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1 Parameter fitting for SOA formation from lumped IVOC species

The loss term is defined as squared error between two surfaces: mgo4 simp (04, t) and mgo4 79(0A, t):

Loss = 2(1)?4=12?31(mso,4,simp(014vt) — Mgpa79(04,1))? 1)
which minimizes the squared distances between two surfaces in (OA concentration, time) space. Due to very high
non-linearity in Eq. (1), the optimization is decoupled into step 1: ‘kon fitting” and step 2: ‘SOA yield fitting’.

Step 1: Relax the constrain on SOA vyield to fit kon, Eq. (2) can be rewritten as,

Msoasimp() = X;m; Vif (kou, t) = X;m; y;(1 — e ForjIOHIAL )
where y; is the free variable representing SOA yield of surrogate j at given OA concentration, [OH] is assuming to be
3x10° cm™. Solving Eq. (2) with 2 unknowns: kou,j andy;, koy,; is the fitted OH reaction rate for the new lumped
IVOC group.

Step 2: After solving for ko ;, we now eliminate the non-linearity in the time term of Eq. (2) by replacing unknown
f (kon,j, t) with calculated reacted fraction rj, = 1 — e *orJIOHIAL from fitted k, ;. Therefore, we can minimize the
loss in Eq. (1) for each reduced 1VOC groups,

Loss = 2:(1)?4=1E?§1 (Ziej Msoa,i (04,t) — Ziej Myyoc,i [aj,1€0A,C* =01 T aj,szA,c* -1t aj,SEOA,C* =10t

aj,4€0A,C* =100]rj,t)2 (3)
where q; ; to a; 4 are the fitted SOA parameterization for reduced IVOC group j. Minimization of the loss between

Msoasimp,j (04, £) 10 YiejMgo4; (A, t) is performed with the surface fitting toolbox in MATLAB.

2 Equations
— Cov (OAmeasured: OAmodel) (Sl)
Var(0Ameasured) Var(OAmodet)
RMSE = \/Zli\;ﬂo‘qmeasu;]ed_OAmodel)z (82)

,where OA is the series of hourly-average value from measurements and model, and S1 and S2 are taking

the statistics over hourly values.

Fractional bias = %Z’i\'zl Sk (S3)
2
Fractional error = % v PoMl (S4)
2

,where P is the predicted value, M is the measured value, and N is the sample size.



3 Figs. S1to S7
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Figure S1: (a) Comparison of predicted SOA formation per unit mass mobile IVOC emission using original and four-
lumped-species parameterizations at OA = 5 pg m3, average [OH] = 3 x 108 cm™ (b) Relative error in SOA formed between
original and four-lumped-species parameterizations (Solid line is the relative error at OA = 5 pug m, shaded area
corresponds to OA =1 to 50 g m)
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Figure S2: Comparison of measured (boxplot, solid box denotes 25™ to 75" percentiles and whiskers denote 10™ to 90"
percentiles) and modelled (line, shaded area denotes 25" to 75™ percentiles) diurnal patterns in Pasadena, CA during
CalNex for species: (a) CO (b) BC
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Figure S3: Comparison of measured (boxplot, solid box denotes 25™ to 75" percentiles and whiskers denote 10t to 90t
percentiles) and modelled (line, from Case 1 to Case 4) diurnal patterns in Pasadena, CA during CalNex for species: (a)

Ozone (b) NO and (c) NO2
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Figure S4: Comparison of measured (boxplot, solid box denotes 25™ to 751 percentiles and whiskers denote 10t to 90t
percentiles) and modelled (line, shaded area denotes 25t to 751 percentiles) diurnal patterns during CalNex and CARES
for species: CO, Oz and NO in (a-c) Bakersfield, (d-f) Sacramento and (g-i) Cool
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Figure S5. Schematic of stoichiometry for OH oxidation first-generation and multigenerational aging. Species are
segregated into primary IVOC species (row 1, blue), substantially oxygenated LVOC and SVOC species (row 2, green) and
hydrocarbon-like or mildly oxygenated species (row 3, orange). Species in row 2 are closely aligned with SOA while species
in row 3 are aligned with POA. Particle species are in equilibrium with associated vapor-phase species. Oxidation only
occurs in the gas-phase. a) First-generation oxidation of primary IVOCs. All six species in Row 1 form products across the
four OOA species in row 2 from LV-OOA-N1 to SV-OOA-P2. b) Multigenerational oxidation of oxygenated LVOCs and
SVOCs. These reactions do not produce hydrocarbon-like species. Oxidation of all five vapor-phase species in Row 2 can
produce mass in all five bins; thus functionalization and fragmentation pathways are represented. c) Multigenerational
oxidation of hydrocarbon-like LVOCs, SVOCs, and IVOCs. These reactions may produce oxygenated or hydrocarbon-like
species. Oxidation of all five vapor-phase species in Row 3 may produce mass in all ten vapor-phase species in Rows 2 and
3; thus functionalization and fragmentation are possible. Oxidation of species in row 2 is more likely to lead to
fragmentation than is oxidation of species in row 3. Gas and particle emissions are applied to species in Rows 1 and 3.
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Figure S6: (a) Los Angeles region in this study as defined by simulation grid cells (30 x 30 grid cell with 4 km resolution,
equivalent to 120 km x 120 km)
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Figure S7: Comparison of ceilometer measured (h1) and modelled PBL height diurnal patterns at Pasadena during CalNex
(line denotes median value)



3 Table S1

Table S1 Nomenclature of species in Figure S5 and CMAQ v5.3

Species Name in Figure S5  Species Name in CMAQV5.3
(Gas/Particle)

LV-OOA-N2 VLVOO1/ALVOO1
LV-OOA-N1 VLVOO2/ALVOO02
SV-OO0A-PO VSVOO1/ASVOO01
SV-O0A-P1 VSVOO02/ASVO02
SV-O0A-P2 VSVOO3/ASVOO03
LV-HOA-N1 VLVPO1/ALVPO1
SV-HOA-PO VSVPO1/ASVPO1
SV-HOA-P1 VSVPO2/ASVPO2
SV-HOA-P2 VSVPO3/ASVOO03

SV-HOA-P3 VIVPO1/AIVPO1




