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Abstract. Aerosol–cloud interactions represent the leading
uncertainty in our ability to infer climate sensitivity from
the observational record. The forcing from changes in cloud
albedo driven by increases in cloud droplet number (Nd) (the
first indirect effect) is confidently negative and has narrowed
its probable range in the last decade, but the sign and strength
of forcing associated with changes in cloud macrophysics in
response to aerosol (aerosol–cloud adjustments) remain un-
certain. This uncertainty reflects our inability to accurately
quantify variability not associated with a causal link flow-
ing from the cloud microphysical state to the cloud macro-
physical state. Once variability associated with meteorology
has been removed, covariance between the liquid water path
(LWP) averaged across cloudy and clear regions (here char-
acterizing the macrophysical state) and Nd (characterizing
the microphysical) is the sum of two causal pathways linking
Nd to LWP:Nd altering LWP (adjustments) and precipitation
scavenging aerosol and thus depleting Nd. Only the former
term is relevant to constraining adjustments, but disentan-
gling these terms in observations is challenging. We hypoth-
esize that the diversity of constraints on aerosol–cloud ad-
justments in the literature may be partly due to not explicitly
characterizing covariance flowing from cloud to aerosol and
aerosol to cloud. Here, we restrict our analysis to the regime
of extratropical clouds outside of low-pressure centers asso-
ciated with cyclonic activity. Observations from MAC-LWP
(Multisensor Advanced Climatology of Liquid Water Path)
and MODIS are compared to simulations in the Met Of-
fice Unified Model (UM) GA7.1 (the atmosphere model of

HadGEM3-GC3.1 and UKESM1). The meteorological pre-
dictors of LWP are found to be similar between the model
and observations. There is also agreement with previous liter-
ature on cloud-controlling factors finding that increasing sta-
bility, moisture, and sensible heat flux enhance LWP, while
increasing subsidence and sea surface temperature decrease
it. A simulation where cloud microphysics are insensitive to
changes in Nd is used to characterize covariance between Nd
and LWP that is induced by factors other than aerosol–cloud
adjustments. By removing variability associated with mete-
orology and scavenging, we infer the sensitivity of LWP to
changes in Nd. Application of this technique to UM GA7.1
simulations reproduces the true model adjustment strength.
Observational constraints developed using simulated covari-
ability not induced by adjustments and observed covariability
between Nd and LWP predict a 25 %–30 % overestimate by
the UM GA7.1 in LWP change and a 30 %–35 % overesti-
mate in associated radiative forcing.

1 Introduction

Uncertainty in the radiative forcing due to aerosol–cloud
interactions is the leading uncertainty limiting our ability
to accurately diagnose the Earth’s climate sensitivity from
the observational record (Forster, 2016). The best estimate
of the radiative forcing due to aerosol–cloud interactions
(also called the first indirect effect; Twomey, 1977) has nar-
rowed to −1.2 to −0.34 Wm−2 in a recent survey of forc-
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ing from aerosol–cloud interactions (Storelvmo, 2017; Bel-
louin et al., 2020), but the sign and strength of the forcing due
to changes in cloud macrophysical properties in response to
aerosol (aerosol–cloud adjustments) remain uncertain (Bel-
louin et al., 2020). This uncertainty reflects the difficulty in
disentangling the many factors that determine cloud macro-
physical properties. Unlike cloud droplet number concentra-
tion (Nd), which is primarily driven by the availability of
suitable aerosol, cloud macrophysical properties are primar-
ily determined by the state of the atmosphere but may be
modulated by Nd (Stevens and Feingold, 2009).

Here, we focus on liquid clouds. Within liquid clouds two
main processes are hypothesized to alter cloud liquid con-
tent in response to changes in Nd. As Nd is increased the
following may occur: (1) a suppression of precipitation by
enhanced Nd (Albrecht, 1989; Pincus and Baker, 1994) and
(2) strengthened entrainment of dry air (Ackerman et al.,
2004; Bretherton et al., 2007; Wang et al., 2003; Xue and
Feingold, 2006). These processes drive the liquid content
of cloud in opposite directions following a perturbation in
microphysics, further complicating the interpretation of co-
variability between cloud macrophysical and microphysical
properties. Because these processes exist at a timescale and
length scale far below those resolved in climate models,
they must be parameterized, resulting in substantial uncer-
tainty. Because of this, constraining the cloud macrophysical
response to changes in cloud microphysics using observa-
tions is an essential step towards constraining aerosol forc-
ing. Aerosol–cloud adjustments are likely to contribute a rel-
atively small fraction of overall variability in cloud macro-
physical properties (Bender et al., 2019) – making the data
volume available from remote-sensing observations particu-
larly relevant to providing an observational constraint by de-
tecting the small signal from aerosol–cloud adjustments hid-
den in meteorologically induced cloud variability. The liter-
ature has produced numerous careful analyses of the obser-
vational record, but these analyses have produced divergent
estimates of the aggregate effect of increased Nd on liquid
clouds. These impacts range from increased Nd increasing
liquid content in clouds (Chen et al., 2014; Rosenfeld et al.,
2019) to almost no response in in-cloud and area-averaged
liquid water path (LWP; Toll et al., 2017; Malavelle et al.,
2017) and to decreasing liquid content (Gryspeerdt et al.,
2019; Sato et al., 2018; Toll et al., 2019). In contrast, the
response in cloud cover to Nd has tended to be consistently
inferred as producing a forcing equal to or larger than the first
indirect effect (Gryspeerdt et al., 2016; Christensen et al.,
2017; Andersen et al., 2017). A simulation of deep, open-
cellular boundary layers has shown an increase in the cloud
fraction and a decrease in in-cloud LWP, ultimately result-
ing in an increase in reflected shortwave in the simulation
(Possner et al., 2018). Given the wide range of potential ob-
servational constraints it remains difficult to offer advice on
the cloud microphysical parameterizations that are the most
realistic.

However, the causal link flowing from Nd to clouds is not
the only mechanism relating cloud macrophysics to cloud
microphysics. As shown in Wood et al. (2012), the spatial
pattern in Nd observed in nature is primarily determined by
precipitation scavenging. That is to say, Nd may both alter
cloud macrophysical properties and be altered by them, and
interpreting observations as a constraint on only microphys-
ical to macrophysical causality is erroneous, as discussed in
Gryspeerdt et al. (2019). To be able to constrain cloud re-
sponses to aerosol-driven changes in Nd we must be able to
characterize the effects of cloud macrophysical properties on
Nd (by precipitation scavenging) and covariability between
Nd and LWP induced by confounding factors such as the
relative location of aerosol sources and climatological cloud
cover or meteorological modulation of aerosol and clouds.

Bender et al. (2019) proposed utilizing the observed co-
variance between Nd and LWP as an aggregate measure of
aerosol–cloud-radiation behavior across climate models and
reanalyses. For a model to be able to realistically reproduce
aerosol–cloud behavior one precondition is that covariance
flowing from clouds to aerosol and from aerosol to clouds as
well as the non-causal covariance induced by air mass his-
tory must result in total covariance consistent with observa-
tions. Similarly, Gryspeerdt et al. (2019) examined covari-
ance between Nd and in-cloud LWP but proposed to sepa-
rate variability induced by adjustments from other sources of
covariability by using clustering on global data. This study
follows these earlier studies and attempts to partition covari-
ance between LWP and Nd related to causality flowing from
Nd to LWP from other covariance. We utilize empirical anal-
ysis of observations and model output to try to disentangle
variability driven by meteorological “cloud-controlling fac-
tors” (Stevens and Brenguier, 2009) and variability related
to changes in cloud microphysics. Within this framework we
focus on the midlatitudes. Previous work has performed sim-
ilar analysis on cyclonic midlatitude systems, finding a dis-
tinct increase in LWP at a fixed precipitation rate (McCoy
et al., 2018b). These large synoptic systems account for
roughly half of the midlatitudes (Bodas-Salcedo et al., 2014).
Here, we turn our attention to the remaining interstitial re-
gions between cyclones. This regime tends to be less cloudy,
have an overall lower albedo, and have a lower cloud optical
depth (an example is shown in Fig. 1a). Thus, while these re-
gions do not host dramatic fronts and cloud shields, changes
in their liquid cloud due to anthropogenic aerosol may con-
tribute strongly to the overall aerosol forcing because cloud
areal coverage and cloud optical depth are further below sat-
uration.
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Figure 1. (a) An example of a cyclone off the coast of North Amer-
ica from MODIS Aqua. The cyclone center has been identified
south of the Aleut Peninsula based on MERRA-2 sea-level pressure
(SLP). A line shows the edge of the area considered to lie within the
cyclone following Field and Wood (2007). (b) The fraction of data
outside of cyclones averaged between 2003 and 2015. The mean
within the 30–60◦ N region is 42 %.

2 Methods

2.1 Region and variable selection

The empirical analysis on both observational and simulated
data in this work follows pioneering studies investigating me-
teorological controls on subtropical (Myers and Norris, 2013,
2015; Qu et al., 2015; Klein et al., 2017; Seethala et al., 2015)
and midlatitude (Miyamoto et al., 2018) marine boundary-
layer cloudiness. The selection of variables used in this study
is based on the findings of these earlier studies. The predic-
tors examined here are sea surface temperature (SST), large-
scale subsidence (ω) at 550 hPa, the strength of the inversion
at the top of the boundary layer (estimated inversion strength
– EIS – as defined in Wood and Bretherton, 2006), the to-
tal water vapor path (WVP), and sensible heat flux (SHF).
A summary is given in Table 1. A priori we expect that
increasing SSTs should lead to decreasing cloudiness (My-

ers and Norris, 2015; Qu et al., 2015; McCoy et al., 2017;
Bretherton and Blossey, 2014). Increasing subsidence should
decrease the liquid water path (Myers and Norris, 2013). In-
creasing inversion strength should lead to an increasing cloud
fraction (Wood and Bretherton, 2006; Klein and Hartmann,
1993; Qu et al., 2015; Myers and Norris, 2015; Seethala
et al., 2015). As shown in Miyamoto et al. (2018) from ex-
amination of midlatitude ocean fronts, increased SHF should
increase cloudiness. Finally, while less extensively studied,
an overall increase in WVP seems likely to lead to increased
cloudiness as the atmospheric column moisture increases,
holding all else equal (McCoy et al., 2019).

The central goal of this study is to develop an empiri-
cal constraint on aerosol–cloud adjustments. However, direct
measurements of the aerosol state to constrain aerosol–cloud
adjustments have been found to be sensitive to errors in pris-
tine conditions (Ma et al., 2018). To develop a constraint on
aerosol–cloud adjustments we examine the cloud microphys-
ical state in addition to the meteorological parameters listed
above. Cloud droplet number concentration is the state vari-
able relating cloud macrophysics to aerosol concentration
(Wood, 2012; Grosvenor et al., 2018) and is the predictor
used in this study to characterize aerosol–cloud adjustments.

We hasten to note that the list of predictors described
above is not intended to be complete (that is to say, we do
not anticipate that we will be able to explain 100 % of the
variability in clouds with these predictors). Our goal is to ex-
plain enough variability with these predictors to be able to
infer statistically robust relationships between cloud macro-
physical and microphysical properties in the variance unex-
plained by meteorological variability. The predictive ability
of these inferred relationships will be tested within the con-
text of a global climate model (GCM).

Having discussed predictors, we will now discuss predic-
tands. Outside of cyclones cloud cover is primarily liquid,
boundary-layer cloud, which substantially affects shortwave
radiation but has little effect on longwave radiation (Hart-
mann and Short, 1980). Thus, we focus on the liquid wa-
ter path (LWP) averaged over cloudy and clear regions. This
variable allows observations and model output to be com-
pared without needing to simulate output from a passive
spectroradiometer (Bodas-Salcedo et al., 2011) or consider-
ing cloud overlap, as would be required for in-cloud LWP.

Analysis is carried out in the Northern Hemisphere (here
30–60◦ N) over oceans. This choice has been made for sev-
eral reasons: first, there is a large variability in Nd across the
northern midlatitudes that is not strongly driven by the sea-
sonal cycle. In the Southern Ocean cloud condensation nu-
clei (CCN) variability is primarily due to biogenic sources,
and their variability is strongly driven by the seasonal cy-
cle, making analysis in the context of meteorological controls
difficult to interpret (Ayers and Gras, 1991; McCoy et al.,
2015a; Charlson et al., 1987). Second, Southern Ocean Nd
is still poorly represented in the Met Office Unified Model
GA7.1 (discussed in Sect. 2.4), with both too low a mean
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Table 1. List of observed variables.

Variable Description Source

LWP Microwave liquid water path averaged over cloudy and clear sky. Elsaesser et al. (2017)
Nd MODIS cloud droplet number concentration. McCoy et al. (2018b), Grosvenor and

Wood (2014)
SST OSTIA sea surface temperature as used by MERRA-2 reanalysis as a boundary

condition.
Molod et al. (2015)

WVP Column water vapor path as observed by MAC-LWP. Elsaesser et al. (2017)
ω550 550 hPa subsidence calculated by MERRA-2. Molod et al. (2015)
EIS Estimated inversion strength calculated following Wood and Bretherton (2006)

using MERRA-2 data.
Molod et al. (2015), Wood and Brether-
ton (2006)

SHF Sensible heat flux calculated from MERRA-2 data following Miyamoto
et al. (2018).

Molod et al. (2015)

value and generally too small a seasonal cycle – in contrast
to the Northern Hemisphere, which compares well with ob-
servations (Mulcahy et al., 2018).

2.2 Outside of cyclone compositing

The passage of synoptic systems is the central mode of vari-
ability in midlatitude cloudiness. McCoy et al. (2018b) fo-
cused on cyclone systems and showed that once meteoro-
logical variability was accounted for, the effects of changes
in cloud microphysics driven by changes in Nd on liquid
content are revealed. This work utilized the Field and Wood
(2007) cyclone compositing algorithm, which uses sea-level
pressure (SLP) to identify cyclone centers. Here we utilize
the same compositing approach but focus on all data that
are 2000 km away from a cyclone center, following Bodas-
Salcedo et al. (2014). This separates the midlatitudes into
times when a cyclone is nearby and when there is no cyclone
nearby. Once cyclone centers are identified all data within
2000 km of an identified cyclone center are masked out of
the data set. All data over land are also masked because mi-
crowave observations are unavailable (see next section).

A schematic representation of the frequency of occurrence
of out-of-cyclone states is shown in Fig. 1b and is 42 % in the
30–60◦ N region focused on in this study. All data are regrid-
ded to a common 1◦× 1◦ spatial resolution before analysis.
All data are daily mean, except for observed Nd, which is
only available for the MODIS Aqua overpass; however the
diurnal cycle of Nd is thought to be relatively slight (Dong
et al., 2014), and it is unlikely that this retrieval limitation
significantly impacts our results. Our choice of resolution is
motivated by the natural resolution of the Multisensor Ad-
vanced Climatology of Liquid Water Path (MAC-LWP) data
set. Performing the analysis with a coarser resolution might
change the regression coefficients derived in Sect. 2.5, as has
been reported for analysis of the first indirect effect (Mc-
Comiskey and Feingold, 2012). However, in Sect. 3.4 we val-
idate the adjustments inferred from this resolution against the
true adjustments in Met Office Unified Model (UM) GA7.1

(the atmosphere model of HadGEM3-GC3.1 and UKESM1)
and find agreement, which demonstrates that our choice of
resolution does not affect our results.

2.3 Observations

The cloud liquid water path (LWP) is calculated based on the
aggregated observations from multiple satellite microwave
sensors following the methodology of the multisensor ad-
vanced climatology of LWP (MAC-LWP; Elsaesser et al.,
2017) at a daily mean resolution. Microwave radiometers
are sensitive to total liquid. This means that the retrieval
must calculate a partitioning between precipitating and non-
precipitating liquid. Here, the liquid water path in clouds is
calculated following Elsaesser et al. (2017). Previous anal-
ysis has shown that the midlatitude partitioning of rain and
cloud in MAC-LWP compares favorably with convection-
permitting simulations (McCoy et al., 2018b). The MAC-
LWP data set estimates that 7 % of total liquid path is rain
in the NH midlatitudes outside of cyclones. Because of the
low fraction of rainwater in the midlatitudes outside of cy-
clones it is unlikely that the need to partition the observations
into rain and cloud water substantially affects observational
constraints as calculated in Sect. 3.3. The liquid water path
is defined as the average of cloudy and clear regions and is
insensitive to overlying ice cloud (unlike passive optical re-
trievals). This definition of LWP is consistent with the defi-
nition from GCMs. Microwave retrievals are only available
over the ocean.

Observations ofNd are calculated based on MODIS obser-
vations of cloud optical depth and droplet effective radius.
Level 2 swath data (joint product) from MODIS collection
5.1 (King et al., 2003) are filtered by removing pixels with
solar zenith angles greater than 65◦ to eliminate problem-
atic retrievals at a pixel level (Grosvenor and Wood, 2014).
The daily mean Nd at 1◦× 1◦ resolution is calculated from
the filtered level 2 swath data and only low (cloud tops be-
low 3.2 km), liquid clouds were used to calculate Nd. Only
1◦× 1◦ regions where the liquid cloud fraction exceeds 80 %
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are considered valid (Bennartz et al., 2011), and the Nd is
calculated using the effective radius from the 3.7 µm MODIS
channel. This data set is evaluated in Grosvenor et al. (2018)
and in McCoy et al. (2018a), where it shows consistency with
measurements from aircraft.

We feel that this combination of radiometers in constrain-
ing adjustments is particularly advantageous because there
is no shared information between the microwave retrieval
of LWP and the shortwave and near-infrared retrieval of
Nd. This is in contrast to the common practice of utilizing
MODIS retrievals of cloud droplet effective radius and opti-
cal depth to calculate both the in-cloud LWP andNd, making
it conceptually difficult to cleanly infer changes in LWP due
to changes in Nd.

The meteorological state of the atmosphere is character-
ized using reanalysis from MERRA-2 (Molod et al., 2015)
and microwave observations of WVP from MAC-LWP. The
period during which all of these observations are available
stretches from 2003 to 2015. A list of variables and data
sources is given in Table 1.

2.4 Simulations

Simulations are carried out in atmosphere-only simulations
in the UM version 10.8 at N96 horizontal resolution. The
version of the atmosphere model is GA7.1 coupled to the
UKCA (UK Chemistry and Aerosols) model as described
in (Mulcahy et al., 2018). The GA7.1 atmosphere model is
the physical basis for the atmosphere model included in the
HadGEM3-GC3.1 and UKESM1 climate model submission
to CMIP6 (Walters et al., 2019). All simulations are run for
2 years and 3 months, starting in September 2013. Simu-
lations are nudged to European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis winds above model
level 16 (approximately 1.8 km). Paired simulations are con-
ducted with emissions of aerosol and precursor gases set to
preindustrial (henceforth labeled PI) and to present-day (la-
beled PD) levels. Anthropogenic emissions use the CMIP6
inventory (Eyring et al., 2016), natural emissions over land
use the MEGAN-MACC inventory (Sindelarova et al., 2014),
and natural emissions over the ocean follow the POET inven-
tory (Granier et al., 2005). These simulations are conducted
to calculate the response of cloud to anthropogenic aerosol.
Additional sensitivity studies were carried out, starting with
nudging at level 27 (approximately 5 km) and without nudg-
ing. In the latter case simulations of the PI and PD were run
for 10 years and 3 months, starting in September 2003. The
results of this analysis are shown in the Supplement and do
not differ substantially from the results in the main text.

In GA7.1 aerosol number concentration has the potential
to affect cloud microphysics in three places: first, the conver-
sion of cloud water to rain, where enhanced Nd suppresses
the conversion of cloud water to rainwater. This is parameter-
ized using the scheme in Khairoutdinov and Kogan (2000),
bias corrected as described in Boutle et al. (2014). The con-

version rate of cloud to rain is parameterized as

PCloud→Rain ∝ q
2.47
Cloud ·N

−1.79
d , (1)

where qCloud is the cloud liquid water mixing ratio. Second,
it can affect cloud microphysics in the gravitational settling
of cloud droplets, where enhanced Nd suppresses the settling
of cloud droplets out of the cloud. The flux of water settling
out of a cloud layer is given as

PSettle ∝ q
5/3
CloudN

−2/3
d . (2)

Third, it can affect cloud albedo through changes in Nd
(Twomey, 1977).

However, clouds may affect aerosol concentrations via wet
scavenging. UKCA allows scavenging to be configured in
two ways: the default configuration or using the scavenging
coefficients in the ECHAM5-HAM model (Stier et al., 2005).
To evaluate some of the uncertainty related to scavenging we
perform simulations with both sets of coefficients. A list of
model simulations conducted is given in Table 2.

2.5 Analyzing covariance in the system

Our goal in this paper is to characterize how Nd drives
LWP. However, to reveal robust correlations between Nd and
LWP, meteorological variability must be accounted for. To
achieve this we follow previous empirical analysis of cloud-
controlling factors and utilize multiple linear regression to
characterize the dependence of various cloud properties as
predictands on the predictors described above (Myers and
Norris, 2015). As with all empirical analyses of observa-
tions, correlation between predictors and the predictand does
not necessarily mean that they are causally linked. The me-
teorological predictors selected here have had mechanisms
hypothesized to link them to cloud variability. Another is-
sue with this and similar analyses of the response of cloud
to cloud-controlling factors is that thermodynamic and dy-
namical predictors within the Earth’s atmosphere are corre-
lated (McCoy et al., 2017; Myers and Norris, 2015, 2013).
As the variance shared by predictors grows, the uncertainty
in the coefficients calculated by multiple linear regression in-
creases. While this is an issue, it is inescapable in trying to
disentangle the effects of different cloud-controlling factors
on cloud properties. Examples of meteorological variables
that are correlated but have opposing effects on cloud cover
include subsidence and stability and stability and SST (My-
ers and Norris, 2013; Qu et al., 2015; Wall et al., 2017).

To reduce predictor covariance we bin our 1◦× 1◦ daily
mean data from model output and observations into the space
of SST and WVP. All output over oceans is considered in
the analysis. We choose these predictors to bin our data be-
fore performing regression analysis because they represent
two of the most basic meteorological state variables, be-
cause they covary strongly, and because LWP varies signif-
icantly as a function of WVP and SST in both observations
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Table 2. List of simulations: the Met Office model designation; a short description; the scavenging coefficients used; the value of Nd used in
the radiation, settling, and autoconversion parameterizations; and aerosol emissions period used (present day – PD – or preindustrial – PI).
A tilde in Nd for a given parameterization indicates that Nd was not set to a constant value.

Model label Description Scavenging Radiation Nd Settling Nd Autoconversion Nd Emissions
(cm−3) (cm−3) (cm−3)

u-bh860 Control UM ∼ ∼ ∼ PD
u-bi580 Control ECHAM ∼ ∼ ∼ PD
u-bi674 Scavenging only UM 75 75 75 PD
u-bi677 Scavenging only ECHAM 75 75 75 PD
u-bh861 Control with PI aerosol UM ∼ ∼ ∼ PI
u-bo314 Control with PI aerosol ECHAM ∼ ∼ ∼ PI
u-bi239 Cloud microphysics Nd = 30 UM 30 30 30 PD
u-bi971 Cloud microphysics Nd = 100 UM 100 100 100 PD
u-bi972 Cloud microphysics Nd = 300 UM 300 300 300 PD
u-bi284 Autoconversion Nd = 100 UM 30 30 100 PD
u-bi285 Autoconversion Nd = 300 UM 30 30 300 PD
u-bi248 Settling Nd = 100 UM 30 100 30 PD
u-bi250 Settling Nd = 300 UM 30 300 30 PD
u-bi283 Radiative transfer Nd = 100 UM 100 30 30 PD
u-bi282 Radiative transfer Nd = 300 UM 300 30 30 PD

and simulations (Fig. 2); 9 bins are used to span WVP (0–
40 kgm−2), and 10 are used for SST (275–305 K). We pro-
pose that a multiple-linear-regression model of the form,

LWP= accnCCN+ a2ω550+ a3EIS+ a4WVP+ a5SST
+ a6SHF+ a7, (3)

be trained in each bin of SST and WVP. All the predictors
within the regression model are environmental drivers that
are external to the clouds being influenced. However, ro-
bust remote-sensing observations of CCN are lacking and
ln(Nd) is used in its place. As discussed above, Nd is pre-
dominantly a function of CCN availability. Thus, a multiple-
linear-regression model,

LWP= a1 ln(Nd)+ a2ω550+ a3EIS+ a4WVP+ a5SST
+ a6SHF+ a7, (4)

is trained in each bin of WVP and SST. Bins that contain
fewer than 3000 data points are excluded. (Units of LWP
are in gm−2, Nd is in cm−3, subsidence is in Pas−1, EIS is
in K, WVP is in kg m−2, SST is in K, and SHF is in Wm−2.)
A 99 % confidence interval is used to determine if a coeffi-
cient is significant (different from zero). The initiation of pre-
cipitation in boundary-layer cloud can substantially impact
LWP within a given cloud with a timescale longer than the
daily sampling timescale utilized here (Berner et al., 2013).
However, the spatial scale of our analysis (1◦× 1◦) samples
clouds at many stages of their life cycle. This means that we
do not need to consider rain to be a predictor of LWP and
may think of it as scaling with cloud LWP.

Training the regression model in Eq. (4) produces a mea-
sure of the covariance between predictors and predictands.

Figure 2. MAC-LWP-observed (a) and UM-simulated (b) LWP in
the space of SST and WVP in the region 30–60◦ N. White lines
show the distribution of data in SST–WVP space. The contours of
number of observations in each bin are shown in white.

In particular, it produces a measure of the covariability be-
tween ln(Nd) and LWP (a1). However, this covariance does
not show causality. Nd may enhance LWP by, for instance,
suppressing rain (Albrecht, 1989), and it is this relationship
where causality runs fromNd to LWP that is of interest in un-
derstanding adjustments. However, the observed covariabil-
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Figure 3. A schematic illustration of the mechanisms linking cloud,
aerosol, and meteorology considered in this study. Observed quan-
tities are shown in green (in this case Nd and LWP). Adjustments
(shown in red) are the causal link that flow from Nd to LWP, and
inferring them is the focus of this study. In the “scavenging-only”
simulation the Nd seen by the cloud physics is set to a constant
value.

ity between Nd and LWP is also the product of causality run-
ning from LWP to Nd due to precipitation removing aerosol
and reducing Nd (Wood et al., 2012). The overall covariance
betweenNd and LWP is the product of these two causal path-
ways as well as correlation induced by environmental factors
driving both clouds and aerosol and by geographic and sea-
sonal distribution of sources of aerosol relative to cloud. Fig-
ure 3 shows a schematic of these causal flows.

How do we constrain adjustments based on examination
of modeled and observed Nd and LWP if we cannot disen-
tangle causality? The solution we propose is to use a sim-
plified version of the model to characterize the sensitivity
of Nd to precipitation and other factors and use this sensi-
tivity to interpret the full model. To conceptualize why this
process can estimate the sensitivity of LWP to Nd we can
write an equation describing small changes in LWP in the
space of small changes in Nd. First, we consider that Nd act-
ing on cloud microphysics (NdCloud ) and Nd when precipi-
tation scavenging is the only causal factor linking cloudi-
ness and Nd (NdScav ) as separate entities. In the latter case
air mass history and sinks unrelated to precipitation can af-
fect Nd, in addition to the effect of precipitation scaveng-
ing, but precipitation scavenging is the only causal link be-
tween cloud and aerosol (see Fig. 3). We consider changes in
LWP relative toNdCloud andNdScav . That is to say we consider
LWP= f n(ln(NdCloud), ln(NdScav)), where the logs are added

Figure 4. A simple conceptual model demonstrating how variance
due to precipitation driving of Nd and due to Nd driving changes
in LWP through cloud microphysics affects total covariance be-
tween Nd and LWP in observations and models. Nd where scav-
enging is the only causal link between cloud and aerosol (NdScav)
and Nd affecting the cloud microphysics (NdCloud) are considered
to be distinct entities. The contour map in (a) illustrates a potential
topological LWP space in terms of NdCloud and NdScav. The case
where NdCloud is set to a constant value is shown with a blue line,
and the case where NdCloud is increased independently is shown
with a red line. In a causal sense this implies NdCloud driving LWP
(shown in b) and NdScav being driven by LWP (shown in c), where
NdScav is negatively correlated with LWP because dNdScav/dR < 0
and dLWP/dR > 0, where R is rain rate. The observed variability
in LWP in terms of Nd is shown in (d) for the cases NdCloud =Nd
and NdScav = constant (red), NdScav =Nd and NdCloud = constant
(blue), and NdCloud =NdScav =Nd (the real world; dashed line).

for consistency with Eq. (4) and all other terms in Eq. (1) are
held fixed and the first term is expanded.

Conceptually, LWP is increased with increasing NdCloud

(Fig. 4b), and NdScav is reduced by increasing rain rates,
which increase with LWP (Fig. 4c). In the topographic space
describing LWP in terms ofNdCloud andNdScav , reducedNdScav

corresponds to increased precipitation rates and, in turn,
LWP. That is to say,

dNdScav

dR
< 0,

dR
dLWP

> 0, (5)
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where R is the rain rate, so the reciprocal of the product of
these terms gives

dLWP
dNdScav

< 0. (6)

Thus, a small change in LWP in terms of changes in these
two variables alone is

dLWP=
∂LWP

∂ ln(NdScav)
dln(NdScav)

+
∂LWP

∂ ln(NdCloud)
dln(NdCloud). (7)

We assume that scavenging is unaffected by changes in
NdCloud affecting rain rates, so there are no higher-order
terms, although this may not be the case in reality (Wood
et al., 2012), and this feedback is found to substantially en-
hance the strength of adjustments in some models (Jing and
Suzuki, 2018). A visualization of Eq. (7) is shown in Fig. 4a.
The best fit of LWP to Nd gives the sum of the partial deriva-
tives of the two terms

dLWP
dln(Nd)

=

(
∂LWP

∂ ln(NdScav)

)
NdCloud

dln(NdScav)

dln(Nd)

+

(
∂LWP

∂ ln(NdCloud)

)
NdScav

dln(NdCloud)

dln(Nd)
, (8)

where subscripts on the partial derivatives indicate that they
are evaluated while holding that variable constant. In the con-
trol simulation, Nd =NdCloud =NdScav because NdCloud and
NdScav are not distinct entities. That is to say, the cloud mi-
crophysics and radiation see that theNd calculated by the nu-
cleation scheme and aerosol experiences the effects of scav-
enging and meteorology. In this particular case the deriva-
tives of NdScav and NdCloud each go to unity because the Nd
seen by the cloud and affected by scavenging is equal, and
we are left with

dLWP
dln(Nd)

=

(
∂LWP

∂ ln(NdScav)

)
NdCloud

+

(
∂LWP

∂ ln(NdCloud)

)
NdScav

.

(9)

We always sample along the dashed line in Fig. 4a in the
observational record or in a model where clouds are sen-
sitive to Nd and aerosol is scavenged, giving the curve in
Fig. 4d. This curve combines the effects of causality flowing
from Nd to LWP and from LWP to precipitation to aerosol
and onto Nd. The term ∂LWP

∂ ln(NdCloud )
is the key to constraining

adjustments because it describes the sensitivity of LWP to
changes in Nd (in this analogy the slope of LWP along the
red line in Fig. 4a). While we cannot disentangle causality
in observations or in a model where Nd affects cloud mi-
crophysics, we propose that in a model configuration where
cloud microphysics (e.g., radiation, settling, and autoconver-
sion in UM GA7.1) are unaffected by Nd we may estimate

the term ∂LWP
∂ ln(NdScav )

. That is to say, if NdCloud = constant and
Nd =NdScav , then

dLWP
d ln(Nd)

=

(
∂LWP

∂ ln(NdScav)

)
NdCloud

, (10)

and the best fit of LWP to Nd in the scavenging-only simula-
tion is just a measure of the scavenging of aerosol by precip-
itation and the non-causal covariance between Nd and LWP
induced by other confounding factors.

Thus, the sensitivity ∂LWP
∂ ln(NdCloud )

can be estimated as the
difference between the regression of LWP on Nd trained in
a simulation where clouds are insensitive to Nd (NdCloud =

constant; scavenging only) and the regression in a control
simulation (Nd =NdCloud =NdScav ) because(

∂LWP
∂ ln(NdCloud)

)
NdScav

=
dLWP

dln(Nd)
−

(
∂LWP

∂ ln(NdScav)

)
NdCloud

.

(11)

We will use this correction for variability induced by fac-
tors besides adjustments throughout the paper to infer the ef-
fects of Nd on cloud properties in model configurations and
the observations. We note that this methodology is subject
to several limitations. First, as noted above, it assumes that
feedbacks between adjustments and scavenging are small.
This assumption will break down as adjustments become
stronger. However, the response in cloud to transient changes
in aerosol does not appear to permit very strong adjustments
(Malavelle et al., 2017; Toll et al., 2017, 2019). Second, it is
assumed here that the relationship between LWP and ln(Nd)

is linear. Empirically this assumption appears to hold in the
models and observations (as shown in the following sec-
tion), and inclusion of higher-order polynomials of ln(Nd)

in Eq. (3) did not alter our results.
To reiterate, non-causal factors also lead to correlation be-

tween Nd and LWP because air mass history is important for
both clouds and aerosol (Mauger and Norris, 2007). In the
discussion of the conceptual model presented above we fo-
cused on the impact of changes inNd on LWP and vice versa.
Spurious correlation due to air mass history will affect both
terms on the right-hand side of Eq. (11) when they are calcu-
lated using regression. Thus, the correction for scavenging-
induced variability in Eq. (11) also corrects for variability
induced by air mass history simultaneously affecting Nd and
LWP.

3 Results

3.1 Variance in LWP as a function of Nd

As described in the Methods section, data from observations
and the control simulation in the UM between 30 and 60◦ N
over oceans and 2000 km from cyclone centers at a daily
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mean resolution are binned by WVP and SST, and the re-
gression model shown in Eq. (4) is trained in each bin. If we
plot the quantity,

LWP−a2ω500−a3EIS−a4WVP−a5SST−a6SHF−a7, (12)

as a function of Nd we can see that the coefficient relating
LWP to Nd is greater than zero at 99 % confidence, once
variability associated with meteorological predictors is re-
moved (Fig. 5). The residual variance in LWP covaries with
Nd similarly between the observations and UM simulations
where observations exist. However, one key difference is the
span of Nd values in the observations and simulations. Ob-
served Nd almost never falls below 30 cm−3 (the grey line
in Fig. 5), while the Nd calculated by the model occasion-
ally falls below this value (∼ 10 % of modeled ln(Nd)). This
is not surprising because the model suffers from no retrieval
limitations and can always measure an Nd, even when cloud
is extremely tenuous. Ultimately the goal of this study is to
utilize the slope of LWP with respect to Nd to infer adjust-
ment strength. However, using the slope from the observa-
tions and the models will produce quite different values due
to the strong increase in LWP with Nd below 30 cm−3. In
order to compare observations and models fairly we exclude
data for Nd < 30cm−3.

For Nd > 30cm−3 residual LWP decreases with increas-
ingNd in both observations and models. This agrees with the
notion that precipitation variability drives Nd (Wood et al.,
2012) and agrees with previous analysis (Gryspeerdt et al.,
2019). Clearly, this does not mean that the model reduces
cloudiness in response to aerosol. The cloud microphysics
within the UM GA7.1 must increase LWP in response to
a change in Nd, and analysis of the model response to
changes from preindustrial (PI) to present-day (PD) aerosol
confirmed a negative forcing from adjustments (Mulcahy
et al., 2018). As discussed in the Methods section, the differ-
ence in slopes between the scavenging-only and control sim-
ulation is a proxy for the response in cloud microphysics to
Nd. Before analyzing this difference, we will briefly discuss
the covariance between LWP and meteorological predictors
in the observations and the control simulations.

3.2 Covariances between LWP and meteorology

Before returning to discussing aerosol–cloud adjustments,
we discuss the covariances between observed LWP and the
other predictors in Eq. (4). This is shown in Fig. 6. The ex-
plained variance (R2) by the regression model exceeds 40 %
except at low WVP and SST. The variance explained across
all bins of SST and WVP is 46 % of daily mean 1◦× 1◦ vari-
ability. That is to say, nearly half of the day-to-day variability
in LWP across the midlatitudes away from cyclones can be
explained as a simple linear combination of five variables.

Several of the predictors have uniform effects on LWP:
LWP decreases with subsidence (consistent with Myers and
Norris, 2013), increases with WVP, decreases with increas-

ing SST (consistent with Qu et al., 2015, and references
therein), and increases with sensible heat flux (consistent
with Miyamoto et al., 2018). We note that at very low SST
it appears that LWP may increase with SST. It is possible
that this feature is related to ice-to-liquid transitions (Mc-
Coy et al., 2015b, 2016; Tsushima et al., 2006; Senior and
Mitchell, 1993; Tan et al., 2016), but this region only ac-
counts for a small fraction of the overall data volume. The
only meteorological predictor that correlates positively and
negatively with LWP across the SST–WVP phase space is
EIS. At higher WVP and lower SST, EIS and LWP are
negatively correlated, while at low WVP and high SST,
they are positively correlated. The latter effect is consistent
with increasing EIS increasing the cloud fraction (Wood and
Bretherton, 2006). One possibility is that because clouds are
closer to 100 % in areal coverage at higher WVP and lower
SST, increasing stability suppresses the thickening of cloud
in this regime, while the clouds cannot expand horizontally.

Examination of the control simulation shows very simi-
lar covariances between meteorological predictors and LWP
(Fig. 7). Notable differences are the stronger positive covari-
ance between SST and LWP at low SST and uniform nega-
tive covariance between EIS and LWP across the SST–WVP
phase space. However, the relationship between LWP and
meteorology is strikingly similar to that between observa-
tions and the UM. The explained variance by predictors tends
to be higher in the UM GA7.1 (64 %), but it is hard to say
how much of this difference in explained variance is due to
simplification of the real atmosphere and cloud physics by
the model and how much is due to observational error.

In this framework we also characterize the covariance be-
tween ln(Nd) and LWP. The correlation between ln(Nd) and
LWP is primarily negative in the observations, with posi-
tive correlations only occurring at high WVP and low SST.
The correlation between LWP and ln(Nd) in the model is al-
most uniformly negative (in the data set restricted to Nd >

30cm−3). Standardization of the predictor strength estimates
the effect of a standard deviation change in each predictor
in standard deviations of LWP. In both the observations and
models the impact of a standard deviation in meteorologi-
cal predictors dwarfs the effect of a standard deviation in
ln(Nd), with contributions from subsidence and SHF dom-
inating variability. That is to say, the relative contributions of
variability in Nd are quite small in comparison to variability
that is simply due to the weather.

3.3 Inferring the effect of Nd on LWP

As we have seen, the correlation between LWP and Nd is
mostly negative. The slope relating ln(Nd) to LWP in the con-
text of Eq. (4) is reproduced in Fig. 8a and b. However, if we
manually set the Nd seen by autoconversion, radiation, and
settling to 75 cm−3 in the UM GA7.1 (the approximate mean
value in the study region) the negative covariance strengthens
substantially (Fig. 8c). This model version is termed “scav-
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Figure 5. Residual variance in LWP after removing variability associated with other predictors (Eq. 12) plotted as a function of Nd in the
UM GA7.1 and observations (Obs.). Each subplot corresponds to a bin of WVP and SST. Due to retrieval limitations, values of Nd below
30 cm−3 (grey line) are almost never observed but occur in model output.

Figure 6. The regression coefficients relating observed LWP to predictors in the phase space of SST and WVP. Regression coefficients not
significant at 99 % confidence are marked with a dot. White contours show the distribution of observations in the WVP–SST phase space.
The first plot shows the explained variance in each bin. The explained variance within the entire data set is noted in the title along with
the number of observations. The remaining plots show the coefficients relating each predictor to LWP. In the title the weighted mean of the
absolute value of the standardized coefficient (|∂σLWP/∂σx|) is shown in brackets to give an estimate of contribution of each predictor to
the variance. Regression coefficients are as described in Eq. (4).
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Figure 7. As in Fig. 6 but showing the covariance within the UM.

enging only” because scavenging is the only causal link be-
tween cloud and aerosol (Fig. 3). As discussed in the Meth-
ods section, the effect of changes in Nd on LWP may be ap-
proximated by the difference between Fig. 8b and c. This
is shown in Fig. 8e. This agrees with our expectation based
on our knowledge of how the UM GA7.1 treats liquid cloud
processes. We know that the effect of increasing Nd on auto-
conversion and settling is to inhibit the conversion of cloud
to rain and reduce cloud droplet fall speed.

To evaluate the accuracy of this method in inferring the
sensitivity of LWP to Nd we conduct simulations where
causality is forced to flow from the Nd to LWP. This is done
by setting theNd seen by the autoconversion, settling, and ra-
diation to constant values. Two simulations are conducted for
each mechanism, with Nd set to 100 and 300 cm−3. The Nd
seen by the other mechanisms is held constant at 30 cm−3.
A further three simulations are conducted, in which Nd seen
by all three mechanisms is set to 30, 100, and 300 cm−3 (Ta-
ble 2). This yields a set of simulations describing the effects
on LWP of an increase in Nd in the autoconversion, settling,
or radiation as well as via all three mechanisms simultane-
ously. Analysis of the effects of increased Nd seen by the
radiation code showed negligible changes in LWP and is not
shown here.

As in Fig. 7, the fit in Eq. (4) is trained in each bin of WVP
and SST across each set of three simulations. The Nd seen
by the model parameterization is used in the multiple linear
regression (Eq. 4). As expected, given the functional form of
these parameterizations (Eqs. 1 and 2) the effect of increasing
Nd in either autoconversion or settling results in an increase
in LWP, as does the case where Nd in the settling, autocon-
version, and radiation are all varied together. The effect of
a perturbation in the Nd seen by autoconversion, radiation,
and settling on LWP is nearly identical to the slope inferred
by subtracting the slope in the scavenging-only run from the
control run following Eq. (11) (Fig. 8f). This comparison be-

tween the true model sensitivity of LWP to changes in Nd
supports the validity of the multiple-linear-regression-based
inference approach pursued here.

Autoconversion and settling are likely to interact with each
other in a non-linear manner. As one is suppressed as a sink
of cloud liquid, the other will grow (for example, if the con-
version of cloud to rain is rendered inefficient, then the gravi-
tational settling of cloud droplets will become more efficient
as the liquid content grows). Analysis of crosstalk between
these terms is not the focus of this article, but sensitivity of
LWP to changes in each mechanism is shown in Fig. 8f. The
effect of perturbing settling Nd on LWP is larger than the
effect of perturbing the autoconversion Nd, singling it out
as an important lever in controlling adjustment strength for
future study. This result is consistent with the large process
rate for settling relative to autoconversion found in weakly
precipitating low-cloud regimes in CAM5 (Gettelman et al.,
2013). It is also possible that interactions between settling
and Nd may decrease the sensitivity of warm rain to auto-
conversion representation that is diagnosed in other models
(Michibata et al., 2019; Jing et al., 2019). Overall, the results
of this study are insensitive to whether settling or autocon-
version has a stronger effect on aerosol–cloud adjustments
because we assume that feedbacks between scavenging and
adjustments are small.

Given that the scavenging-only simulation can be used to
infer the adjustment strength in the UM, we also attempt to
use the scavenging-only simulation to infer the strength of
adjustments in the real world (Fig. 8d). This assumes that
the statistical relationship between LWP and rain rates in the
UM GA7.1 and the scavenging of CCN-relevant aerosol by
precipitation in the UM GA7.1 is realistic.

Based on the covariance between Nd and LWP in the
scavenging-only simulations in the UM GA7.1 and observa-
tions we offer an estimate of adjustment strength. The adjust-
ment strength inferred from observations is stronger than the
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Figure 8. The observed covariance betweenNd and LWP and the inferred effect ofNd on LWP. Notations in the bottom right of plots indicate
the expected direction of causality. The covariance between Nd and LWP is shown in (a) the observational record (as in Fig. 6) and (b) the
control simulation of the UM GA7.1 (as in Fig. 7); (c) a simulation where the Nd seen by the autoconversion, settling, and radiation is set
to 75 cm−3 and only scavenging links Nd and LWP. The inferred strength of adjustments in observations (d) calculated as the difference in
slope between (a) and (c) as in Eq. (11), and in (e) the UM is calculated as the difference in slope between (b) and (c). Inferred and true
adjustment strength for the UM is compared in (f). The inferred adjustment strength in (e) is compared to the sensitivity of LWP to Nd in
a set of simulations where Nd is fixed in the autoconversion, settling, and radiation to a range of values, forcing causality to flow from Nd to
LWP. The 1 : 1 line is shown with dashes. Different symbols indicate whether the Nd seen by the autoconversion, settling, or radiation was
varied while others were held constant. Each symbol corresponds to a bin in WVP and SST, as in (e).

UM for low SST and high WVP. Unlike the UM, weak nega-
tive covariance between LWP andNd exists for high SST and
low WVP. This may indicate that the scavenging of aerosol
by the UM is too efficient, or some other confounder of the
relationship between LWP and Nd is poorly represented in
the model, or it may point to the thinning of cloud via en-
hanced entrainment (Ackerman et al., 2004), which is not
represented in the UM. Overall, the effect of increasing Nd
in the UM is an increase in LWP.

We have discussed how to infer adjustment strength from
the total covariance between Nd and LWP, which mixes co-
variance induced by causality flowing from cloud to aerosol
and aerosol to cloud. In the next section we show how this in-
ferred adjustment strength from the simple regression model
is able to predict LWP adjustments in response to anthro-
pogenic aerosols within the full GCM simulation.

3.4 Reproducing simulated adjustments between the
preindustrial and present-day aerosol emission

We have produced an estimate of the sensitivity of LWP to
changes in Nd in the UM GA7.1 model (Fig. 8e). Does this
simple regression model hold skill in reproducing the ac-
tual change in LWP within the model between the present-
day (PD) and preindustrial (PI) aerosol emissions? Simula-
tions are carried out by setting aerosol emission to preindus-
trial values. This is done for simulations using the GA7.1
scavenging parameterization. A second set of simulations
is conducted where the ECHAM-HAM5 scavenging coeffi-
cients are used to estimate the sensitivity to the representation
of scavenging. PI, PD, and scavenging-only simulations are
conducted for each scavenging configuration.

The change in LWP between the PI and PD (1LWPPD−PI)
simulated by the UM is 2.9 gm−2, averaged across the
30–60◦ N region. Using the UM-simulated change in Nd
(1NdPD−PI) and the slope relating ln(Nd) to LWP diag-
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nosed from present-day variability (Fig. 8) we calculate
1LWPPD−PI. If the covariance between ln(Nd) and LWP
observed in the control run (Fig. 8b) of the model and
1NdPD−PI is used to predict1LWPPD−PI, the negative corre-
lation introduced by precipitation scavenging leads to a neg-
ative 1LWPPD−PI (Fig. 9a; in disagreement with the UM-
simulated1LWPPD−PI). If the covariance in the scavenging-
only simulation (causality flows from clouds to precipita-
tion to aerosol to Nd) is used (Fig. 8c), the regression-
model-predicted decrease in LWP between PI and PD aerosol
levels doubles. However, if we subtract the sensitivity in
scavenging-only simulation from the control simulation to
yield the sensitivity of LWP to changes in Nd (Fig. 8e),
the 1LWPPD−PI predicted by the regression model and the
UM-simulated1NdPD−PI agree well with the UM-simulated
1LWPPD−PI (Fig. 9). This result supports the utility of the
inferred sensitivity of LWP to Nd in examining adjustments
due to PD aerosol.

What does the covariance between LWP and ln(Nd) in
the real world tell us about the model? Use of the obser-
vational estimate of adjustment strength (Fig. 8d) calculates
a 1LWPPD−PI that is two-thirds of the 1LWPPD−PI inferred
from the control run and1NdPD−PI (Fig. 9). This is because,
while the inferred sensitivity of LWP to Nd from observa-
tions is quite strong in some regions, it is weakly negative in
the most commonly occurring WVP–SST regimes (Fig. 8d).
That is to say, if the efficacy of precipitation in removing
CCN-relevant aerosol in the real atmosphere is near to the
efficacy in the UM, the relationship between LWP and rain
rates in the real atmosphere is near to the relationship in the
UM, and the covariability between Nd and LWP induced
by other confounders of the Nd–LWP relationship is real-
istic, then the adjustments (1LWPPD−PI) simulated by the
UM are not unreasonable, albeit a little large. This result
is consistent with constraints provided by simulation of the
Holuhraun eruption (Malavelle et al., 2017), which showed
that the anomaly predicted by HadGEM3 was within the ob-
served range. However, the observationally inferred sensitiv-
ity of LWP to changes in Nd is stronger in low-SST and
high-WVP regimes than it is in the UM GA7.1 but much
weaker, or even slightly negative, in low-WVP and high-
SST regimes. This results in a strong latitudinal gradient in
1LWPPD−PI between 30 and 60◦ N inferred from observa-
tions (Fig. 9b).

The predicted 1LWPPD−PI based on the control and
scavenging-only simulations (Fig. 8e) underestimates the
UM-simulated 1LWPPD−PI by around 10 %. This may re-
sult from disregarding feedbacks between precipitation sup-
pression and Nd (Jing and Suzuki, 2018), may simply be due
to shortcomings in the simple linear model relating ln(Nd)

to LWP, or may relate to meteorological differences be-
tween the PI and PD simulations not accounted for by me-
teorological predictors or compositing. However, the frac-
tional reduction in inferred 1LWPPD−PI when observations
are used to constrain the sensitivity of LWP to Nd sug-

gests that 1LWPPD−PI should be around 60 %–70 % of the
value predicted by the UM GA7.1 averaged across the NH.
1LWPPD−PI inferred from observations is extremely depen-
dent on latitude, with almost no change in LWP over lower
latitudes and warmer SSTs. We hasten to note that the change
in Nd between the PI and PD is uncertain and its prediction
by UM GA7.1 may be biased, making the absolute values of
the constrained 1LWPPD−PI less relevant than the fractional
overestimation in UM-simulated 1LWPPD−PI. This analy-
sis is repeated using simulations that are only nudged above
level 27 of the model (Fig. S1) and not nudged at all (Fig. S2),
with minimal differences from the results presented in the
main text.

We have focused on changes in LWP in this work because
it is a variable that we have good observations of, it can be
compared between models and observations in a straightfor-
ward way, and it clearly links to adjustments. However, this
variable is not the key variable in discussing radiative forcing
and climate sensitivity. How does the radiative forcing from
adjustments scale with LWP? Determining the precise effects
of adjustments on the shortwave cloud radiative effect is dif-
ficult, but if we assume that the perturbations in LWP induced
by adjustments are similar to the perturbations that are driven
by meteorology, we can offer a simple estimate to inform our
understanding of the modeled forcing from adjustments.

Examination of the relationship between LWP and albedo
within the UM GA7.1 shows a rapid climb in albedo for
low LWP, followed by saturation at higher values, as ex-
pected from saturation of the cloud fraction and optical depth
(Fig. 10). This curve can be fit by a second-degree polyno-
mial, meaning that the sensitivity of albedo to changes in
LWP is a function of the LWP. That is to say, regions where
LWP is already high are going to have a smaller increase
in albedo for a unit change in LWP. The change in LWP
between PI and PD is much smaller than the range of the
variation in LWP in the climate mean state, so we use the
average of monthly mean LWP between PI and PD to cal-
culate the sensitivity of albedo to changes in LWP for the
NH midlatitudes. This sensitivity (dα/dLWP) is multiplied
by the change in LWP to yield change in albedo. This change
in albedo is scaled by the downwelling shortwave to give the
change in reflected shortwave.

The change in reflected shortwave predicted from LWP
changes in the UM GA7.1 is 1.9–2.0 Wm−2, depending on
the scavenging parametrization used. The change in short-
wave inferred from the regression model of LWP trained in
the control run and corrected by the scavenging-only run is
1.5 Wm−2. If the observed sensitivity of LWP to Nd is used
to constrain 1LWP, the predicted change in reflected short-
wave is approximately 1.0 Wm−2. Thus, we estimate that
GA7.1 overpredicts the change in reflected shortwave due to
adjustments in response to a given change in Nd by around
50 %. This estimate is subject to the caveat that changes in
LWP due to adjustments may not affect albedo in the same
way as suggested by examining the total variability. For ex-
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Figure 9. The change in LWP between the simulations with PI and PD aerosol emissions (1LWPPD−PI) inferred by covariance between
Nd and LWP in the PD and as simulated by the UM. The inferred 1LWPPD−PI is calculated using the UM-simulated change in Nd.
Panel (a) shows the inferred 1LWPPD−PI based on variance in different simulations. The direction of causality is indicated for each case.
From left to right: 1LWPPD−PI inferred from covariance in the control simulation (Nd⇔ LWP, causality between Nd and LWP goes both
directions; Fig. 8b), inferred from the scavenging-only simulation (Nd⇐ LWP, causality from LWP to Nd; Fig. 8c), inferred by correcting
the total covariance using covariance in the scavenging-only simulation (Nd⇒ LWP, causality goes from Nd to LWP Fig. 8d – this is the
adjustment strength in UM GA7.1 inferred by the method presented in this paper) and when the covariance in observations is combined
with the scavenging-only simulation (listed as Obs. constraint). The 1LWPPD−PI simulated by the GCM is shown on the right in black.
This is the true aerosol–cloud adjustment in the GCM that is compared to the value being inferred in the UM GA7.1, as shown by the red
bars. 1LWPPD−PI is provided for simulations using the UM GA7.1 scavenging coefficients and ECHAM-HAM5 scavenging coefficients.
Panel (b) as in (a) but resolved in latitude and only showing the case when the UM GA7.1 default scavenging is used.

Figure 10. UM GA7.1 daily mean albedo as a function of LWP
over ocean between 30 and 60◦ N and outside of cyclones in equal
quantiles of LWP (black circles). A second-order polynomial fit is
shown using a red line.

ample, adjustments might only increase the liquid content
of the thickest clouds and have a relatively slight impact on
albedo. However, it is unclear how to provide a more com-
plex calculation than the one presented here.

4 Discussion

As the possible range for the radiative forcing from the
first indirect effect has narrowed, aerosol–cloud adjustments
have become an increasingly central source of uncertainty in
aerosol–cloud radiative forcing (Bellouin et al., 2020). Here
we focus on the northern midlatitudes, where the majority of

anthropogenic aerosol is emitted (Myhre et al., 2013). Previ-
ous work has examined aerosol–cloud adjustments in midlat-
itude cyclones, showing that cyclone liquid water path (LWP)
increases with cloud droplet number concentration (Nd; Mc-
Coy et al., 2018b). This work focuses on the remainder of
cases in the midlatitudes, when there is no cyclone center
within 2000 km (roughly 42 % of the time between 30 and
60◦ N; see Fig. 1).

Untangling the effect of cloud microphysics on cloud
macrophysics from the total variability in cloud macro-
physics is challenging. In the observational record we can
only characterize the covariance between predictors and pre-
dictands. In interrogating the observed covariances between
cloud properties and different meteorological predictors we
find many of the relationships that have been described in the
literature documenting cloud-controlling factors (Myers and
Norris, 2015). Once meteorological variability is accounted
for, statistically significant relationships between cloud mi-
crophysics (Nd) and cloud macrophysics (LWP) appear. In
keeping with previous studies (Gryspeerdt et al., 2019), LWP
and Nd are found to be negatively correlated. However, this
is clearly not consistent with the UM GA7.1 GCM’s actual
response in LWP to changes in aerosol emissions between
PI and PD. This negative correlation is due to a combination
of Nd being driven by scavenging, as shown in Wood et al.
(2012), and spurious correlation betweenNd and LWP driven
by external variables affecting both terms (Mauger and Nor-
ris, 2007), overwhelming any positive covariance driven by
aerosol–cloud adjustments.
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While we cannot disentangle the covariance due to ad-
justments and covariance due to scavenging and other con-
founders in the observational record, we can create simula-
tions in which causality is forced to flow from clouds to Nd
(scavenging only). Using this measure of non-adjustment-
induced variability in Nd, we can infer the effect of changing
Nd on LWP. This inferred sensitivity of LWP to Nd agrees
well with simulations where Nd is manually varied in the
cloud microphysics (Fig. 8f). The inferred sensitivity of LWP
to Nd, combined with the UM-predicted change in Nd, re-
produces the UM-predicted change in LWP between the PI
and PD (1LWPPD−PI; Fig. 9). These two tests support this
method’s relevance to understanding aerosol–cloud adjust-
ments.

The analysis presented here, combined with the en-
hancement in LWP in cyclone systems shown in McCoy
et al. (2018b), points toward an overall increase in LWP
across the NH midlatitudes in response to anthropogenic
aerosol. Ultimately, while the regimes examined here and
in McCoy et al. (2018b) are very different, the detection
of a change in LWP in response to changes in Nd rests on
the ability of the technique to account for non-adjustment-
induced variability in Nd. In McCoy et al. (2018b) this was
done by stratifying the data set by the cyclone precipitation
rate, which is well-constrained by the large-scale environ-
ment (Field and Wood, 2007); this in turn stratifies the data
set by the scavenging of aerosol.

Assuming that scavenging in the UM GA7.1 model is re-
alistic, that the relationship between LWP and precipitation
is reasonable, and that the non-causal covariance produced
by other factors is replicated in the model, we evaluate the
strength of adjustments based on observations. This reveals
that the present version of the UM GA7.1 overestimates the
sensitivity of LWP to changes in Nd by approximately 50 %
outside of midlatitude cyclones. Calculation of the implied
change in shortwave shows a similar overestimate in forc-
ing due to adjustments by the UM. Observations also imply
that aerosol–cloud adjustments in the UM GA7.1 occur in the
wrong regime. Adjustments in the UM favor warmer SSTs
and lower WVP, while the observations favor colder SSTs
and higher WVP. This difference in regime may be due to
early precipitation onset in the UM GA7.1.

The present study and McCoy et al. (2018b) project a neg-
ative forcing due to adjustments in the midlatitudes. Exten-
sion of this study to the subtropics and tropics is reserved for
a future analysis. While extrapolating the present results to
the tropics is difficult, it seems reasonable to suppose that the
pattern of adjustments in the subtropics is relatively similar to
the inter-cyclone regime analyzed here and to expect a neg-
ative forcing in this region due to adjustments, although this
may be weaker than the midlatitude adjustments due to de-
creasing LWP for increasing Nd over higher SSTs and lower
WVP over some of the subtropics (Fig. 8d). One important
limitation of this study is that it assumes weak feedbacks
between adjustments and scavenging. If some regimes have

very strong feedback between precipitation and adjustments,
then our analysis will infer adjustments that are too weak.

Our result is in contradiction with previous empirical
constraint studies that have postulated that changes in Nd
greatly enhance LWP (Rosenfeld et al., 2019), have little
effect (Malavelle et al., 2017; Toll et al., 2017), or reduce
LWP (Sato et al., 2018; Gryspeerdt et al., 2019). We sug-
gest that this diversity within the literature is because a range
of constraints may be arrived at, depending on the degree
to which precipitation scavenging and meteorological driv-
ing of aerosol and cloud occludes aerosol–cloud adjustments
and the steps that are taken in the analysis to account for
scavenging-induced and meteorologically induced covari-
ability. Based on the analysis presented here we believe that
positive, zero, or extremely strongly negative radiative forc-
ings due to aerosol–cloud adjustments in the midlatitudes are
not supported by the observations.

Data availability. MERRA-2 data were downloaded from
the Giovanni data server (https://disc.gsfc.nasa.gov/datasets/
M2T1NXSLV_V5.12.4/summary?keywords=merra-2; last access:
22 July 2019; Global Modeling and Assimilation Office, 2015).
CERES data were downloaded through the ordering interface at
https://ceres.larc.nasa.gov/order_data.php (last access: 22 July
2019) (Doelling et al., 2019).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-20-4085-2020-supplement.

Author contributions. All authors contributed ideas and helped
with editing the paper. DTM and PF planned the paper. Data anal-
ysis and writing were undertaken by DTM. Present-day and prein-
dustrial simulation suites were set up by HG. Simulations were run
by DTM. Idealized simulations were set up by DTM. Development
of simulations was conducted by HG, PF, DPG, and DTM. MODIS
data were created by DPG. MAC-LWP data were created by GSE.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We acknowledge use of the MONSooN sys-
tem, a collaborative facility supplied under the Joint Weather and
Climate Research Programme, a strategic partnership between the
Met Office and the Natural Environment Research Council.

Financial support. Daniel T. McCoy and Paul Field have been sup-
ported by the European Commission, Horizon 2020 Framework
Programme (PRIMAVERA (grant no. 641727)). Gregory S. El-
saesser has been supported by the Jet Propulsion Laboratory (NASA
MEaSUREs (grant no. GG008658)). Hamish Gordon has been

www.atmos-chem-phys.net/20/4085/2020/ Atmos. Chem. Phys., 20, 4085–4103, 2020

https://disc.gsfc.nasa.gov/datasets/M2T1NXSLV_V5.12.4/summary?keywords=merra-2
https://disc.gsfc.nasa.gov/datasets/M2T1NXSLV_V5.12.4/summary?keywords=merra-2
https://ceres.larc.nasa.gov/order_data.php
https://doi.org/10.5194/acp-20-4085-2020-supplement


4100 D. T. McCoy et al.: Untangling causality in midlatitude aerosol–cloud adjustments

supported by the Natural Environment Research Council (NERC)
(grant no. NE/L013479/1).

Review statement. This paper was edited by Patrick Chuang and
reviewed by two anonymous referees.

References

Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon,
O. B.: The impact of humidity above stratiform clouds on
indirect aerosol climate forcing, Nature, 432, 1014–1017,
https://doi.org/10.1038/nature03174, 2004.

Albrecht, B. A.: Aerosols, Cloud Microphysics, and
Fractional Cloudiness, Science, 245, 1227–1230,
https://doi.org/10.1126/science.245.4923.1227, 1989.

Andersen, H., Cermak, J., Fuchs, J., Knutti, R., and Lohmann,
U.: Understanding the drivers of marine liquid-water cloud
occurrence and properties with global observations us-
ing neural networks, Atmos. Chem. Phys., 17, 9535–9546,
https://doi.org/10.5194/acp-17-9535-2017, 2017.

Ayers, G. P. and Gras, J. L.: Seasonal relationship between cloud
condensation nuclei and aerosol methanesulphonate in marine
air, Nature, 353, 834–835, 1991.

Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P.,
Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen,
M., Daniau, A. L., Dufresne, J. L., Feingold, G., Fiedler, S.,
Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U.,
Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G., Mül-
menstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato,
Y., Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo,
T., Toll, V., Winker, D., and Stevens, B.: Bounding Global
Aerosol Radiative Forcing of Climate Change, Rev. Geophys.,
58, https://doi.org/10.1029/2019rg000660, 2020.

Bender, F.-M., Frey, L., McCoy, D. T., Grosvenor, D. P., and
Mohrmann, J. K.: Assessment of aerosol–cloud–radiation cor-
relations in satellite observations, climate models and reanalysis,
Clim. Dynam., 52, 4371–4392, 2019.

Bennartz, R., Fan, J., Rausch, J., Leung, L. R., and Heidinger, A. K.:
Pollution from China increases cloud droplet number, suppresses
rain over the East China Sea, Geophys. Res. Lett., 38, L09704,
https://doi.org/10.1029/2011gl047235, 2011.

Berner, A. H., Bretherton, C. S., Wood, R., and Muhlbauer, A.:
Marine boundary layer cloud regimes and POC formation in
a CRM coupled to a bulk aerosol scheme, Atmos. Chem.
Phys., 13, 12549–12572, https://doi.org/10.5194/acp-13-12549-
2013, 2013.

Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.
L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pin-
cus, R., and John, V. O.: COSP: Satellite simulation software
for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043,
https://doi.org/10.1175/2011BAMS2856.1, 2011.

Bodas-Salcedo, A., Williams, K. D., Ringer, M. A., Beau, I., Cole,
J. N. S., Dufresne, J. L., Koshiro, T., Stevens, B., Wang, Z.,
and Yokohata, T.: Origins of the Solar Radiation Biases over
the Southern Ocean in CFMIP2 Models, J. Climate, 27, 41–56,
https://doi.org/10.1175/jcli-d-13-00169.1, 2014.

Boutle, I. A., Abel, S. J., Hill, P. G., and Morcrette, C. J.: Spa-
tial variability of liquid cloud and rain: observations and mi-
crophysical effects, Q. J. Roy. Meteor. Soc., 140, 583–594,
https://doi.org/10.1002/qj.2140, 2014.

Bretherton, C. S. and Blossey, P. N.: Low cloud reduction in
a greenhouse-warmed climate: Results from Lagrangian LES of
a subtropical marine cloudiness transition, J. Adv. Model. Earth
Sy., 6, 91–114, https://doi.org/10.1002/2013MS000250, 2014.

Bretherton, C. S., Blossey, P. N., and Uchida, J.: Cloud
droplet sedimentation, entrainment efficiency, and subtropi-
cal stratocumulus albedo, Geophys. Res. Lett., 34, L03813,
https://doi.org/10.1029/2006gl027648, 2007.

Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.:
Oceanic phytoplankton, atmospheric sulfur, cloud albedo and cli-
mate, Nature, 326, 655–661, https://doi.org/10.1038/326655a0,
1987.

Chen, Y.-C., Christensen, M. W., Stephens, G. L., and Seinfeld,
J. H.: Satellite-based estimate of global aerosol–cloud radia-
tive forcing by marine warm clouds, Nat. Geosci., 7, 643–646,
https://doi.org/10.1038/ngeo2214, 2014.

Christensen, M. W., Neubauer, D., Poulsen, C. A., Thomas, G. E.,
McGarragh, G. R., Povey, A. C., Proud, S. R., and Grainger,
R. G.: Unveiling aerosol–cloud interactions – Part 1: Cloud
contamination in satellite products enhances the aerosol indi-
rect forcing estimate, Atmos. Chem. Phys., 17, 13151–13164,
https://doi.org/10.5194/acp-17-13151-2017, 2017.

Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L.,
Morstad, D., Nguyen, C., Wielicki, B. A., Young, D. F., and
Sun, M.: Geostationary Enhanced Temporal Interpolation for
CERES Flux Products, J. Atmos. Ocean. Tech., 30, 1072–1090,
https://doi.org/10.1175/jtech-d-12-00136.1, 2013 (data available
at: https://ceres.larc.nasa.gov/order_data.php, last access: 22 July
2019).

Dong, X., Xi, B., and Wu, P.: Investigation of the Diurnal Variation
of Marine Boundary Layer Cloud Microphysical Properties at the
Azores, J. Climate, 27, 8827–8835, https://doi.org/10.1175/jcli-
d-14-00434.1, 2014.

Elsaesser, G. S., O’Dell, C. W., Lebsock, M. D., Bennartz, R.,
Greenwald, T. J., and Wentz, F. J.: The Multi-Sensor Advanced
Climatology of Liquid Water Path (MAC-LWP), J. Climate, 30,
https://doi.org/10.1175/jcli-d-16-0902.1, 2017.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Field, P. R. and Wood, R.: Precipitation and cloud struc-
ture in midlatitude cyclones, J. Climate, 20, 233–254,
https://doi.org/10.1175/jcli3998.1, 2007.

Forster, P. M.: Inference of climate sensitivity from analysis of
Earth’s energy budget, Annu. Rev. Earth Pl. Sc., 44, 85–106,
2016.

Gettelman, A., Morrison, H., Terai, C. R., and Wood, R.: Micro-
physical process rates and global aerosol–cloud interactions, At-
mos. Chem. Phys., 13, 9855–9867, https://doi.org/10.5194/acp-
13-9855-2013, 2013.

Global Modeling and Assimilation Office (GMAO): MERRA-
2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-
Level,Assimilation,Single-Level Diagnostics V5.12.4,

Atmos. Chem. Phys., 20, 4085–4103, 2020 www.atmos-chem-phys.net/20/4085/2020/

https://doi.org/10.1038/nature03174
https://doi.org/10.1126/science.245.4923.1227
https://doi.org/10.5194/acp-17-9535-2017
https://doi.org/10.1029/2019rg000660
https://doi.org/10.1029/2011gl047235
https://doi.org/10.5194/acp-13-12549-2013
https://doi.org/10.5194/acp-13-12549-2013
https://doi.org/10.1175/2011BAMS2856.1
https://doi.org/10.1175/jcli-d-13-00169.1
https://doi.org/10.1002/qj.2140
https://doi.org/10.1002/2013MS000250
https://doi.org/10.1029/2006gl027648
https://doi.org/10.1038/326655a0
https://doi.org/10.1038/ngeo2214
https://doi.org/10.5194/acp-17-13151-2017
https://doi.org/10.1175/jtech-d-12-00136.1
https://ceres.larc.nasa.gov/order_data.php
https://doi.org/10.1175/jcli-d-14-00434.1
https://doi.org/10.1175/jcli-d-14-00434.1
https://doi.org/10.1175/jcli-d-16-0902.1
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1175/jcli3998.1
https://doi.org/10.5194/acp-13-9855-2013
https://doi.org/10.5194/acp-13-9855-2013


D. T. McCoy et al.: Untangling causality in midlatitude aerosol–cloud adjustments 4101

Greenbelt, MD, USA, Goddard Earth Sciences
Data and Information Services Center (GES DISC),
https://doi.org/10.5067/VJAFPLI1CSIV, 2015.

Granier, C., Lamarque, J. F., Mieville, A., Muller, J. F., Olivier,
J., Orlando, J., Peters, J., Petron, G., Tyndall, G., and Wallens,
S.: POET, a database of surface emissions of ozone precur-
sors, available at: http://accent.aero.jussieu.fr/POET_metadata.
php (last access: 30 March 2020), 2005.

Grosvenor, D. P. and Wood, R.: The effect of solar zenith angle on
MODIS cloud optical and microphysical retrievals within ma-
rine liquid water clouds, Atmos. Chem. Phys., 14, 7291–7321,
https://doi.org/10.5194/acp-14-7291-2014, 2014.

Grosvenor, D. P., Sourdeval, O., Zuidema, P., Ackerman, A.,
Alexandrov, M. D., Bennartz, R., Boers, R., Cairns, B., Chiu,
J. C., Christensen, M., Deneke, H., Diamond, M., Feingold,
G., Fridlind, A., Hünerbein, A., Knist, C., Kollias, P., Marshak,
A., McCoy, D., Merk, D., Painemal, D., Rausch, J., Rosen-
feld, D., Russchenberg, H., Seifert, P., Sinclair, K., Stier, P.,
van Diedenhoven, B., Wendisch, M., Werner, F., Wood, R.,
Zhang, Z., and Quaas, J.: Remote Sensing of Droplet Number
Concentration in Warm Clouds: A Review of the Current State
of Knowledge and Perspectives, Rev. Geophys., 56, 409–453,
https://doi.org/10.1029/2017rg000593, 2018.

Gryspeerdt, E., Quaas, J., and Bellouin, N.: Constraining the aerosol
influence on cloud fraction, J. Geophys. Res.-Atmos., 121, 3566–
3583, https://doi.org/10.1002/2015JD023744, 2016.

Gryspeerdt, E., Goren, T., Sourdeval, O., Quaas, J., Mülmenstädt,
J., Dipu, S., Unglaub, C., Gettelman, A., and Christensen, M.:
Constraining the aerosol influence on cloud liquid water path, At-
mos. Chem. Phys., 19, 5331–5347, https://doi.org/10.5194/acp-
19-5331-2019, 2019.

Hartmann, D. L. and Short, D. A.: On the Use of Earth Ra-
diation Budget Statistics for Studies of Clouds and Climate,
J. Atmos. Sci., 37, 1233–1250, https://doi.org/10.1175/1520-
0469(1980)037< 1233:OTUOER> 2.0.CO;2, 1980.

Jing, X. and Suzuki, K.: The Impact of Process-Based Warm Rain
Constraints on the Aerosol Indirect Effect, Geophys. Res. Lett.,
45, 10,729–710,737, https://doi.org/10.1029/2018gl079956,
2018.

Jing, X., Suzuki, K., and Michibata, T.: The Key Role of Warm
Rain Parameterization in Determining the Aerosol Indirect Ef-
fect in a Global Climate Model, J. Climate, 32, 4409–4430,
https://doi.org/10.1175/jcli-d-18-0789.1, 2019.

Khairoutdinov, M. and Kogan, Y.: A new cloud physics parameteri-
zation in a large-eddy simulation model of marine stratocumulus,
Mon. Weather Rev., 128, 229–243, 2000.

King, M. D., Menzel, W. P., Kaufman, Y. J., Tanre, D., Bo-
Cai, G., Platnick, S., Ackerman, S. A., Remer, L. A., Pin-
cus, R., and Hubanks, P. A.: Cloud and aerosol properties,
precipitable water, and profiles of temperature and water va-
por from MODIS, IEEE T. Geosci. Remote, 41, 442–458,
https://doi.org/10.1109/TGRS.2002.808226, 2003.

Klein, S. A. and Hartmann, D. L.: The Seasonal Cycle
of Low Stratiform Clouds, J. Climate, 6, 1587–1606,
https://doi.org/10.1175/1520-0442(1993)006< 1587:tscols>
2.0.co;2, 1993.

Klein, S. A., Hall, A., Norris, J. R., and Pincus, R.: Low-Cloud
Feedbacks from Cloud-Controlling Factors: A Review, Surv.

Geophys., 38, 1307–1329, https://doi.org/10.1007/s10712-017-
9433-3, 2017.

Ma, P.-L., Rasch, P. J., Chepfer, H., Winker, D. M., and Ghan,
S. J.: Observational constraint on cloud susceptibility weak-
ened by aerosol retrieval limitations, Nat. Commun., 9, 2640,
https://doi.org/10.1038/s41467-018-05028-4, 2018.

Malavelle, F. F., Haywood, J. M., Jones, A., Gettelman, A., Clarisse,
L., Bauduin, S., Allan, R. P., Karset, I. H. H., Kristjánsson, J.
E., Oreopoulos, L., Cho, N., Lee, D., Bellouin, N., Boucher,
O., Grosvenor, D. P., Carslaw, K. S., Dhomse, S., Mann, G.
W., Schmidt, A., Coe, H., Hartley, M. E., Dalvi, M., Hill, A.
A., Johnson, B. T., Johnson, C. E., Knight, J. R., O’Connor,
F. M., Partridge, D. G., Stier, P., Myhre, G., Platnick, S.,
Stephens, G. L., Takahashi, H., and Thordarson, T.: Strong con-
straints on aerosol–cloud interactions from volcanic eruptions,
Nature, 546, 485–491, https://doi.org/10.1038/nature22974,
http://www.nature.com/nature/journal/v546/n7659/abs/
nature22974.html#supplementary-information, 2017.

Mauger, G. S. and Norris, J. R.: Meteorological bias in satellite es-
timates of aerosol–cloud relationships, Geophys. Res. Lett., 34,
L16824, https://doi.org/10.1029/2007gl029952, 2007.

McComiskey, A. and Feingold, G.: The scale problem in quantify-
ing aerosol indirect effects, Atmos. Chem. Phys., 12, 1031–1049,
https://doi.org/10.5194/acp-12-1031-2012, 2012.

McCoy, D. T., Burrows, S. M., Wood, R., Grosvenor, D. P.,
Elliott, S. M., Ma, P. L., Rasch, P. J., and Hartmann, D.
L.: Natural aerosols explain seasonal and spatial patterns of
Southern Ocean cloud albedo, Science Advances, 1, e1500157,
https://doi.org/10.1126/sciadv.1500157, 2015a.

McCoy, D. T., Hartmann, D. L., Zelinka, M. D., Ceppi, P., and
Grosvenor, D. P.: Mixed-phase cloud physics and Southern
Ocean cloud feedback in climate models, J. Geophys. Res.-
Atmos., 120, 9539–9554, https://doi.org/10.1002/2015jd023603,
2015b.

McCoy, D. T., Tan, I., Hartmann, D. L., Zelinka, M.
D., and Storelvmo, T.: On the relationships among
cloud cover, mixed-phase partitioning, and planetary
albedo in GCMs, J. Adv. Model. Earth Sy., 8, 650–668,
https://doi.org/10.1002/2015ms000589, 2016.

McCoy, D. T., Eastman, R., Hartmann, D. L., and Wood, R.: The
Change in Low Cloud Cover in a Warmed Climate Inferred from
AIRS, MODIS, and ERA-Interim, J. Climate, 30, 3609–3620,
https://doi.org/10.1175/jcli-d-15-0734.1, 2017.

McCoy, D. T., Bender, F. A.-M., Grosvenor, D. P., Mohrmann,
J. K., Hartmann, D. L., Wood, R., and Field, P. R.: Predicting
decadal trends in cloud droplet number concentration using re-
analysis and satellite data, Atmos. Chem. Phys., 18, 2035–2047,
https://doi.org/10.5194/acp-18-2035-2018, 2018a.

McCoy, D. T., Field, P. R., Schmidt, A., Grosvenor, D. P., Ben-
der, F. A.-M., Shipway, B. J., Hill, A. A., Wilkinson, J. M.,
and Elsaesser, G. S.: Aerosol midlatitude cyclone indirect ef-
fects in observations and high-resolution simulations, Atmos.
Chem. Phys., 18, 5821–5846, https://doi.org/10.5194/acp-18-
5821-2018, 2018b.

McCoy, D. T., Field, P. R., Elsaesser, G. S., Bodas-Salcedo, A.,
Kahn, B. H., Zelinka, M. D., Kodama, C., Mauritsen, T., Van-
niere, B., Roberts, M., Vidale, P. L., Saint-Martin, D., Voldoire,
A., Haarsma, R., Hill, A., Shipway, B., and Wilkinson, J.:
Cloud feedbacks in extratropical cyclones: insight from long-

www.atmos-chem-phys.net/20/4085/2020/ Atmos. Chem. Phys., 20, 4085–4103, 2020

https://doi.org/10.5067/VJAFPLI1CSIV
http://accent.aero.jussieu.fr/POET_metadata.php
http://accent.aero.jussieu.fr/POET_metadata.php
https://doi.org/10.5194/acp-14-7291-2014
https://doi.org/10.1029/2017rg000593
https://doi.org/10.1002/2015JD023744
https://doi.org/10.5194/acp-19-5331-2019
https://doi.org/10.5194/acp-19-5331-2019
https://doi.org/10.1175/1520-0469(1980)037< 1233:OTUOER> 2.0.CO;2
https://doi.org/10.1175/1520-0469(1980)037< 1233:OTUOER> 2.0.CO;2
https://doi.org/10.1029/2018gl079956
https://doi.org/10.1175/jcli-d-18-0789.1
https://doi.org/10.1109/TGRS.2002.808226
https://doi.org/10.1175/1520-0442(1993)006< 1587:tscols> 2.0.co;2
https://doi.org/10.1175/1520-0442(1993)006< 1587:tscols> 2.0.co;2
https://doi.org/10.1007/s10712-017-9433-3
https://doi.org/10.1007/s10712-017-9433-3
https://doi.org/10.1038/s41467-018-05028-4
https://doi.org/10.1038/nature22974
http://www.nature.com/nature/journal/v546/n7659/abs/nature22974.html#supplementary-information
http://www.nature.com/nature/journal/v546/n7659/abs/nature22974.html#supplementary-information
https://doi.org/10.1029/2007gl029952
https://doi.org/10.5194/acp-12-1031-2012
https://doi.org/10.1126/sciadv.1500157
https://doi.org/10.1002/2015jd023603
https://doi.org/10.1002/2015ms000589
https://doi.org/10.1175/jcli-d-15-0734.1
https://doi.org/10.5194/acp-18-2035-2018
https://doi.org/10.5194/acp-18-5821-2018
https://doi.org/10.5194/acp-18-5821-2018


4102 D. T. McCoy et al.: Untangling causality in midlatitude aerosol–cloud adjustments

term satellite data and high-resolution global simulations, At-
mos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-
19-1147-2019, 2019.

Michibata, T., Suzuki, K., Sekiguchi, M., and Takemura, T.:
Prognostic Precipitation in the MIROC6-SPRINTARS
GCM: Description and Evaluation Against Satellite Ob-
servations, J. Adv. Model. Earth Sy., 11, 839–860,
https://doi.org/10.1029/2018ms001596, 2019.

Miyamoto, A., Nakamura, H., and Miyasaka, T.: Influence of the
Subtropical High and Storm Track on Low-Cloud Fraction and
Its Seasonality over the South Indian Ocean, J. Climate, 31,
4017–4039, https://doi.org/10.1175/jcli-d-17-0229.1, 2018.

Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development
of the GEOS-5 atmospheric general circulation model: evolution
from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356,
https://doi.org/10.5194/gmd-8-1339-2015, 2015.

Mulcahy, J. P., Jones, C., Sellar, A., Johnson, B., Boutle, I. A.,
Jones, A., Andrews, T., Rumbold, S. T., Mollard, J., Bellouin,
N., Johnson, C. E., Williams, K. D., Grosvenor, D. P., and Mc-
Coy, D. T.: Improved Aerosol Processes and Effective Radiative
Forcing in HadGEM3 and UKESM1, J. Adv. Model. Earth Sy.,
10, 2786–2805, https://doi.org/10.1029/2018MS001464, 2018.

Myers, T. A. and Norris, J. R.: Observational Evidence
That Enhanced Subsidence Reduces Subtropical Marine
Boundary Layer Cloudiness, J. Climate, 26, 7507–7524,
https://doi.org/10.1175/JCLI-D-12-00736.1, 2013.

Myers, T. A. and Norris, J. R.: On the Relationships be-
tween Subtropical Clouds and Meteorology in Observations
and CMIP3 and CMIP5 Models, J. Climate, 28, 2945–2967,
https://doi.org/10.1175/JCLI-D-14-00475.1, 2015.

Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S.,
Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T.,
Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen,
T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X.,
Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch,
P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T.,
Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon,
J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of
the direct aerosol effect from AeroCom Phase II simulations, At-
mos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-
13-1853-2013, 2013.

Pincus, R. and Baker, M. B.: Effect of precipitation on the albedo
susceptibility of clouds in the marine boundary layer, Nature,
372, 250–252, https://doi.org/10.1038/372250a0, 1994.

Possner, A., Wang, H., Wood, R., Caldeira, K., and Ackerman, T. P.:
The efficacy of aerosol–cloud radiative perturbations from near-
surface emissions in deep open-cell stratocumuli, Atmos. Chem.
Phys., 18, 17475–17488, https://doi.org/10.5194/acp-18-17475-
2018, 2018.

Qu, X., Hall, A., Klein, S. A., DeAngelis, and Anthony, M.: Pos-
itive tropical marine low-cloud cover feedback inferred from
cloud-controlling factors, Geophys. Res. Lett., 42, 7767–7775,
https://doi.org/10.1002/2015GL065627, 2015.

Rosenfeld, D., Zhu, Y., Wang, M., Zheng, Y., Goren, T., and
Yu, S.: Aerosol-driven droplet concentrations dominate coverage
and water of oceanic low-level clouds, Science, 363, eaav0566,
https://doi.org/10.1126/science.aav0566, 2019.

Sato, Y., Goto, D., Michibata, T., Suzuki, K., Takemura, T., Tomita,
H., and Nakajima, T.: Aerosol effects on cloud water amounts

were successfully simulated by a global cloud-system resolving
model, Nat. Commun., 9, 985, https://doi.org/10.1038/s41467-
018-03379-6, 2018.

Seethala, C., Norris, J. R., and Myers, T. A.: How Has
Subtropical Stratocumulus and Associated Meteorology
Changed since the 1980s?, J. Climate, 28, 8396–8410,
https://doi.org/10.1175/JCLI-D-15-0120.1, 2015.

Senior, C. A. and Mitchell, J. F. B.: Carbon-dioxide and
Climate – The Impact of Cloud Parameterization, J. Cli-
mate, 6, 393–418, https://doi.org/10.1175/1520-0442(1993)006<
0393:cdacti> 2.0.co;2, 1993.

Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S.,
Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.:
Global data set of biogenic VOC emissions calculated by the
MEGAN model over the last 30 years, Atmos. Chem. Phys., 14,
9317–9341, https://doi.org/10.5194/acp-14-9317-2014, 2014.

Stevens, B., and Brenguier, J. L.: Cloud controlling factors: Low
clouds, in: Clouds in the Perturbed Climate System: Their Rela-
tionship to Energy Balance, Atmospheric Dynamics, and Precip-
itation, MIT Press, Cambridge, Mass., 173–196, 2009.

Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds
and precipitation in a buffered system, Nature, 461, 607–613,
2009.

Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J.,
Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M.,
Boucher, O., Minikin, A., and Petzold, A.: The aerosol-climate
model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156,
https://doi.org/10.5194/acp-5-1125-2005, 2005.

Storelvmo, T.: Aerosol Effects on Climate via Mixed-Phase
and Ice Clouds, Annu. Rev. Earth Pl. Sc., 45, 199–222,
https://doi.org/10.1146/annurev-earth-060115-012240, 2017.

Tan, I., Storelvmo, T., and Zelinka, M. D.: Observational constraints
on mixed-phase clouds imply higher climate sensitivity, Science,
352, 224–227, https://doi.org/10.1126/science.aad5300, 2016.

Toll, V., Christensen, M., Gassó, S., and Bellouin, N.: Volcano and
Ship Tracks Indicate Excessive Aerosol-Induced Cloud Water In-
creases in a Climate Model, Geophys. Res. Lett., 44, 12,492–
412,500, https://doi.org/10.1002/2017GL075280, 2017.

Toll, V., Christensen, M., Quaas, J., and Bellouin, N.: Weak average
liquid-cloud-water response to anthropogenic aerosols, Nature,
572, 51–55, https://doi.org/10.1038/s41586-019-1423-9, 2019.

Tsushima, Y., Emori, S., Ogura, T., Kimoto, M., Webb, M. J.,
Williams, K. D., Ringer, M. A., Soden, B. J., Li, B., and An-
dronova, N.: Importance of the mixed-phase cloud distribution
in the control climate for assessing the response of clouds to car-
bon dioxide increase: a multi-model study, Clim. Dynam., 27,
113–126, https://doi.org/10.1007/s00382-006-0127-7, 2006.

Twomey, S.: Influence of pollution on shortwave albedo of clouds,
J. Atmos. Sci., 34, 1149–1152, https://doi.org/10.1175/1520-
0469(1977)034< 1149:tiopot> 2.0.co;2, 1977.

Wall, C. J., Hartmann, D. L., and Ma, P.-L.: Instantaneous Linkages
between Clouds and Large-Scale Meteorology over the South-
ern Ocean in Observations and a Climate Model, J. Climate, 30,
9455–9474, https://doi.org/10.1175/jcli-d-17-0156.1, 2017.

Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Ed-
wards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette,
C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant,
W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M.,
Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Ged-

Atmos. Chem. Phys., 20, 4085–4103, 2020 www.atmos-chem-phys.net/20/4085/2020/

https://doi.org/10.5194/acp-19-1147-2019
https://doi.org/10.5194/acp-19-1147-2019
https://doi.org/10.1029/2018ms001596
https://doi.org/10.1175/jcli-d-17-0229.1
https://doi.org/10.5194/gmd-8-1339-2015
https://doi.org/10.1029/2018MS001464
https://doi.org/10.1175/JCLI-D-12-00736.1
https://doi.org/10.1175/JCLI-D-14-00475.1
https://doi.org/10.5194/acp-13-1853-2013
https://doi.org/10.5194/acp-13-1853-2013
https://doi.org/10.1038/372250a0
https://doi.org/10.5194/acp-18-17475-2018
https://doi.org/10.5194/acp-18-17475-2018
https://doi.org/10.1002/2015GL065627
https://doi.org/10.1126/science.aav0566
https://doi.org/10.1038/s41467-018-03379-6
https://doi.org/10.1038/s41467-018-03379-6
https://doi.org/10.1175/JCLI-D-15-0120.1
https://doi.org/10.1175/1520-0442(1993)006< 0393:cdacti> 2.0.co;2
https://doi.org/10.1175/1520-0442(1993)006< 0393:cdacti> 2.0.co;2
https://doi.org/10.5194/acp-14-9317-2014
https://doi.org/10.5194/acp-5-1125-2005
https://doi.org/10.1146/annurev-earth-060115-012240
https://doi.org/10.1126/science.aad5300
https://doi.org/10.1002/2017GL075280
https://doi.org/10.1038/s41586-019-1423-9
https://doi.org/10.1007/s00382-006-0127-7
https://doi.org/10.1175/1520-0469(1977)034< 1149:tiopot> 2.0.co;2
https://doi.org/10.1175/1520-0469(1977)034< 1149:tiopot> 2.0.co;2
https://doi.org/10.1175/jcli-d-17-0156.1


D. T. McCoy et al.: Untangling causality in midlatitude aerosol–cloud adjustments 4103

ney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones,
C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M.,
Whitall, M., Williams, K., and Zerroukat, M.: The Met Office
Unified Model Global Atmosphere 7.0/7.1 and JULES Global
Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963,
https://doi.org/10.5194/gmd-12-1909-2019, 2019.

Wang, S., Wang, Q., and Feingold, G.: Turbulence, condensation,
and liquid water transport in numerically simulated nonprecipi-
tating stratocumulus clouds, J. Atmos. Sci., 60, 262–278, 2003.

Wood, R.: Stratocumulus Clouds, Mon. Weather Rev., 140, 2373–
2423, https://doi.org/10.1175/MWR-D-11-00121.1, 2012.

Wood, R. and Bretherton, C. S.: On the relationship between strat-
iform low cloud cover and lower-tropospheric stability, J. Cli-
mate, 19, 6425–6432, https://doi.org/10.1175/jcli3988.1, 2006.

Wood, R., Leon, D., Lebsock, M., Snider, J., and Clarke, A.
D.: Precipitation driving of droplet concentration variability in
marine low clouds, J. Geophys. Res.-Atmos., 117, D19210,
https://doi.org/10.1029/2012jd018305, 2012.

Xue, H. and Feingold, G.: Large-Eddy Simulations of Trade Wind
Cumuli: Investigation of Aerosol Indirect Effects, J. Atmos. Sci.,
63, 1605–1622, https://doi.org/10.1175/jas3706.1, 2006.

www.atmos-chem-phys.net/20/4085/2020/ Atmos. Chem. Phys., 20, 4085–4103, 2020

https://doi.org/10.5194/gmd-12-1909-2019
https://doi.org/10.1175/MWR-D-11-00121.1
https://doi.org/10.1175/jcli3988.1
https://doi.org/10.1029/2012jd018305
https://doi.org/10.1175/jas3706.1

	Abstract
	Introduction
	Methods
	Region and variable selection
	Outside of cyclone compositing
	Observations
	Simulations
	Analyzing covariance in the system

	Results
	Variance in LWP as a function of Nd
	Covariances between LWP and meteorology
	Inferring the effect of Nd on LWP
	Reproducing simulated adjustments between the preindustrial and present-day aerosol emission

	Discussion
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

