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Abstract. Projections of future atmospheric composition
change and its impacts on air quality and climate depend
heavily on chemistry–climate models that allow us to in-
vestigate the effects of changing emissions and meteorology.
These models are imperfect as they rely on our understanding
of the chemical, physical and dynamical processes govern-
ing atmospheric composition, on the approximations needed
to represent these numerically, and on the limitations of the
observations required to constrain them. Model intercompar-
ison studies show substantial diversity in results that reflect
underlying uncertainties, but little progress has been made
in explaining the causes of this or in identifying the weak-
nesses in process understanding or representation that could
lead to improved models and to better scientific understand-
ing. Global sensitivity analysis provides a valuable method
of identifying and quantifying the main causes of diversity in
current models. For the first time, we apply Gaussian process
emulation with three independent global chemistry-transport
models to quantify the sensitivity of ozone and hydroxyl rad-
icals (OH) to important climate-relevant variables, poorly
characterised processes and uncertain emissions. We show a
clear sensitivity of tropospheric ozone to atmospheric humid-
ity and precursor emissions which is similar for the models,
but find large differences between models for methane life-
time, highlighting substantial differences in the sensitivity of
OH to primary and secondary production. This approach al-

lows us to identify key areas where model improvements are
required while providing valuable new insight into the pro-
cesses driving tropospheric composition change.

1 Introduction

Atmospheric photochemistry and transport processes play
important roles in the Earth system by controlling the im-
pact of natural and anthropogenic trace gas emissions on
air quality and global climate. Methane (CH4) and ozone
(O3) are the second and third most important greenhouse
gases contributing to climate change since the preindustrial
era (IPCC, 2013). The atmospheric abundance of both gases
has increased substantially due to anthropogenic activity, and
their fates are strongly coupled through the short-lived hy-
droxyl (OH) radical. CH4 is an O3 precursor and O3 is a
major source of OH, which controls the oxidation of CH4
and many other trace gases. At the surface O3 contributes to
poor air quality and is damaging to human health, crop yields
and natural ecosystems (Monks et al., 2015). The relatively
short lifetime of these gases makes them attractive targets
for emission controls (Shindell et al., 2012), but scientific
uncertainties associated with the processes that govern their
abundance and distribution has hindered the implementation
of effective control policies.
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Current global chemistry–climate models representing the
co-evolution of atmospheric O3 and CH4 show differences
in CH4 lifetime of almost a factor of 2 (Wild, 2007; Voul-
garakis et al., 2013). This prevents them from simulating the
observed atmospheric build-up of CH4 correctly or attribut-
ing its causes reliably and leads to substantial uncertainty
in the impact of future emission changes on global climate
(Stevenson et al., 2013; IPCC, 2013). The underlying cause
is differences in OH, which depends on humidity, sunlight
and O3, and on a wide range of chemical and dynamical pro-
cesses. For O3, on the other hand, the abundance, season-
ality and spatial variation are represented relatively well in
models under present-day conditions, but observed changes
in surface O3 since the preindustrial era are thought to be un-
derestimated (Stevenson et al., 2013), although there is con-
tinuing uncertainty surrounding preindustrial levels (Tarasick
et al., 2019). Models have difficulty reproducing recent ob-
served trends in surface O3 driven by changes in precursor
emissions, natural sources, stratospheric influx and transport
patterns (Parrish et al., 2014). This is a major concern be-
cause changes in the tropospheric abundance of O3 influence
our assessment of radiative forcing and also the attainment
of air quality objectives on regional and urban scales (e.g.
Akimoto, 2003). These discrepancies suggest that there are
major weaknesses in our fundamental understanding of the
chemical, dynamical and emission processes controlling the
distribution, interaction and fate of O3, CH4 and OH or of
how these processes are represented in global chemistry and
climate models.

Global sensitivity analysis provides a valuable approach
to determine the major drivers of model behaviour, and it
has been applied to atmospheric chemistry schemes to ex-
plore uncertainties in tropospheric O3 (Derwent and Mur-
rells, 2013; Christian et al., 2017; Ridley et al., 2017; New-
some and Evans, 2017). These studies have typically used
Monte Carlo-based ensemble approaches for simple mod-
els (e.g. Ridley et al., 2017) or structured random-sampling
approaches for more computationally intensive models (e.g.
Christian et al., 2017), and they have focussed on sensitivi-
ties in a single model framework. In this study we demon-
strate the use of Gaussian process emulation for global sen-
sitivity analysis, applied previously to models of aerosol pro-
cesses (Lee et al., 2011, 2013) and air quality (Beddows et
al., 2017; Aleksankina et al., 2019), and we apply it to ex-
plore the sensitivity of global tropospheric O3 and CH4 life-
time to uncertainty in key model processes and inputs. We
investigate how the sensitivities differ across three indepen-
dent chemistry-transport models and demonstrate how this
approach may be used to explore the diversity in model re-
sponses and to identify where model results differ.

2 Approach

We consider here two important global diagnostics of model
performance: the tropospheric O3 burden and the chemical
lifetime of CH4 in the troposphere. The tropospheric O3 bur-
den is the annual mean mass of O3 below the tropopause,
defined here by the 150 ppb isopleth of monthly mean O3.
The chemical lifetime of CH4 reflects the lifetime of CH4
to removal by OH in the troposphere and provides a use-
ful proxy for global tropospheric oxidising capacity. Global
model studies in the literature and previous model intercom-
parisons show a large diversity in modelled budgets (see
Fig. 1), where the range in O3 burden and CH4 lifetime both
span about a factor of 2. There is no clear relationship be-
tween the budget terms on an annual basis, highlighting the
relatively complex relationship between tropospheric O3 and
OH that reflects physical and dynamical processes as well as
photochemistry.

Observation-based determination of these global quanti-
ties is difficult. However, assessment of three global O3 cli-
matologies derived from ozonesonde measurements over the
1980s and 1990s indicates an annual mean tropospheric O3
burden of 327–344 Tg when applying the same 150 ppb iso-
pleth definition of the tropopause used in model analysis
(Wild, 2007), suggesting a burden of about 335± 20 Tg. Re-
cent satellite and ozonesonde-based estimates of the global
burden range from 333 to 345 Tg (Gaudel et al., 2018). En-
semble mean O3 burdens from recent model intercompar-
isons lie close to this: 344± 39 Tg from ACCENT (Steven-
son et al., 2006), 328±41 Tg from HTAP (Fiore et al., 2009)
and 337± 23 Tg from ACCMIP (Young et al., 2013); see
Table 1. However, about half of published studies lie out-
side the observationally constrained range (see Fig. 1). A
thorough observation-based sensitivity analysis of the fac-
tors contributing to CH4 removal gave a whole-atmosphere
lifetime of 9.1± 0.9 years and a corresponding CH4 chem-
ical lifetime of 11.2± 1.3 years (Prather et al., 2012). The
latter is substantially longer than that derived from model in-
tercomparisons: 9.6± 1.4 years from ACCENT (Stevenson
et al., 2006), 10.2±1.7 years from HTAP (Fiore et al., 2009)
and 9.8±1.6 years from ACCMIP (Voulgarakis et al., 2013).
Two-thirds of the model studies shown in Fig. 1 lie outside
this range. However, it is difficult to judge the validity of ex-
isting model results without a clearer idea of the uncertain-
ties involved and how they contribute to the corresponding
biases.

The sensitivity of the budget terms to individual pro-
cesses has been explored in previous studies using the Fron-
tier Research System for Global Change version of the
University of California Irvine Chemical Transport Model
(FRSGC/UCI CTM) in Wild (2007). One-at-a-time sensitiv-
ity runs were performed varying surface NOx emissions (30–
60 TgNyr−1), isoprene emissions (0–650 TgCyr−1), light-
ning NOx emissions (0–7.5 TgNyr−1), convective lifting,
stratospheric influx and deposition processes (all ±50 %),
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Figure 1. Tropospheric oxidant budgets from previous published studies and model intercomparisons (a), along with measurement-based
estimates of the tropospheric O3 burden and CH4 lifetime (shaded regions). Panel (b) shows results from one-at-a-time sensitivity studies
with a single model revealing the extent to which individual processes can influence the budgets (see Wild, 2007, for details). Note that
results in (a) represent differing emissions and meteorological years (study details are given in Table 1) and that (b) covers only part of the
parameter space shown in (a).

Table 1. Global tropospheric metrics from previous model studies.

Studies Number O3 burden CH4 lifetime References

Early literature studies 33 studies 307± 38 Tg Wild (2007)
ACCENT intercomparison 21 models 344± 39 Tg 9.6± 1.4 years Stevenson et al. (2006)
HTAP intercomparison 12 models 328± 41 Tg 10.2± 1.7 years Fiore et al. (2009)
ACCMIP intercomparison 14 models 337± 23 Tg 9.8± 1.6 years Young et al. (2013), Voulgarakis et al. (2013)
Observational estimates 335± 20 Tg 11.2± 1.3 years Wild (2007), Prather et al. (2012)

temperature (±5 ◦C), and humidity (±20 %), and results are
summarised in Fig. 1. This study highlighted the responses
of a single model to particular processes, but the variations
spanned relatively little of the parameter space defined by
previous model studies, suggesting that substantial additional
uncertainties were not accounted for here, including process
interactions, neglected processes and structural differences
between models.

To explore the sensitivity of tropospheric budgets to uncer-
tainty in several processes at once, we perform a global sen-
sitivity analysis using Gaussian process emulation, following
the approach of Lee et al. (2011). An emulator is a simple sta-
tistical model that reproduces the relationships between the
inputs and outputs of a more complex model, in this case an
atmospheric chemistry model. The much shorter run time of
the emulator allows the model parameter uncertainty space
to be explored fully through Monte Carlo approaches that
would not be feasible with the complex atmospheric model.
A Gaussian process is a multivariate normal distribution ap-
plied to a function, and we use this non-parametric approach
to fit the model input–output relationships as it is well-tested,
efficient and relatively easy to implement (O’Hagan, 2006;
Lee et al., 2011; Ryan et al., 2018). This allows us to re-

produce the nonlinear model response across a multidimen-
sional parameter space based on a small ensemble of model
training runs at points representing a combination of inputs
that are optimally chosen to fill the space. We select eight
key variables that influence global oxidant budgets substan-
tially and that span a range of model inputs (e.g. emissions),
processes (e.g. deposition) and meteorological variables; see
Table 2. These are based on our earlier one-at-a-time stud-
ies, and while they do not encompass all sources of uncer-
tainty, which also include photochemical, transport and radi-
ation processes, they are chosen to represent key uncertain-
ties while ensuring that the study remains computationally
tractable. We select surface emissions of NOx from natu-
ral and anthropogenic sources, the dominant precursor for
O3 in the troposphere; lightning emissions of NO, which are
highly uncertain and have a disproportionately large impact
on O3 and OH due to the altitude of the source; and bio-
genic emissions of isoprene, which dominate global sources
of volatile organic compounds. We include dry deposition,
which is important for the uptake of O3 and other species at
the surface, and wet deposition, which is important for the
removal of soluble precursors. We vary the atmospheric hu-
midity used by the model photochemistry, which plays an
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Table 2. Variables and uncertainty ranges used in this study

Variables Range

Surface NOx emissions 30–50 TgNyr−1

Lightning NO emissions 2–8 TgNyr−1

Biogenic isoprene emissions 200–800 TgCyr−1

Dry-deposition rates ±60 %
Wet-deposition rates ±60 %
Atmospheric humidity ±20 %
Cloud optical depth ×0.33–3.0
Boundary layer mixing ×0.10–10.0

important role in O3 chemistry and OH formation, but leave
it untouched for other processes to avoid perturbing model
dynamical processes. We vary cloud optical depth, an uncer-
tain variable which has a major influence on photolysis rates
in the lower troposphere. Finally, we vary turbulent mixing
in the planetary boundary layer (PBL), which has an impor-
tant role in lifting and dispersing surface oxidants but which
remains poorly constrained.

For each variable, we define a range that encompasses the
maximum and minimum likely values and that is loosely
based on published studies from the literature, and these
are presented in Table 2. We assume uncertainty ranges
of ±25 % for surface NOx , representing 30–50 TgNyr−1,
±60 % for lightning NO (Schumann and Huntrieser, 2007)
and ±60 % for isoprene emissions (Ashworth et al., 2010).
For dry and wet deposition, we assume an uncertainty in
removal rates of ±60 % that is applied to all species con-
sidered. We assume an uncertainty of ±20 % for atmo-
spheric water vapour, reflecting the variation across models
contributing to the ACCMIP intercomparison (Lamarque et
al., 2013), and this is applied in the model photochemistry
scheme only. We assume an uncertainty of a factor of 3 in
cloud optical depth based on Klein et al. (2013) and apply
this for photolysis calculations only. Boundary layer mixing
is perturbed by scaling the effective vertical diffusion coef-
ficient through the depth of the boundary layer so that tur-
bulent mixing of tracers between model layers varies from
negligible to almost complete every model time step.

Following Lee et al. (2011), we use maximin Latin hyper-
cube sampling to optimally select 80 points from across the
eight-dimensional parameter space. Each point represents a
combination of values chosen from the range for each vari-
able and specifies the values to use for a full model simu-
lation. An additional 24 points are selected to provide an
independent test of the validity of the emulators that are
built. This defines a set of 104 model simulations to perform.
For this study, we use three independent global chemistry-
transport models: the FRSGC/UCI CTM (Wild, 2007), the
Goddard Institute for Space Studies Global Climate Model,
GISS GCM (Shindell et al., 2013), and the Community At-
mosphere Model with Chemistry, CAM-Chem (Lamarque

et al., 2012). The models differ in their sources of meteo-
rology but are run for a full year (following 6–12 months’
spin-up) under conditions that are broadly consistent with
2001 meteorology, a year without strong climate phenomena
such as El Niño. Offline meteorological fields for 2001 from
the European Centre for Medium-Range Weather Forecasts
Integrated Forecast System (ECMWF IFS) were used for
the FRSGC/UCI CTM. The GISS GCM used observed sea-
surface temperatures and was nudged to National Centers for
Environmental Prediction (NCEP) reanalysis fields (Kalnay
et al., 1996), while CAM-Chem was run in GCM mode
following the Chemistry Climate Model Initiative (CCMI)
REF-C1 protocol (Eyring et al., 2013). In each model we
constrain methane to a fixed mixing ratio of 1760 ppb suit-
able for 2001 conditions. Natural and anthropogenic emis-
sions differ somewhat across the models, reflecting differ-
ent assumptions and online generation of natural emissions,
but we scale the magnitude of global annual emissions to
40 TgNyr−1 for surface NOx , 5 TgNyr−1 for lightning NO
and 500 TgCyr−1 for isoprene in the control run, accepting
that differences in emission distributions represent a source
of structural uncertainty. Other variables are scaled according
to the factors shown in Table 2 without further standardisa-
tion between models.

Emulators are then built for each model for each output
of interest using the methods described in Lee et al. (2011)
and Ryan et al. (2018). We focus here on global annual mean
tropospheric O3 burden and CH4 chemical lifetime for sim-
plicity. The emulators are tested through use of the additional
24 validation simulations to evaluate their performance. For
the outputs considered here, the model response surfaces
are relatively smooth, reflecting the stable behaviour of the
global O3 burden and CH4 lifetime, and the emulators fit
the validation runs very closely with a correlation coefficient
r > 0.99 (see Ryan et al., 2018). The emulators reproduce the
response of the full model within the variable ranges defined
and can be used in place of the model for intensive analy-
sis such as uncertainty propagation through the use of Monte
Carlo approaches that would not be computationally feasi-
ble with the full model. This allows us to define formal error
bars for the response of each model and to carry out global
sensitivity analysis by determining the contribution of each
variable to the overall variance in modelled O3 burden and
CH4 lifetime.

3 Model responses and contributions to variance

We first use the emulators built for each model to propagate
the uncertainty in the selected variables to uncertainty in O3
burden and CH4 lifetime. We use a Monte Carlo approach
to randomly select 10 000 points from across the response
space for each model, sampling uniformly across the full in-
put range of each variable, and use this to generate the prob-
ability distribution for each model. Figure 2 shows the dis-
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Figure 2. Probability distributions for the global annual mean tropospheric O3 burden (a, b, c) and tropospheric chemical lifetime of CH4
(d, e, f) for each model. The mean and standard deviation over 10 000 realisations are shown on the upper right corner of each panel, and
observation-based estimates of O3 burden and CH4 lifetime are shown as shaded areas.

tribution in global O3 burden and CH4 lifetime from each
model. The behaviour of the models is similar, with a nor-
malised standard deviation of 7 %–8 % for O3 burden and
7 %–9 % for CH4 lifetime, and the distributions are slightly
skewed, reflecting the nonlinear response of these budget
terms to the governing processes. The 1σ uncertainty in each
budget term is comparable in magnitude to that seen between
different models in the ACCMIP model intercomparison (see
Table 1); while this may be fortuitous, it demonstrates that
process uncertainty contributes substantially to model diver-
sity.

For each model, the mean O3 burden lies within the obser-
vational uncertainty range, along with 44 %–60 % of the dis-
tribution. A substantial proportion of each distribution lies
outside the observational range, suggesting that the uncer-
tainty ranges adopted for some of the variables were larger
than needed or that a normal distribution of uncertainty could
have been assumed across each range in place of a uniform
distribution. For mean CH4 lifetime, agreement with obser-
vations is less good, with the GISS GCM and CAM-Chem
lying at opposite boundaries of the observed range and the
FRSGC/UCI CTM lying outside it. For the GISS GCM, 63 %
of the distribution lies inside the observed range, while for
the FRSGC/UCI CTM it is only 10 %. The discrepancies be-
tween the modelled and observed estimates suggest that un-
certainty in chemistry and transport processes, which have
not been considered here, may play a substantial role in gov-
erning the CH4 lifetime.

The sensitivity to each variable is determined by vari-
ance decomposition, which quantifies the contribution of

each variable to the variance in the model output, and is
shown in Fig. 3. This is performed through calculation of
the sensitivity indices using the Sobol approach (e.g. Saltelli,
2002), and the mathematical foundation for this is described
in Ryan et al. (2018). We neglect the contribution of inter-
actions between variables, which can be identified through
this approach but which remain below 4 % of the variance
for the model responses examined here. For the global O3
burden, the models show relatively similar sensitivities to
atmospheric humidity, which contributes 20 %–23 % of the
variance in all three models, and to dry-deposition processes,
which contribute 21 %–25 %; see Fig. 3. However, there are
substantial differences in sensitivities to lightning NO, which
varies from 13 % in the GISS GCM to 40 % in CAM-Chem,
and to isoprene emissions, which are 14 % in FRSGC/UCI
CTM and GISS GCM but only 1 % in CAM-Chem. The con-
sistent sensitivities to humidity and dry deposition are ex-
pected, given the important roles that these play as sinks of
O3 in the troposphere. A strong sensitivity to lightning NO
is also expected given the greater chemical O3 production
efficiency of NOx in the mid- and upper troposphere, but
the differing sensitivities between models likely reflect both
differences in chemical environment and in lightning source
distribution. Similarly, differences in sensitivity to isoprene
are likely to reflect differences in the complexity of the pho-
tochemical schemes in the models and in the resulting chem-
ical environment in the tropical boundary layer.

For the tropospheric CH4 lifetime, the models show no-
tably different sensitivities, with humidity contributing about
20 % of the variance for the FRSGC/UCI CTM and CAM-
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Figure 3. Contributions of each variable to the total variance in the simulated tropospheric O3 burden in each model.

Figure 4. Contributions of each variable to the total variance in the simulated annual mean CH4 chemical lifetime in each model.

Chem but less than 3 % for the GISS GCM; see Fig. 4.
There is broad consistency between the FRSGC/UCI CTM
and CAM-Chem, where uncertainty in lightning NO is the
largest contributor and emissions of isoprene and surface
NOx are about 30 % and 50 % less, respectively, but in the
GISS GCM the strongest sensitivity is to surface NOx emis-
sions. It is clear that the factors governing tropospheric OH
are substantially different in the models, highlighting differ-
ences in chemical environment and transport patterns that af-
fect the location and magnitude of CH4 oxidation. Sensitiv-
ity to humidity suggests that primary sources of OH through
photolysis of O3 and subsequent reaction of O1D with water
vapour are important. Sensitivity to NOx emissions reflects
the importance of secondary sources of OH through oxida-
tion of NO, and sensitivity to isoprene highlights the impor-
tance of volatile organic compounds (VOCs) as a source and
sink of OH and as a mechanism for locking up and trans-
porting NOx . Interestingly, the GISS GCM shows substan-
tial sensitivity to boundary layer mixing, highlighting the im-
portance of the transport of fresh emissions from the surface
for secondary OH formation. The FRSGC/UCI CTM shows
some sensitivity to wet deposition, suggesting that scaveng-
ing of nitric acid has a direct impact on OH through its influ-
ence on the abundance of NOx .

These differences have important implications for the as-
sessment of future composition change. Future scenarios
projecting increased emissions of greenhouse gases and re-
duced emissions of O3 precursors (e.g. representative con-

centration pathways (RCPs) 4.5, 6.0 and 8.5) are likely to
lead to increased future humidity and reduced surface NOx .
The FRSGC/UCI CTM and CAM-Chem would be expected
to show a reduction in CH4 lifetime due to greater OH con-
centrations associated with higher water vapour, while the
GISS GCM would show an increase in CH4 lifetime due to
lower secondary production of OH associated with reduced
surface NOx emissions. Analysis of future changes in CH4
lifetime for models contributing to the ACCMIP intercom-
parison suggests that this is indeed the case, with the GISS
GCM one of three models showing increased lifetime by
2100 for the RCP6.0 pathway and four models showing de-
creased lifetime (Voulgarakis et al., 2013). An understanding
of the causes of this differing sensitivity is thus important for
explaining the different model responses.

4 Investigating model differences

The sensitivity of modelled O3 burden and CH4 lifetime to
two key variables – humidity and surface NOx emissions
– is shown for the FRSGC/UCI CTM and GISS GCM in
Fig. 5. These response surfaces are generated using the em-
ulator for each model assuming that the other six variables
are unchanged. While the O3 burden is slightly higher in the
GISS GCM than the FRSGC/UCI CTM – 342 vs. 314 Tg in
the model control runs – the gradients across the response
surfaces are similar in the models. The highest O3 burdens
occur at high NOx emissions and low humidity, reflecting
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Figure 5. Sensitivity of tropospheric O3 burden and CH4 chemical lifetime to changes in surface NOx emissions and humidity in the
FRSGC/UCI CTM and GISS GCM.

greater production and reduced loss, respectively. The rela-
tive changes in O3 burden with NOx emissions and humidity
are very similar across all three models, as shown in Fig. 6.
The responses for CH4 lifetime show notably different be-
haviour, with greater sensitivity to NOx and much less sen-
sitivity to humidity in the GISS GCM compared to the other
models. At high humidities the CH4 lifetime appears almost
insensitive to humidity, suggesting either little additional for-
mation of OH or a matching OH sink in this model. In con-
trast, the other models show a very similar degree of sen-
sitivity to humidity in both O3 burden and CH4 lifetime that
ranges from+7 % to−5 % across the humidity range consid-
ered here; see Fig. 6. This suggests a much stronger coupling
between O3 and OH formation and highlights the greater im-
portance of the primary OH source in these models.

The response surfaces shown here allow us to estimate
the impact of changes in future humidity and surface NOx
emissions in the absence of other changes. A reduction in
NOx emissions from 40 to 30 TgNyr−1 and an increase in
the humidity of 15 %, corresponding loosely to the changes
between 2000 and 2050 expected along the RCP8.5 path-
way (van Vuuren et al., 2011), would lead to an increase in
CH4 lifetime of 1.3 years in the GISS GCM (from 11.7 to
13.0 years), an increase of 0.2 years in CAM-Chem and no
change in the FRSGC/UCI CTM. While this neglects the in-

fluence of other emission and climate changes, particularly
the increase in CH4 concentrations which would extend the
lifetime in all models, it demonstrates the very different sen-
sitivities anticipated for different models under future climate
scenarios.

To help identify the cause of the differing model responses,
we show the contribution of key variables to the variance in
the annual mean tropospheric column CH4 chemical loss rate
at each model grid point in Fig. 7. This shows how the con-
tribution of the different processes governing CH4 removal
varies geographically and reveals further differences between
the models. For the FRSGC/UCI CTM and CAM-Chem, hu-
midity makes an important contribution to the variance in
tropical regions and at mid-latitudes and makes a smaller
contribution at the Equator, where the greatest contribution is
from lightning NO in all three models. Humidity makes very
little contribution to the variance in the GISS GCM, and this
principally occurs downwind of major anthropogenic emis-
sion regions. The underlying humidities in the models are
relatively similar (see distributions presented in the Supple-
ment), and the annual mean global atmospheric water burden
is also similar: only 4 % less in the GISS GCM than in the
FRSGC/UCI CTM. Given the similar humidities and similar
responses in O3 burden, this suggests that there are signif-
icant differences in chemical processes specific to OH. De-
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Figure 6. Relative changes in tropospheric O3 burden (a, b) and CH4 chemical lifetime (c, d) to changes in surface NOx emissions and
humidity alone in each model.

spite the larger relative importance of surface NOx emissions
in the GISS GCM, the absolute contribution to the variance
in the three models is similar. Surface NOx emissions have
a widespread impact, contributing substantially to CH4 re-
moval over remote ocean regions. The effect of NOx on OH
in these locations suggests that substantial nitrogen is trans-
ported to these regions in the form of reservoir species such
as peroxyacetyl nitrate (PAN), and this is supported by the
patterns of transport seen in the isoprene contribution. The
greatest effect of isoprene emissions is localised in the tropi-
cal continental source regions due to the relatively short life-
time of isoprene and its oxidation products, but there are sub-
stantial contributions downwind over the oceans, particularly
in CAM-Chem and the GISS GCM. Mid-tropospheric PAN
concentrations are much greater in the GISS GCM, and com-
parison of tropospheric NO2 columns suggests that there are
higher levels of NOx over oceanic regions in this model (see
Supplement). It is therefore likely that differing treatments of
NOy chemistry are one cause of the different model sensitiv-
ities. However, a more detailed exploration of the sensitivity
to photochemical processes would be needed to confirm this.
Tropospheric OH is dependent on the total ozone column in
the tropics through its effect on photolysis rates, and this may
play a role in model differences, although we note that mean
tropical ozone column in the present models is very similar at
258–265 DU (see Table S2). Underlying differences in mete-
orological fields governing vertical transport processes such
as convection are also likely to be important in this region.

Our analysis provides a valuable guide to locations where
model responses are likely to differ most, such as in tropical
oceanic regions, and further investigation of OH sensitivity in
these regions should bring improvements in our understand-
ing of atmospheric processes and in their representation in
current global-scale models.

5 Conclusions

We have demonstrated the value of Gaussian process emula-
tion in performing global sensitivity analysis of computation-
ally intensive global atmospheric chemistry-transport models
and in applying this across a number of models to investi-
gate model diversity. The approach provides a simple way
of exploring the sensitivity of key terms in the tropospheric
oxidant budget to governing processes and inputs, and we
show that it can provide substantial new insight into the dif-
fering responses of models under different emission and cli-
mate scenarios.

Our study has highlighted the large sensitivity of the tro-
pospheric O3 burden to atmospheric water vapour, suggest-
ing that this variable should be diagnosed or perhaps con-
strained in future model intercomparisons to permit clearer
characterisation of differences in model chemistry. We also
find a strong sensitivity to precursor emissions and to dry-
deposition processes, as expected. More surprisingly, we find
that the drivers of variability in global OH can be very dif-
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Figure 7. Contributions to the total variance in the annual tropospheric column CH4 chemical loss rate (in mgm−2 yr−1) in each model
from humidity, isoprene emissions and surface NOx emissions. Fractional contributions (sensitivity indices) are presented in Fig. S3 in the
Supplement.

ferent between models, and this may contribute to the large
diversity in modelled tropospheric CH4 lifetimes seen in re-
cent model intercomparisons. Given the importance of atmo-
spheric oxidising capacity for both air quality and climate
change, this difference in OH behaviour is a major cause for
concern and is a clear priority for further investigation.

While we have shown the value of emulation approaches
for exploring model behaviour much more thoroughly than
through simple one-at-a-time sensitivity studies, this study
has been largely exploratory in nature, investigating the ef-
fects of a very limited number of variables. A more detailed
global uncertainty analysis is required that considers a wider
range of model processes and inputs and incorporates a more
rigorous assessment of uncertainty in each variable. Appli-
cation of observation-based constraints is then needed to re-
strict the size of the response space to calibrate the models
and identify specific processes in need of refinement. Ap-
plying this approach across different models accommodates
the structural uncertainties in model formulation, permitting
a more robust assessment of process understanding. This

would provide a strong evaluation framework for improving
understanding of the physical and chemical processes driving
atmospheric composition change and its effects on air quality
and climate.

Data availability. The monthly mean output from each model for
the ensemble of runs performed in this study will be made available
from the CEDA data archive and can be accessed by request to the
corresponding author.
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