
allowed (γs). Three features deserve immediate comment.
First, there are patterns of gradual increase of PM2.5 up to
45–80 µg m−3, followed by relatively sudden decrease to lev-
els near 5 µg m−3. Second, the regression technique using
AOT /CWV, as estimated individually for each day, captures
the variation rather well for all days where estimates can be
made.

Individual exotic high values are not captured. Third, there
is a pattern where the end of an air pollution episode, show-
ing very high values, is not captured by the technique. These
are simply days where MODIS observations were not avail-
able, almost always due to cloud cover. We expect that these
are readily explained in terms of weather phenomena espe-
cially typical of the western US during wintertime. Pollution
episodes are ended with the approach of warm fronts with
high clouds, followed in a few days by the cleansing effects
of rain, air mass replacement, and higher wind. We will re-
turn to this topic later.

To understand what information is used by the technique
and the importance of that information, based on the series
of regression estimates we presented, we argue that there is
a cumulative aspect to the explanation. For example, when
we include one statistical variable, e.g., αi, describing varia-
tion by day but constant for all stations of the day, then the
regression with AOT /CWV becomes much more informa-
tive. A general relation describing the slope of PM2.5 with
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Figure 4. (a) PM2.5 as observed at all stations for the winter period extending from November 2012 to March 2013. The graph has vertical
bars drawn with partial transparency, so that careful inspection of a single day describes all the observations in the valley for the day. The
observations contributing for each day may be seen in Fig. 3b. (b) PM2.5 as fitted by the regression with slopes and intercepts, described
further below.

AOT /CWV becomes more useful when an appropriate in-
tercept (offset) is provided.

Consider both Table 1 and Fig. 5 as they describe cumu-
lative effects of adding information. First, we note that AOT
alone is not very informative about PM2.5. This would seem
to follow naturally from Eq. (1), since variations in mixing
depth and composition are not considered. Figure 5a shows
many station observations with high PM2.5 but low AOT, and
vice versa. Slight but significant improvement is made when
CWV is introduced to provide some information on mixing
depth and dilution. R improves to 0.48 but the remaining er-
ror is nearly as high. Still, some linear relationship begins to
show for perhaps 60 % of the data.

A side comment regarding significance: R and remain-
ing root mean square error (RMSE) (in µg m−3) are shown
in Table 1. We also performed two other tests that are not
tabulated. An analysis of the Kullback–Liebler divergence
(Hastie et al., 2009), where possible, suggested each suc-
cessive test in the table clearly adds information regarding
PM2.5. The number of observations justified the number of
additional parameters. While the numerical values are diffi-
cult to compare to other examples of regression, they show
similar trends to R and RMSE; i.e., accuracy becomes in-
creasingly hard to improve as R increases. Another test was
leave-one-out cross validation (Hastie et al., 2009). Each in-
dividual station was omitted, and the regression based on
the remaining stations was tested against observations at
that station. The cross-validated mean squared error was
about 7.8 µg m−3 at most for the most informative regres-
sions shown.

Now consider a popular alternative to the use of satellite
data. The third regression shown, labelled (1|DOY), omits
satellite data and uses only a single value based on day of
year to give a uniform-valued PM2.5 estimate for the whole
region. As Table 1 shows, this can do significantly better
than the previous non-mixed-effects regressions using satel-
lite data. Color-coded maps of PM2.5 drawn for a region have
a single color which varies from day to day. In many ap-
plications of satellite data to particulate estimation, this has
been shown to surpass, or at least approximate, the results
of use of AOT (Sorek-Hamer et al., 2017). R ∼ 0.78, RMSE
∼ 10 µg m−3. Its success emphasizes the regional similarity
of conditions defining PM2.5 concentrations and their ex-
tensive spatial correlation. An explanation is that respirable
PM2.5 is defined by daily weather and orientation to major
sources.

Once the regional similarity of pollutant conditions is rec-
ognized, it becomes appealing to combine information. The
fourth estimate, Fig. 5d, does just this and shows a notable
increase in R (0.88) and decrease in RMSE (8.03). This is an
approximately 50 % decrease in error variance. In our situa-
tion, satellite data look to be useful. The scatterplot of Fig. 5d
suggests distinctly more linear behavior.

An appealing alternative is to estimate only slope vari-
ations, βi. This is nearly as useful as estimating just αi,
R ∼ 0.85 RMSE∼ 10 µg m−3. Each is useful. Do the two pa-
rameter estimations give distinct information?

Estimation of varying offsets αi and sensitivities αi does
indeed help, reducing the variance by another 10 %. Combin-
ing the use of AOT, CWV, and individual daily intercepts and
slopes yields R ∼ 0.90 and RMSE∼ 6.72 µg m−3. Neverthe-
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Figure 5. Progressive improvement of PM2.5 simulation showing the roles of daily calibration and AOT /CWV descriptions of aerosol
vertical dispersion. Station observations (µg m−3) are shown on the y axis; estimators are shown on the horizontal axis. Note the progressive
refinement of R and remaining root mean square error (RMSE); see text. (a) Use of AOT only, an early methodology. (b) Some improvement
using AOT /CWV but no daily calibration. (c) More improvement with daily calibration (mixed effects using intercepts αi). (d) Clearly
improved linearity when combing intercepts with AOT /CWV. (e) Estimating daily “random” intercepts and slopes improves RMSE and R.
(f) A simple description of variation within the region (longitude) aids the estimation slightly (RMSE ∼ 6.48 µg m−3, R ∼ 0.91).

less, Fig. 5e shows that certain stations have persistent devi-
ations from the general swarm of points; Tranquility (pale
green) is predicted high, and Porterville and neighbors (red)
are predicted low.

This analysis of residuals suggests that there may be spa-
tial variations that can be specified for our stations (γs) but
are general enough that they can be extended to maps. For
this publication, we attempted a very simple variation, an
east–west variation (longitude). This did improve the scat-
terplot for most stations, especially when considering values
above ∼ 10 µg m−3. RMSE decreased slightly to 6.48, and
the R estimate also rose slightly to 0.911. These changes are
close to the range of sample variability. The maps shown in
Fig. 6 also show more convincing (subjective) agreement in
magnitude and pattern. Nevertheless, many of the highest ob-
servations are underestimated by about 20 %.

We used CWV rather than the RAP planetary boundary
layer height for momentum (11:00 to 15:30 UTC). This was

available in the 2012–2013 winter at times within a half hour
of overpass time; however, this PBL height is not always
recorded in the high-resolution RAP archive. We compared
a regression very similar to the most detailed regression of
Table 1 but using this PBL height. The formula used was

PM2.5is = a ·AOTis
/

PBLis+ c

+
(
αi+βi ·AOTis

/
PBLis

)
+ γs+ εis. (9)

With this, the R value was 0.917 and the RMSE was
6.25 µg m−3; these are only insignificantly better than
the CWV-based estimate R of 0.912; the RMSE was
6.43 µg m−3. Mid-afternoon PBL depth is consequently use-
ful. However, the CWV-based estimate may be used with all
years of the MODIS data, while the best-available meteo-
rology for PBL depth varies considerably, as high-resolution
NOAA models advanced through the years.
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Table 1. Comparison of results using different terms in the mixed-effects model.

Wilkinson Terms R Remaining Panel in
shorthand RMSE Fig. 5

∼ AOT PM2.5 is = a ·AOTis+ c+ εis 0.40 14.0 (a)

∼ AOT/CWV PM2.5 is = a ·AOTis/CWVis+c+εis 0.48 13.0 (b)

∼ (1|DOY) PM2.5 is = αi+ γs+ c+ εis 0.78 10.0 (c)

∼ AOT/CWV+
(AOT/CWV−
1|DOY)

PM2.5 is = a ·AOTis/CWVis+c+βi ·
AOTis/CWVis+ εis

0.88 7.44

∼ AOT/CWV+
(1|DOY)

PM2.5 is = a ·AOTis/CWVis+ c+
αi+ γs+ εis

0.85 8.03 (d)

∼ AOT/CWV+
(AOT/CWV+
1|DOY)

PM2.5 is = a ·AOTis/CWVis+ c+
(αi+βi ·AOTis/CWVis)

0.90 6.72 (e)

∼ AOT/CWV+
(AOT/CWV+
1|DOY)+ longitude

PM2.5 is = a ·AOTis/CWVis+ c+
(αi+βi ·AOTis/CWVis)+ γs+ εis

0.91 6.44 (f)

(1) Variables are described in the context of Eqs. (4)–(8) in the text. (2) In all regressions with random effects (all but the first
two regressions), the inclusion of the α and c variables suggests an overfitting. Mixed-effects convention emphasizes these
“main effects” separately and therefore specifies there must be a single linear constraint on the terms such as α and αi (also, c
and βi). Importantly, in Sect. 6 and certain figures below, we describe the (more intuitive) combination of main and random
effects; e.g., we graph αi← αi + a and βi← βi + c.

6 Results: maps of estimated PM2.5

The major purpose of this work is to combine AOT, CWV,
and daily calibration in order to allow maps of estimated
PM2.5 for all regions where MODIS can provide optical
thickness data. Results using the full model with αi, βi, and
γs are shown (Fig. 5f). Out of the 42 d in the calibration set,
we consider 6 d of single major air pollution episode during
middle of January 2013, a period that was largely sampled by
the DISCOVER-AQ ground and airplane samples. Detailed
comparisons of the DISCOVER-AQ data would expand this
work beyond a manageable size; such analysis is desirable.
Winds are shown with streamlines and are obtained by inter-
polation from the RAP wind analyses.

We created 39 maps, six of which are shown in Fig. 6.
Their accuracy is good. RMSE is ∼ 7 µg m−3. This dictated
the 5 µg m−3 contour colors used: similar colors or neighbor-
ing colors show expected agreement. Winds at 360 m for the
hour of sampling have been superimposed on the maps.

There follows the description of just of one episode: on
14 January 2013, the valley is clean (see also Figs. 3 and 4).
By 16 January 2013, light regional haze is accumulating, and
the winds and mapped levels suggest some accumulation to-
wards the south. On 18 January 2013, winds have veered:
in the central valley, pollution accumulates towards the east;
in the south, transport is towards Bakersfield. On 20 Jan-
uary 2013, winds press the accumulating PM2.5 back towards
the more populated east valley. Several days following have
increasing clouds (no maps). The first day, with advancing

clouds overhead but no low clouds and no front nor rain, re-
tains high PM2.5 at the monitors. This pattern is seen for sev-
eral wintertime pollution episodes in this region. When the
clouds clear, the valley is as clean as it was on 14 January. In
the maps for 18, 19, and 20 January, the maps underestimate
the highest values of PM2.5 by about 20 %, as noted above.

7 Intensification of PM2.5 episodes: pollutant
accumulation vs. confinement

The well-performing mixed-effects models (Eqs. 5 and 6)
led us to examine the repeated development of air pollution
episodes to a maximum, striking patterns seen in Figs. 3, 4,
and 6. How did the independent values for various models in
Table 1 vary within episodes and between episodes? Our de-
scription of the development leads to some answers in Fig. 7.

Figure 7a and b describe the development of the episodes.
The time series of observed PM2.5 and fitted PM2.5 are re-
peated from Fig. 4. The times with no data are essentially
cloudy times. After periods of cloudiness, particulate val-
ues typically rise until the next period of clouds. There are
seven to eight such periods of rising, or weather episodes.
(“Episodes” can also refer to periods of highest particulate
matter.) High values typically remain for 1–4 d after cloud
obscuration. Figure 7b and c show the values fitted by our
mixed-effects regression and the values that are available for
fitting. The time sequence as well as the magnitudes are in
expected agreement, but the variability between stations is
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Figure 6. Estimated surface PM2.5 at 1 km indicated overpass times for the first wintertime episode in the San Joaquin Valley. Winds at
360 m a.g.l. are also shown. Estimated RMSE is 7 µg m−3 with a similar limit of detection. Filled circles show station PM2.5. In this episode,
the E–W correction based on the full dataset appears inappropriate, lowering mapped estimates in the east valley. Error should decrease with
improved understanding of geographic variability. The time stamp at the top of the image describes the date and time in UTC format.

smaller on some occasions (e.g., 17 January and 15 Febru-
ary). Figure 7d shows that the time series of the AOT /CWV
ratio develops from day to day as PM2.5 does but suggests
that these are modulated by differences in amplitude between
weather episodes and sometime over several days within the
weather episodes, e.g., 13 January to 17 January and 4 Febru-
ary to 8 February. These explain the low overall correlation.
In contrast, AOT shows little resemblance in the time se-
ries. CWV shows some tendency to decline during weather
episodes (Fig. 7e); notably, the values at different stations are
more similar than those for AOT. Region-wide similarity in
CWV within and above the afternoon mixed layer is an ap-
pealing explanation. Note the limited variability of the ratio
of CWV to PBL over 3–5 d and between stations. The after-

noon PBL height itself is shown in Fig. 7g. Note that it is
often very low at the end of a cloudy period and then rises
to high values ∼ 1 km at the end of the cloudy period. We
suggest that this reflects overcast skies and very limited con-
vective mixing, followed by rain and the introduction of new
air masses with deeper mixing of water vapor in a less stable
atmosphere.

Figure 7 describes differing causes of repeated PM2.5
buildup during cloud-free weather episodes. Progressive re-
striction of vertical mixing during clear-weather episodes
acts to concentrate the effects of accumulated and recent pol-
lution sources. The less stable air following a frontal passage
feels increasing effects of strong subsidence, diminishing the
mixing height. The 3-fold reduction in PBL height during
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Figure 7. Time evolution of PM2.5 and related variables for approximately eight intensifying particulate episodes during the winter of 2012–
2013. Dots and vertical bars indicate variable values at individual stations when available. Blank regions reflect periods of cloud cover.
(a) PM2.5 (µg m−3) as observed at stations (all dates) and (b) fitted PM2.5 on days and locations when MAIAC was available. (c) MAIAC
AOT, 11:30 to 15:30 UTC. Note that the increase is less pronounced than PM2.5 and varies between episodes. (d) CWV in g cm−2 or,
colloquially, “cm of precipitable (liquid) water.” (e) PBL height for the noon–afternoon observations in this dataset. Morning PBL heights
are much lower. (f) Ratio of CWV to PBL height (cm(H2O-liq) km−1). The ratio remains relatively constant over several days, consistent
with a commonly close meteorological relationship of CWV and PBL.
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major episodes (Fig. 7d) nearly matches the 4-fold increases
in PM2.5 during these periods (Fig. 7a). MAIAC AOT shows
variability between stations and is reflected in local PM2.5.
Winds redistribute particles and AOT. Figure 7 does not make
clear the fate of aerosol, but it likely escapes with mountain-
side winds along the valley. The entire set of maps suggests
a flow to the south and stronger outflow near the Tejon Pass
east of Bakersfield. These mountainside winds likely may fa-
cilitate water vapor and aerosols escape the prevalent mixed
layer.

This suggests a typical behavior for the SJV and similar
regions in winter. A cloudy disturbance (new air mass, rain,
wind) stirs the lower troposphere. This initiates a high PBL
mixing on the first clear days. Typical fair-weather subsi-
dence begins. The surface buoyancy flux is too weak to main-
tain these relatively high mixed layer tops. Afternoon PBL
depths and mixed layer depths decrease day by day until a
depth of 300–400 m is reached (Fig. 7d). Escape from the
valley may slow, allowing accumulation of pollution from
within the region or from upwind. This further increases the
surface PM2.5. Relatively local sources add to both AOT
and PM2.5, and can transport them 50–100 km downwind,
occasionally from east-valley sources to west-valley pollu-
tion hotspots (the map of Fig. 6d). Both subsidence and
surface buoyancy flux are broad-scale weather phenomena
(∼ 300 km) , and so AOT–PM2.5 relationships are similar on
a given day with a given history of weather. Finally, warm-
frontal rain approaches the region.

An examination of HSRL2 data for the DISCOVER-AQ
period (Sawamura et al., 2017) suggests that there can be
considerable vertical variability of aerosol extinction; the fact
that AOT tends to average the whole afternoon mixed layer
allows our generalized description to hold nevertheless.

Finally, we venture on to some ideas for filling in after-
noon PM2.5 on days when MAIAC did not allow mapping
due to cloud cover. Young et al. (2016) provided a thor-
ough microphysical and chemical analysis for just the time
period of 13 January to 11 February 2013 – essentially the
DISCOVER-AQ period – and just the fully instrumented UC
Davis site deployed in Fresno. Their Fig. 2a, b, and e show
time series of temperature, wind speed and direction, and par-
ticle mass for the period, respectively. Their measurements
include periods of cloud cover and clearly show air mass
transitions during rain and frontal passage (seen as wind
shifts, commonly N to W to S). These time series suggest a
meteorological plausible method to interpolate PM2.5 maps
into cloud-covered days. These do compare to our Fig. 7a,
b, and c, describing observed and statistically estimated par-
ticulate mass at all stations including Fresno. PM2.5 drops
to values below 10–15 µg m−3 whenever wind speeds rise
to above ∼ 2 m s−1 and the wind direction is from a quad-
rant (90◦ sector) centered on the north–northwest direction.
Their Fig. 2a also describes rainfall at the Fresno site. Par-
ticulate matter does drop by ∼ 50 % from the highest ob-
served/estimated values at the end of the clear-sky period and

further when the winds rise to 2 m s−1 or higher. This behav-
ior is most clearly observed in their graphs for the period of
23–27 January. Similar behavior is observed in the period of
6–11 February, although the episode has a more complex in-
crease than the earlier, most intense episodes. The short spike
up to 80 µg m−3 on the night of 10 February is not explained
and not reflected in the afternoon-only data of our Fig. 7.
Nevertheless, the averages shown by Young et al. (2016) in
their Fig. 2e do repeat the general observation that daily av-
erage PM2.5 and afternoon PM2.5 do tend to correlate well.
For best-estimate maps of PM2.5, we suggest that the end-
of-retrieval values of PM2.5 reduce gradually over a day or
two. Maps of precipitation (e.g., from radar or other analy-
ses) allow more detail. Estimates for a region should then fall
to ∼ 7 µg m−3 whenever sustained winds rise to > 2 m s−1

from the NNW or > 3 m s−1 from any direction. Such wind
speeds are held to mark air mass replacement (e.g., frontal
passage). These ideas remain suggestions since our analysis
for a single winter may not provide enough instances. The
whole Aqua MAIAC period is available but currently beyond
NASA’s resources.

8 Variation of random-effects model parameters

The preceding section gives some background so that
we may understand the parameters for the random-effects
model. We will discuss the full Eq. (4); results with mild spa-
tial dependence (Eq. 5) are very similar. The intercept αi and
the slope for βi×AOTis/CWVis are the same for each day
and determine the fitted PM2.5 for the regression (Eq. 4). We
exploit this to produce a “stork plot” like that in Fig. 8. High
αi is shown by tall blue lines; high βi is shown as a high
slope. Variation in AOT /CWV contributes ∼ 30 %–70 % to
the estimate on almost all days.

The stork plot in Fig. 8a illustrates a puzzling progres-
sion of parameter estimates day by day. For the first days
(10–14 January), the slope parameter accounts for the largest
contribution to PM2.5. For the second part of the period
(15–19 January), the intercept term becomes progressively
more important compared to the AOT /CWV dependence.
The regression equation fit (Fig. 7c) has difficulty in match-
ing the observed PM2.5 (Fig. 7b) variability between sta-
tions on these days although AOT (Fig. 7e) shows moder-
ate variability around low values (0.03–0.05). (A side note:
MAIAC AOT estimates should be particularly challenged
at these low values.) Then, from 20 to 22 January, the in-
tercept contribution diminishes and the AOT /CWV depen-
dence becomes rather larger than typical. Referring back to
Fig. 7e, f, and g, these variations seem explainable: the mixed
layer decreases rapidly during the first period, then reaches
a minimum at ∼ 300 m. In the last 3 d, the AOT increases
rapidly, though the mixing depth changes little. The follow-
ing weather episode is notable for high and quite variable
AOT (Fig. 7e), and the fitting procedure does well.
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Figure 8. Roles of slopes and intercepts in a regression fit. (a) A “stork plot” for the clear-sky air-pollution episode mapped in Fig. 6. Vertical
blue lines indicate the contribution of the random intercept αi to the total PM2.5 fitted in the model. These are the same for all geographical
locations including the observation stations for any given day. The slope parameter βi is the same for all geographical locations. (See note to
Table 1.) Values of PM2.5 evaluated at the stations are shown by red dots along a line. Large values of AOT /CWV have wide vertical extent,
and the corresponding high values of PM2.5 are shown as red dots at the upper right of each day’s plot. Highly sloped lines indicate high
βi. (b) A stork plot for the whole wintertime interval evaluation, showing several clear-day episodes. (c) The values of βi vary considerably.
These slopes are shown as a time series.

9 Value of improved CWV data

At this point, concerns about the quality of the CWV es-
timate should be addressed. In our analysis of the difficult
San Joaquin Valley, MAIAC CWV can be frequently low
compared to AERONET CWV, some error can arise from
the presence of clouds in neighboring footprints. In the fig-
ures and results, the shown CWV was based on the MAIAC
data interpolated and extrapolated where cloud contamina-
tion made the retrieval of lower accuracy (Lyapustin et al.,
2018). Figure 6 shows that some small-scale variability RAP
analyses of CWV could also be used at their 13 km model-
imposed width with similar results, since CWV does not vary
as rapidly spatially as AOT. A better direct use of the MA-
IAC CWV could uses spatial averaging with a width of 3 to
6 km. Random errors in the MAIAC CWV due to the low ra-
diances used would be reduced; considerations of source pat-
terns suggests that CWV might not truly vary at such small
scales. Improved PM2.5 values could result. We are imple-
menting this averaging.

As understanding of MAIAC CWV improves, its role in
determining daily AOT–PM2.5 relationships should improve;
calibration of MAIAC using Sun photometer measurements
can be useful in the meantime (Just et al., 2019). Note also
that assimilated CWV from the National Weather Service
models is constrained empirically by satellite and surface
observations, and therefore CWV is not as reliant on trans-
port descriptions as is aerosol. Here, some constraints are
surface-station humidity measurements constraining CWV
below 0.4–1 km; thermal-radiation sounders on the GOES
(Geostationary Operational Environmental Satellite) satel-
lites describe water vapor partial above that; radiosonde and
GPS humidity sensors give further constraints. This allows
GOES AOT estimates to be used with assimilated CWV, even
though GOES lacks a reflective water vapor channel (Shobha
Kondragunta, personal communication, 2018).
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10 Conclusions

As our goals, we sought broadly applicable methods to es-
timate PM2.5 maps from satellite AOT for very polluted re-
gions poorly described by satellite data. This study focused
on the whole polluted winter season of the SJV (19 Novem-
ber 2012 to 18 February 2013). We sought to fulfill the over-
arching goal of the whole DISCOVER-AQ mission – to find
general relationships between extended satellite data obser-
vations and surface air pollutant concentrations and to eval-
uate their success. We found success with a simple method-
ology that follows the meteorology of regions like the SJV.
This success recommends an approach to the remote sensing
to PM2.5 analysis, investigating important pollution regions
in terms of their meteorology and sources but carrying over
methods from similar regions. For example, the Po Valley of
Italy and the Indo-Gangetic Plain of India may respond sim-
ilarly to analyses based on detailed mixing height data and
related distribution indicators.

As direct results, we found that a combination of infor-
mation utilizing (1) optical depth, (2) measures of vertical
dispersion (e.g., CWV), and (3) daily calibration of PM2.5
to predictors produced significantly better quantification of
PM2.5 than a competitive no-satellite-use method which we
named “regional correlation” since it produces unfeatured
maps of PM2.5 which vary only from day to day. Our maps
of estimated PM2.5 extend for all cloud-free periods from
19 November 2012 to 18 February 2013, which is essen-
tially the whole pollution season for this winter. For that
whole period, this first published attempt found good predic-
tive value of R ∼ 0.9 and RMSE of 6.5 µg m−3. Cross vali-
dation suggested an RMSE of 7 µg m−3. Analysis of residu-
als suggested that better RMSEs could be achieved if further
work allowed for subregionality (use of smaller regions or a
geographic characterization incorporating some spatial vari-
ation). Local variations in PM2.5 on the order of 1–3 km were
noted using our method but only when particulate accumula-
tion could occur along-wind. Still, in order to estimate PM2.5
at 1 km scales, we expect that it will be necessary to use re-
fined geographic information system methods (Kloog et al.,
2014).

DISCOVER-AQ comparisons are advisable. Our ana-
lyzed winter 2012–2103 period did include the more limited
DISCOVER-AQ California 2013 airborne-intensive study
period, primarily focused on the area around Fresno. Anal-
ysis of that intensive period suggested ideas (Shook et al.,
2013) that motivated this work. The shorter DISCOVER-AQ
period does deserve more detailed comparison to our results.
Aircraft in situ profiles of gas and particle composition, li-
dar profiles, very detailed surface measurements of particu-
late composition, and source-and-transport modeling all de-
serve comparison. The distribution of atmospheric particles
and precursor gases is more complex than this work might
suggest. Somehow averaging appears to allow our general
methods. The development of concepts and the length of this

work do not allow for such comparison. We hope that re-
search will be encouraged.

A major finding was that the usefulness of CWV does
not become apparent unless there is daily calibration of the
AOT /CWV relationship to PM2.5. We attribute this primar-
ily to (a) details of CWV (e.g., CWV’s dependence on mixed
layer temperature on the timescale of days), (b) CWV above
the mixed layer for aerosols, presumably responding to other
H2O sources upwind, and (c) variations in composition (the
relation of PM2.5 to light extinction). We believe that allow-
ing for a full linear relationship each day for AOT /CWV
to PM2.5, both slope and intercept effects, in a daily cali-
bration allows regression to exploit portions of the PM2.5
vs. f (AOT /CWV) scatterplots that reveal proportionality.
High-spatial-resolution estimates of the 11:00–15:30 UTC
PBL heights for momentum may be as helpful as CWV when
available and when the PBL estimation has been examined
for accuracy; this could be explored. Such PBL data are not
available for the whole MODIS Aqua period (2004–present),
while CWV data are.

In terms of accompanying insights on pollution episodes,
we found that this approach allowed a broad description of
the buildup of six air pollution episodes and the balance
of the roles of accumulation of pollutants vs. limited verti-
cal mixing. Episodes were as in earlier descriptions (Wat-
son and Chow, 2002). Each appears important in different
phases of repetitive PM2.5-increase cycles. PM2.5–AOT rela-
tionships suggest a few days’ residence time for particles (ac-
tually particulate extinction) in the valley. The first 1–3 d af-
ter MODIS described full cloud cover could still show high,
slowly decreasing PM2.5. Unpublished analysis (see Young
et al., 2018) suggests that this high PM2.5 dropped precipi-
tously when surface winds rose to> 4 m s−1 from a quadrant
centered on the NNW.

Best-estimate extensions to cloudy periods of the remote-
sensing-based record can be made using the typical meteo-
rology of the SJV or presumably other areas, and verified
by extensive checks. Widely available data mapping surface
winds and precipitation suffice and do not require detailed
meteorological modeling to be available.

In terms of the role of “static” models, our estimation ap-
proach aimed to avoid the use of modeling driven by source
estimation and transport simulation. Principally, we wished
to provide datasets that allowed independent comparison to
such 3-D atmospheric chemistry models (e.g., Friberg et al.,
2018). When we used RAP-model CWV rather than spatially
averaged or calibrated (Just et al., 2019) MAIAC CWV, that
goal was not fully reached, although RAP CWV is strongly
constrained by surface, satellite, and other observations. An
aspirational goal is to provide an economical, accurate, and
calibrated estimation of PM2.5 for the whole MODIS Aqua
period to date and then beyond. The opportunities to use
MISR, Visible Infrared Imaging Radiometer Suite (VIIRS),
MAIA, and even geostationary imaging are appealing!
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