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Abstract. One characteristic of biogeochemical models is
uncertainty about their formulation. Data assimilation should
take this uncertainty into account. A common approach is to
use an ensemble of models. We must assign probabilities not
only to the parameters of the models but also to the models
themselves. The method of hierarchical modelling allows us
to calculate these probabilities. This paper describes the ap-
proach, develops the algebra for the most common case and
then applies it to the Atmospheric Tracer Transport Model
Intercomparison Project (TransCom). We see that the dis-
crimination among models is unrealistically strong, due to
optimistic assumptions inherent in the underlying inversion.
The weighted ensemble means and variances from the hier-
archical approach are quite similar to the conventional values
because the best model in the ensemble is also quite close to
the ensemble mean. The approach can also be used for cross-
validation in which some data are held back to test estimates
obtained with the rest. We demonstrate this with a test of the
TransCom inversions holding back the airborne data. We see
a slight decrease in the tropical sink and a notably different
preferred order of models.

1 Introduction

Models of any interesting biogeochemical system are inex-
act. They cannot include all interesting processes, the gov-
erning equations of processes are not known exactly or com-
putational resolution limits the accuracy of the solution.
Throughout this series we stress that quantitative descriptions
should be inherently statistical, meaning they must include
information on the probability of any quantity, either inferred
or predicted. This requires us to describe the uncertainty in-

troduced into any quantity by that of the model. Model un-
certainty is of two forms, structural and parametric. Struc-
tural uncertainties occur when we do not know the functional
forms that relate the inputs and outputs of the real system
or that control its evolution. In biogeochemical models these
functional forms are exactly specified so that uncertainty is
usually manifested as an error. Parametric errors occur when
the functional forms are well-known but there is uncertainty
in various quantities such as constants in physical equations,
initial values or boundary conditions. Uncertainties in model
predictions arising from parametric uncertainty can be gen-
erated by semi-analytic error propagation (e.g. Scholze et al.,
2007; Rayner et al., 2011) or by generating ensembles of
model simulations from samples of the probability density
functions (PDFs) of parameters (e.g. Murphy et al., 2007;
Bodman et al., 2013).

Ensemble methods dominate the study of model uncer-
tainty. The most common approach is model intercomparison
of which the Coupled Model Intercomparison Project (Taylor
et al., 2012) for the physical climate and C4MIP (Friedling-
stein et al., 2006) for the global carbon cycle are prominent
examples. The MIPs play a crucial but controversial role in
quantifying uncertainty. First, they may underestimate uncer-
tainty since it is impossible, even in principle, to know how
well a given ensemble properly samples the manifold of pos-
sible models. On the other hand, not all models are equally
credible. They do more or less well at tests like fitting ob-
servations or conserving required quantities. This has led to
the application of Bayesian model averaging (e.g. Murphy
et al., 2007) in which models are tested against some criteria
(such as fit to observations) and their predictions weighted
accordingly.
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3726 P. Rayner: Data assimilation model ensemble

Inverse problems or data assimilation as discussed in this
volume generally treats parametric uncertainty. It uses ob-
servations and statistical inference to improve knowledge of
the uncertain values (see Rayner et al., 2019, and references
therein for a general introduction). Structural model uncer-
tainty must still be included and indeed it often dominates
other uncertainties. Model uncertainty is hard to characterise
with analytic PDFs since errors in the functional forms will
project systematically onto errors in simulated quantities. Hi-
erarchical approaches (e.g. Cressie et al., 2009) provide a
mechanism for including uncertainties in the choice of model
in the formulation. For an ensemble of models this involves
introducing an extra discrete variable (the index of the set
of models) into the problem and calculating its probability.
This probability goes under several names, e.g. the Bayes
factor (Kass and Raftery, 1995) or the evidence (MacKay,
2003, Sect. 28). We can then calculate probability distribu-
tions for model parameters as weighted averages over these
model probabilities. Hence this application of hierarchical
Bayesian modelling is closely related to Bayesian model av-
eraging (Hoeting et al., 1999; Raftery et al., 2005).

Ensemble methods are rare for biogeochemical data as-
similation since there are few problems for which a use-
ful population of assimilation systems currently exists. The
clearest exception to this is the case of global-scale atmo-
spheric inversions where the Atmospheric Tracer Transport
Model Intercomparison Project (TransCom; Gurney et al.,
2002, 2003, 2004; Baker et al., 2006) used an ensemble of at-
mospheric transport models and common inversion systems
to infer regional CO2 fluxes from atmospheric concentra-
tions. All these studies faced the problem of estimating prop-
erties of the ensemble such as its mean and some measure
of spread. Throughout they opted for the ensemble mean and
two measures of spread, the standard deviation of the max-
imum a posteriori (most likely) estimate from each ensem-
ble member and the square root of the mean of the posterior
variances of the ensemble. This treated all members of the
ensemble equally.

Equal weighting was challenged by Stephens et al. (2007),
who compared the seasonality of vertical gradients in model
simulations and observations. They found that only a sub-
set of models produced an acceptable simulation and that
this subset favoured larger tropical uptake than the ensemble
mean. Pickett-Heaps et al. (2011) extended this calculation.
They compared simulations using optimised fluxes with air-
borne profiles. This required simulating the airborne profiles
using the optimal fluxes for each model. Of the four atmo-
spheric transport models tested, TM3 (Heimann and Körner,
2003) performed substantially better against these extra data
than the other three.

Both the cited studies used data not included in the in-
version, a procedure often called cross-validation. Cross-
validation asks whether new data enhance or reduce our con-
fidence in previous estimates while Bayesian model averag-
ing calculates our relative confidence in two models. We shall

see that the machinery needed to answer these two questions
is very similar.

The outline of the paper is as follows. In Sect. 2 we review
the necessary machinery. Section 3 describes an application
to the TransCom case. Section 4 describes an extension to
treat covarying model errors. Section 5 discusses the use of
the machinery for model comparison and cross-validation.
Section 6 discusses some computational aspects.

2 Theory

The following can be regarded as a development of ideas de-
scribed in Jaynes and Bretthorst (2003, Sect. 21) or MacKay
(2003, Sect. 28).

The standard data assimilation problem seeks to improve
knowledge of some target variables in a model given observa-
tions. We express our knowledge as probability density func-
tions (PDFs). The true state must be consistent with three
independent pieces of information, our prior knowledge of
the target variables, our knowledge of the observed quanti-
ties, and the relationship between target variables and obser-
vations instantiated in an observation operator. In most appli-
cations the target variables are continuous quantities such as
model parameters or initial or boundary conditions. We form
the joint probability by multiplication as

p(x,y|xb,yo)∝ p(x|xb)×p(y|yo)×p(y|H(x)), (1)

where x represents the target variables, y the true values of
the observed quantities andH the observation operator. Usu-
ally there is a prior or background value xb which serves as
a location parameter for p(x|xb). Even more common is a
location parameter for p(y|yo), usually an observed value re-
turned by an imperfect measurement system.

We generate the final PDF for x by integrating over y

p(x)∝
∫
p(x,y)dy. (2)

In the usual case of data assimilation we only have one obser-
vation operator. Thus we often forget that the posterior PDFs
for target variables are implicitly dependent on the observa-
tion operator. Where an ensemble of observation operators
is available we can no longer assume certainty for which one
we should use. The ith observation operatorHi becomes part
of the target variables so instead of calculating p(x|y) we
now seek p(x,Hi |y).1 Once we have calculated p(x,Hi |y)
we can either integrate over x if we are interested in the rel-
ative probabilities of different observation operators or we
can sum over the various choices of observation operators to
obtain the PDF for x. The hierarchical approach (see Rayner
et al., 2019, Sect. 5.6) factorises this joint PDF of observation

1The true target variable is i, the index variable on the set of
observation operators, but we will continue to use Hi to make it
clear to what this index refers.
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operators and continuous target variables using an expression
known variously as the chain rule of probabilities or the law
of total probabilities. In the case of a discrete choice of ob-
servation operator this takes the form

p(x,Hi)= p(x|Hi)p(Hi). (3)

We can apply the same rule to the joint probability in Eq. (1)
to yield

p(x,Hi |y)= P(x|y,Hi)p(Hi |y). (4)

We see that the hierarchical and non-hierarchical PDFs differ
only by the factor p(Hi |y) and we hence need to calculate
this term.

We will develop the theory for the simplest linear Gaussian
case. Here many of the resulting integrals have analytic solu-
tions. The approach will hold for nonlinear observation oper-
ators, provided they are approximately linear over enough of
the support for the joint distribution of x and y. The qualita-
tive ranking of models is unlikely to be sensitive to weak non-
linearities since, as we shall see, the discrimination among
models is strong.

We follow the notation of Rayner et al. (2019). We switch
from using a potentially nonlinear observation operator H
to a linear one represented by the Jacobian H. Take a collec-
tion of linear observation operators with Jacobians H1. . .HN ,
with prior probability for the continuous target variables
given by G(x|xb,B) and probability for the data given by
G(y|yo,R), where G(x|µ,C) represents the Gaussian distri-
bution of the variable x with mean µ and uncertainty covari-
ance C. xb is the mean of the prior distribution for x (often
abbreviated as the background value) and B is the prior un-
certainty covariance of x (often abbreviated the background
or prior uncertainty). yo is the mean of the PDF for the obser-
vation with R representing the uncertainty of the observing
process. See Rayner et al. (2019) Sect. 5 for a more detailed
explanation.

For each Hi our problem is the linear Gaussian inversion
described in Rayner et al. (2019) (Sect. 6.4). Most impor-
tantly for us the posterior PDF p(x|y,Hi) is Gaussian:

p(x|y,Hi)=G(x,xa
i ,Ai), (5)

where xa
i is the maximum a posteriori estimate for the ith ob-

servation operator (often called the analysis) with covariance
Ai . Substituting Eq. (5) into Eq. (4) we obtain

p(x,Hi |y)= p(Hi |y)×G(x|xa
i ,Ai). (6)

Thus p(x,Hi |y) is a sum of Gaussian distributions.
p(Hi |y) is the marginal likelihood for a Gaussian (Micha-

lak et al., 2005, Eq. 10):

p(Hi |y)=K
∣∣∣R+HiBHT

i

∣∣∣−1/2
exp

[
−

1
2

(
yo
−Hixb

)T
·

(
R+HiBHT

i

)−1
·

(
yo
−Hixb

)]
. (7)

Note that p(Hi |y) is a PDF over the indices i since all terms
on the right-hand side of Eq. (7) apart from Hi are fixed. K
is chosen so that

∑
ip(Hi |y)= 1. This normalisation reflects

the fact that we must choose one of the models.

2.1 Interpretation

One interpretation for the exponential in Eq. (7) is as a ra-
tio of the performance of the model and its expected per-
formance. The term Hixb

− yo is the mismatch between the
observations and the simulation using the background value.
Provided x and y are independent before our assimilation,
R+HiBHT

i is the variance of this prior mismatch. This fol-
lows from the Jacobian rule of probabilities (Tarantola, 2005,
Eq. 1.18) and the expression for the variance of the differ-
ence of two normally distributed quantities. Thus, inspection
of the right-hand side of Eq. (7) shows it to be, excluding
some potential normalisation,G(z,0,HiBHT

i +R) evaluated
at the point z=Hixb

−yo. Smaller magnitudes of Hixb
−yo

correspond to better a priori simulations of the observations
and higher values of p(Hi |y), i.e. more likely models. Equal
magnitudes of Hixb

− yo may not produce the same value of
p(Hi |y) since the mismatch variance HiBHT

i +R may not
weight them equally. We can say equivalently that the model
performance should be judged by the normalised prediction
error (simulation – observation divided by its variance) pe-
nalised by the expected range of the predictions or the vol-
ume of the data space occupied by the prior model and its
uncertainty (see discussion in MacKay, 2003, Sect. 28).

Equation (7) occurs in other hierarchical contexts such as
the calculation of covariance parameters by Michalak et al.
(2005) and Ganesan et al. (2014). This is understandable
since the submodels in all three cases are the classical Gaus-
sian problem. We note that these two papers used Eq. (7) to
tune covariance parameters, which may change the relative
weighting of models. It raises the issue that relative perfor-
mance of models may depend strongly on whether the inver-
sion is well-tuned for that model. The algorithm in Micha-
lak et al. (2005) consists of tuning a scaling factor for prior
covariances to maximise p(Hi) (though in their case there
is only one model). We can test the sensitivity to a uniform
scaling of B and R by a factor α. Increasing α increases the
determinant so decreases the first factor of p(Hi) while it
decreases the negative exponent and so increases the second
part. The balance is a relatively subtle change. In Sect. 3 we
will investigate whether this is enough to change the ranking
of models in one example.

Note also that for a given B and R, Eq. (7) is ex-
tremely punishing on inconsistency. For example consider a
case with N observations and two models H1 and H2 for
which the quantity 1

N
(yo
−Hxb)T · (R+HiBHT

i )
−1
· (yo
−

Hxb) (the mean square mismatch per observation), are 1.0
and 1.01 respectively. With N = 10 000 (by no means un-
usually large) we see, from substitution into Eq. (7), that
p(H1|y)/p(H2|y)= e50

≈ 1022. This is unrealistic and is an
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example of the “curse of dimensionality” (Stordal et al.,
2011) in which distances between points in high-dimensional
spaces tend to infinity. We shall address one approach to re-
solving this problem in Sect. 4.

2.2 Relationship with other criteria

The exponent in Eq. (7) is also the minimum value of the
cost function usually minimised to solve such systems. It is
often denoted 1/2χ2. In an assimilation where variances of
prior PDFs and residuals calculated from the assimilation are
consistent, the expected value of χ2 is equal to the number
of observations (Tarantola, 1987, p. 211). We often quote the
normalised χ2 as χ2

n
, roughly the mean square mismatch per

observation.
p(Hi |y) is related to several other measures of model qual-

ity. For convenient comparison we define

L=−2log
(
p(Hi |y)
K

)
= log

∣∣∣HiBHT
i +R

∣∣∣+χ2. (8)

The change of sign means smaller values of L correspond to
more likely models.
L is related to other criteria for model selection such as

the Akaike information criterion (AIC; Akaike, 1974) and
Schwartz information criterion (also called the Bayesian in-
formation criterion, BIC) (Schwarz, 1978). In our case the
AIC can be defined as

AIC= 2M +χ2, (9)

where M is the number of target variables (the dimension of
x). The related Bayesian or Schwartz information criterion is
defined as

BIC= χ2
+M ln(N). (10)

All three criteria consider the goodness of fit of the model.
All criteria penalise models for adding parameters. Neither
AIC nor BIC take account of different prior uncertainties
among parameters or different sensitivities of the observa-
tions to these parameters.

3 The TransCom example

The TransCom III intercomparison (Gurney et al., 2002,
2004; Baker et al., 2006) was designed to investigate the im-
pact of uncertainty in atmospheric transport models on the
determination of CO2 sources and sinks. The target variables
were the mean CO2 flux from each of 22 regions (11 land
and 11 ocean) for the period 1992–1996. These fluxes ex-
cluded fossil fuel emissions and a data-driven estimate based
on ocean and atmosphere measurements (Takahashi et al.,
1999). Prior estimates and uncertainties were gathered from
consultation with experts in each domain. The data were the
average CO2 concentration from 76 stations, and the same

data were used in every inversion. Participants in the inter-
comparison calculated Jacobians by inserting a unit flux into
an atmospheric transport model corresponding to each re-
gion. There were 17 participating models so our space of tar-
get variables consists of 22 flux components and an indexed
set of 17 models Hi .

The inversions for the flux components are carried out by
changing H with all other aspects held constant. The authors
then created pooled estimates of the posterior fluxes such as
the mean, the mean uncertainty (averaging all the posterior
uncertainties) and finally the “between-model” spread, cal-
culated as the covariance among the posterior fluxes for each
model. In all these calculations we weighted every model
equally. What happens if we apply the methods described in
Sect. 2 to calculate pooled estimates?

Figure 1 shows a slightly modified L for the 17 models for
the cases without (panel a) and with (panel b) tuning follow-
ing Michalak et al. (2005). The modification consists of dis-
playing log10 rather than the natural logarithm. For the tuning
cases we used one multiplier each for B and R. We see a large
range of weights, 11 orders of magnitude for the untuned
cases and 14 orders of magnitude for the tuned cases. This
certainly reflects the curse of dimensionality mentioned ear-
lier. For the same reason there is a strong focus of weight on
a few models. Tuning intensifies this focus though it leaves
the ranking almost unchanged. We conclude therefore that
variation in model performance (as measured by L) does not
reflect the quality of tuning of the inversion but something
more fundamental about the models and data. Henceforth we
consider only the untuned case.

Although rankings do not change much, we see that
model 3 and, to a lesser extent, model 1 have much lower
weights after tuning than before. The variance tuning proce-
dure reduces the variances for most models (indicating that
they fit the data better than the original variances suggest they
should). All else being equal, a lower optimal value for the
variance scaling factors means an increased p(Hi |y). Mod-
els 1 and 3 do not have their variance scaling changed much
so their relative weight is reduced. The reduction is large be-
cause of the same dimensionality arguments made above.

In the next two sections we consider the marginal prob-
abilities to investigate the relative probabilities of different
models and the pooled flux estimates.

3.1 Model probabilities: comparing model
performance

The Gaussian weights derived in Sect. 2 are the probabilities
that a given model is the correct one for matching the data un-
der the assumption that we must choose one (see Jaynes and
Bretthorst, 2003, p. 136 for a discussion of this point). We
must, however, be careful not to over-interpret these proba-
bilities as measures of model quality. In the first place,L, like
the BIC and χ2, grows with the number of observations. The
divergence among models then also grows, an effect inten-
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Figure 1. The log10 of p(Hi |y) for the untuned (a) and tuned (b) cases with residuals used for R (c) TransCom inversions.

sified when we take exponentials to calculate probabilities.
The relative quality of two models depends on the amount
of data used to compare them even if our ability to distin-
guish between them does increase as we add data. We can
normalise by considering L/N (where N is the number of
observations) as a generalisation of the normalised χ2. This
ranges from a minimum of 0.01 to 0.67. The very low value
should not be interpreted as representing an absolute quality
of fit since we have normalised the probabilities to sum to
1. Rather it tells us that the apparently large change in the
weights is a result of much smaller differences in the relative
quality of the fit coupled to large amounts of data.

3.2 Ensemble means and variances

Once we sum over i we obtain p(x|y) as a sum of Gaussian
distributions with fixed weights. These are usually referred
to as Gaussian mixture distributions. We can calculate vari-
ous statistics of the ensemble using well-known properties of
Gaussian mixtures. The mean is calculated as

µ=
∑
i

p(Hi |y)xa
i . (11)

Note that this collapses to the conventional mean if all
weights are equal. The variance is calculated as

A∗ =
∑
i

p(Hi |y)
[
A∗i +

(
xa
i −µ

)2]
. (12)

The superscript ∗ indicates we consider only the diagonal
of the relevant matrices; Eq. (12) only accounts for the vari-

ance not the covariance of the estimates. The second term in
Eq. (12) includes the spread of the means for each model. If
all the p(Hi |y) values are equal, Eq. (12) collapses to the “to-
tal uncertainty” metric used by Rayner (2004) to incorporate
both the within- and between-model uncertainty described in
Gurney et al. (2002).

Figure 2 shows the equally weighted and probability-
weighted cases for the TransCom regions, in a format follow-
ing Gurney et al. (2002). Here we do not show the within- and
between-model metrics separately since the Gaussian mix-
ture naturally combines them. The focus of p(Hi |y) on a few
models (70 % on one model) might suggest that the uncer-
tainty in the weighted case should be far smaller than the
equally weighted traditional case. Figure 2 shows this is not
the case. Both the means and uncertainties for the two cases
are quite similar.

The agreement of the means is explained by a result from
Gurney et al. (2002). They noted that the mean simula-
tion from their equally weighted ensemble produces a better
match to the data than any individual model. The probability-
weighted flux is constructed to maximise the posterior prob-
ability across the model ensemble and parameter PDFs; thus
its mean should also produce a good match. It is hence no
surprise that the preferred model 8 is the model closest to
the unweighted model mean. Recalling that the ensemble
weights this preferred model at 70 %, we see good agreement
between weighted and unweighted means.

The similarity in the weighted and unweighted total un-
certainty is partly a result of the weak data constraint in
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Figure 2. Prior and posterior uncertainties for regional fluxes from TransCom following Gurney et al. (2002). The centre line of each box
shows the prior estimate of the mean while the box limits show the ±1σ uncertainties. The three bars show the mean (marked with “x”) and
±1σ uncertainty denoted by the length of the bar. The uncertainty is that of the ensemble including both the uncertainty for each model and
the dispersion among model means. The left bar shows the equally weighted case, the middle bar the case for the p(Hi |y) and the right bar
the case with covariance of residuals included.

our problem. Gurney et al. (2002) noted that for almost all
regions the within-model uncertainty was larger than the
between-model uncertainty. Furthermore the posterior uncer-
tainties produced by each model are rather similar so that the
weighted and unweighted contributions in Eq. (12) are sim-
ilar. The contributions of the between-model uncertainty are
different in the weighted and unweighted cases, but, since
these are smaller than the other contribution, we do not see
a large final difference. This would change in cases where
the constraint afforded by the data (as evidenced by the un-
certainty reduction compared to the prior) was large.

4 Improved treatment of observational covariance

Although mathematically correct, the strong discrimination
among models by L is not intuitively reasonable. One reason
for the strength of the discrimination is that each data point
makes an independent contribution to the PDF. This is not
an error in the formulation of L but rather the PDF associ-
ated with the data in the underlying assimilation.2 In the case
of atmospheric transport models this assumption says that if

2Strictly speaking it is the model PDF from Rayner et al. (2019),
but we have combined model and data uncertainties following their
Sect. 6.4.

a model makes an error at one station, one cannot assume it
will make a similar error at a nearby station. The physical co-
herence of atmospheric transport processes makes this most
unlikely, even if subgrid heterogeneity lends some indepen-
dence to the two stations.

There are two major approaches to characterising the
model error covariance, either a priori or a posteriori. A priori
we would like some machinery for calculating how uncer-
tainties in model components or drivers project into model
simulations. Lauvaux et al. (2009), for example, described
a mechanism for calculating correlations in simulated tracer
distributions due to correlated meteorological uncertainty but
this is not a comprehensive description, i.e. it leaves out many
sources of uncertainty. If we have an ensemble of models we
can use the ensemble of simulations using the prior value of
the target variables as a measure of the model contribution
to uncertainty. This was suggested by Tarantola (1987). The
motivating argument is that the ensemble of models samples
the uncertainty of the observation operator while maintain-
ing physical consistency for each member of the ensemble.
Equation (1) requires the PDF of the simulationH(x) for any
x. Tarantola (1987) suggests that the covariance of this PDF
can be calculated using xb.

First define the model mean

µb
=Hxb. (13)
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where the average is taken over the ensemble of models. We
can then write the ensemble covariance as

Rprior
i,j =

(
Hxb

i −µ
b
i

)(
Hxb

j −µ
b
j

)T
, (14)

where once again the average is over the ensemble of models
and the subscripts index the observations.

The second approach is analysis of the posterior residuals.
Desroziers et al. (2005) noted that the residuals must be con-
sistent with the PDF assumed for the model–data mismatch,
here described by R. If this is not the case we need to make a
correction to R. Here again we have a range of choices. If we
have enough data we can fit covariance models as functions
of space and time. We do not have enough data so we directly
calculate the ensemble covariance of the residuals as

Rsample
i,j =

(
Hxa

i − yi
)(

Hxj − yj
)T
, (15)

where the overbar denotes an average over the ensemble of
models and their respective analyses, and the indices i and
j refer to observations. Descriptively Rsample will be pos-
itive if, on average, models make errors of the same sign
for observations i and j . Note that if the ensemble of mod-
els is smaller than the number of observations (usually the
case) then both Rsample and Rprior are singular. Neither Rprior

nor Rsample capture observational error however. Tarantola
(2005, Eq. 1.106) points out that, for Gaussian PDFs, we can
combine the PDFs for the model and observations by adding
their respective covariances.

We note in advance an objection to using Rsample that, by
using the residuals, we are double-counting information in
any subsequent inversion. This is partly true, although firstly
we only use it to correct the spread not the location of the
related PDFs, and secondly the same objection holds for any
use of posterior diagnostics.

Figure 3 shows, for a sample of stations, the first-guess
and residual standard deviations from Eqs. (14) and (15) as
well as the control standard deviation. The standard devia-
tions show somewhat similar structure, with the largest val-
ues for terrestrially influenced stations such as the Baltic Sea
(bal), Hungary(hun) and the Tae-ahn Peninsula, South Korea
(tap). Magnitudes of the first-guess variances are larger how-
ever. There are 49 of the 76 stations where the first-guess
variance is larger than the observational error variance but
only one station (Mould Bay in Canada) where this is true for
the residual variance. This reflects the convergence of simu-
lations towards the observations. Covariances among stations
are more complex, but, as expected, they are strong whenever
multiple measurements occur near each other (e.g. at one sta-
tion or in one vertical profile). This has the desirable property
of de-weighting these measurements relative to an indepen-
dent observational covariance.

The weights for the case using Rsample are shown as
Fig. 1c, and the impact on regional estimates is shown as
the right bar in Fig. 2. The ranking is similar to the other

cases, especially for the preferred models. The main effect of
including the residual covariance is to reduce the penalty for
the least-preferred models. Given the small changes among
the preferred models it is no surprise that there is little change
in the regional estimates or total uncertainties. One reason for
the largest impact falling on the least preferred models is that
the residual covariance is dominated by the largest residuals,
which come from the least preferred models.

5 Model comparison and cross-validation

In Sect. 3 we applied the theory to the simplest possible
case of models with identical dimensionality and uncertain-
ties; they differed only in their Green’s function. The the-
ory is more general than this. We noted in Sect. 2.1 that
model performance is determined by the normalised predic-
tion error and the volume of the data space occupied by the
prior model. Neither of these depends directly on the dimen-
sionality of the prior model. We can compare a model with
two highly uncertain parameters against another with four
more certain parameters. This extends the BIC which con-
siders only the number of parameters. The case is quite com-
mon in biogeochemistry in which we often compare simple
models with empirical and highly uncertain parameters with
complex, physically based models whose parameters can be
linked to field experiments.

A special case occurs when we compare the prior and pos-
terior models. This is usually done by holding back a subset
of the data and testing the improvement in the fit to those data
(e.g. Peylin et al., 2016). The approach is frequently called
cross-validation. L provides a good basis for comparison of
the prior and posterior models. Most importantly it accounts
for the different volumes in the data space occupied by the
prior and posterior models. Posterior models (informed by
the previous assimilation) always occupy less volume in the
space of the cross-validation data than their unconstrained
or free-running prior model. Thus a good fit to the cross-
validation data is less likely to be a chance event.

It is also possible to weight model estimates by their ability
to fit cross-validation data. The steps are as follows:

1. divide data into assimilation and validation data;

2. carry out an ensemble of assimilations using each model
and the assimilation data;

3. calculate L using the posterior estimates from step two
and the validation data;

4. calculate ensemble statistics from the posterior esti-
mates from step two and L from step three.

Note that the prior means and covariances in Eq. (7) for
step three are the posterior means and covariances from step
two. Thus, while in Sect. 3.1 we varied only the model H
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Figure 3. Assumed standard deviations, standard deviations taken from the diagonal of Rprior and Rsample for a representative subset of
stations.

here we also vary xb and B. Variations in B or, more gen-
erally, variations in the projection of prior uncertainty into
observation space are not usually treated in cross-validation
studies (e.g. Pickett-Heaps et al., 2011).

For our example we parallel the test of Stephens et al.
(2007). They held back data from airborne profiles and rated
models according to their ability to fit seasonal changes in
vertical gradients. We cannot use the same measure in our
annual mean experiment but we do use the nine points from
the airborne profiles above Cape Grim, Tasmania, or Col-
orado, USA.

We can calculate L using these nine measurements and the
prior and posterior models. The comparison of L for these
cases shows whether the fit to the data held back from the
inversion has improved. One would hope so but Peylin et al.
(2016) showed that this is not always the case. In our case
L improves by several orders of magnitude due to both a re-
duction in the residuals and a narrowing of the PDF. Figure 4
shows the comparison of normalised L for the prior (panel
a) and posterior (panel b) models. The prior case shows little
variation around the equally weighted value of 1/17, while
this variation is considerably increased for the posterior case.
Figure 5 shows the ensemble statistics for three inversion
cases. The left bar is the equally weighted case for the entire
network (the left bar from Fig. 2), the middle bar shows the
equally weighted case for the inversion with the nine cross-
validation stations removed while the right bar shows the
same inversion but weighted according to p(Hi |ycv), where
ycv is the cross-validation data. Averaged across all regions

the impact of changing network and changing weighting are
comparable, although the largest changes are in North Amer-
ica and South America following from the change of net-
work. This was also observed by Pickett-Heaps et al. (2011).

6 Computational aspects

The hardest part of the calculation of p(Hi |y) is calculat-
ing the matrix HiBHT

i +R. There are several possible routes
depending on the size of the problem and the available ma-
chinery. In problems with few parameters it may be possible
to calculate and store Hi directly. Recall that Hi =∇xy. We
can calculate Hi either as the tangent linear of H (Griewank,
2000) or via finite difference calculations in which a pa-
rameter is perturbed. Once we calculate H we can gener-
ate the eigenvalues of HiBHT

i +R from the singular val-
ues of Hi . In other cases R is sparse, in which case we can
calculate

(
HiBHT

i +R
)−1

as a correction to R−1 using the
Sherman–Morrison–Woodbury formula (Cressie and Johan-
nesson, 2008).

If the problem is too large or the generation of the Jaco-
bian too costly, we need to generate an approximation of
the determinant of HiBHT

i +R. A common approach is to
calculate the leading eigenvalues of (the symmetric matrix
HiBHT

i ) through a so-called matrix-free approach. Rather
than an explicit representation of the matrix, matrix-free ap-
proaches require the capability to evaluate the product of
the matrix in question with any given vector. The prime ex-
ample of a matrix-free approach was published by Lanczos
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Figure 4. The log10 of p(Hi |y) for the prior (a) and posterior (b) with p(Hi |y) calculated using nine airborne measurements over Cape
Grim and Colorado.

Figure 5. Prior and posterior uncertainties for regional fluxes from TransCom following Gurney et al. (2002). The centre line of each box
shows the prior estimate of the mean while the box limits show the ±1σ uncertainties. The three bars show the mean (marked with “x”) and
±1σ uncertainty denoted by the length of the bar. The uncertainty is that of the ensemble including both the uncertainty for each model and
the dispersion among model means. The left bar shows the equally weighted case for the full network, the middle bar the equally weighted
case with the cross-validation stations removed and the right bar the L-weighted case for the cross-validation data.
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(1950). In our case the application of a matrix-free approach
requires the tangent linear of Hi to generate Hix and the ad-
joint model to generate Ht

ix. This is similar to calculations
performed in the conjugate gradient algorithm for the as-
similation problem itself (Fisher, 1998). The second term in
Eq. (7) is the Bayesian least-squares cost function evaluated
at the minimum, so, provided we want to calculate xa and not
just p(Hi |y), we already have this value.

7 Discussion and future work

The method we have outlined points out one way of incor-
porating measures of model quality into ensemble estimates.
The TransCom case points out its main limitation, a strong
dependence on the underlying PDFs. The same limitation
holds for other calculations with the underlying PDFs, es-
pecially measures of information content or posterior uncer-
tainty. Thus the largest effort needed to improve our calcula-
tion is the same as that for many other aspects of assimilation,
namely the assessment of the independent information avail-
able from large sets of observations, accounting for system-
atic errors in observation operators. This problem is partic-
ularly difficult in biogeochemical assimilation. The normal
application is of a single assimilation carried out over the
longest possible period. This is desirable because there are
usually few data available in any period (encouraging max-
imising the assimilation window) and many of the processes
we seek to elucidate are slow so that long windows are de-
sirable to reveal them. This means that it is hard to separate
systematic errors arising from the prior, the data themselves
or the observation operator.

Some assimilation problems are less subject to this weak-
ness. In numerical weather prediction, for example, we have
repeat assimilations. Thus we can test that the underlying
PDFs are consistent with their realisations. We also have
more direct tests of the quality of the assimilation via forecast
skill. The above argument suggests a strong need for ensem-
ble approaches in biogeochemical assimilation.

A more immediate application than properly weighting an
ensemble of models may be in model development. Here a
common question is of complexity over simplicity. If, as is
argued throughout this series, assimilation is a good guide
to parameter choice and even structure in models, we need
some way to tell whether adding extra processes, with their
concomitant uncertainties, is worth the effort. This is a stan-
dard problem in statistical inference. The Bayesian formula-
tion outlined here shifts the comparison of two models from
complexity to the volume of data space available to them, al-
lowing both complexity and uncertainty to play a role. This
offers a promising basis for comparing different versions of
a model.

The comparison between models and data sets is, how-
ever, incomplete. We cannot easily compare two assimila-

tions with different amounts of data since p(H|y) has a
strong dependence on dimension.

8 Conclusions

We have developed a simple application of hierarchical data
assimilation to incorporate choice among an ensemble of
models. We have demonstrated it for a computationally sim-
ple case, the annual mean version of TransCom. The method
provides unrealistically strong discrimination among models,
mainly due to incorrect assumptions about underlying PDFs.
We have also successfully applied the technique to the cross-
validation of the TransCom inversions by holding back air-
borne data over Tasmania and Colorado. The method, when
coupled with more sophisticated diagnostics of model–data
mismatch, should prove a useful extension to traditional bio-
geochemical data assimilation.

Code and data availability. The code and data files to run the
TransCom example and generate the figures in the paper can
be found at https://figshare.com/articles/Code_needed_to_run_
the_transcom_ensemble_weighted_probability_case_for_Data_
Assimilation_using_an_Ensemble_of_Models_A_hierarchical_
approach_Geoscience_Model_Development_Discussions_2016_
w_draft_item/4210212 (last access: 5 March 2020; Rayner, 2016).
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Appendix A: Appendix A: Finding the weights

We proceed via the multiplication of PDFs described in
Rayner et al. (2019, Sect. 4). We start with a uniform prior
distribution for the choice of our N models K(Hi)=

1
N

and
Gaussian PDFs for prior estimates of parameters and for
data. Our problem consists of finding the marginal probabil-
ity p(H=Hi).

Using Eq. (1.93) from Tarantola (2005) we have

p(Hi,x)=
K(Hi)G(x,xb,P) ·G(Hix,y,R)∑
i

∫
K(Hi)G(x,xb,P)G(Hix,y,R)dx

. (A1)

We wish to find

p(H=Hi)=

∫
σ(Hi,x)dx (A2)

and also

p(x)=
∑
i

p(x,Hi). (A3)

Model probability

The denominator is a normalisation, so if we worry only
about relative likelihoods we need only the integral of the
numerator. The multivariate Gaussian can be expanded as

G(xµ,C)= (2π)−n/2|C|−1/2

exp
[
−

1
2
(x−µ)T ·C−1

· (x−µ)
]
, (A4)

where n is the dimension of µ.
Substituting Eq. (A4) into Eq. (A1) gives

p(Hi,x)∝ |P|−1/2
|R|−1/2

exp
[
−

1
2
(x− xb)T ·P−1

· (x− xb)

]
exp

[
−

1
2
(Hx− y)T ·R−1

· (Hx− y)
]
. (A5)

To simplify this expression we note that determinant is
distributive over multiplication and also that multiplying ex-
ponentials is achieved by adding exponents. With some lin-
ear algebra, completing the square and the use of the special
form of the matrix inversion lemma

(P−1
+HTR−1H)−1

= P−PHT (HPHT
+R)−1HP, (A6)

we can reduce Eq. (A5) to the form

p(Hi,x)∝ |P|−1/2
|R|−1/2

exp
[
−

1
2
(x−µ)T ·A−1

· (x−µ)
]

× exp
[
−

1
2
(y−Hixb)T · (R+HiPHT

i )
−1
· (y−Hixb)

]
,

(A7)

where

µ= xb
+PHT

i · (R+HiPHT
i )
−1
· (y−Hixb) (A8)

and

A−1
= P−1

+HT
i R−1Hi . (A9)

Note that Eqs. (A8) and (A9) are the standard expressions
for the posterior mean and variance of x. Now substituting in
Eq. (A2) and using the fact that∫

dx exp
[
−

1
2
(x−µ)T ·A−1

· (x−µ)
]

= |A|1/2(2π)n/2, (A10)

we have

p(Hi)∝

∣∣∣AP−1
∣∣∣ ∣∣∣R−1

∣∣∣exp
[
−

1
2
(y−Hixb)T

·(R+HiPHT )−1
· (y−Hixb)

]
. (A11)

We also have the condition that∑
i

p(Hi)= 1. (A12)

Finally we can simplify
∣∣AP−1∣∣ ∣∣R−1

∣∣ using Eq. (A6) and
Sylvester’s determinant theorem, which states that for any
matrices U and V

|I+UV| = |I+VU| . (A13)

Substituting and simplifying yields

p(Hi)∝
∣∣R+HiPHT

i

∣∣−1/2
exp

[
−

1
2
(y−Hixb)T

·(R+HiPHT
i )
−1
· (y−Hixb)

]
. (A14)
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