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** Note: Complete details of model set-up are available as part of our Replication Data Set at  
https://dx.doi.org/10.7910/DVN/OJESO0 ** 

S1 WRF Model: Post-processing and Evaluation 

We evaluate WRF output against publicly available, 24h-averaged Chinese Meteorological 

Administration (CMA) observational data. CMA observational data is not used in the NCEP FNL 

reanalysis WRF initialization fields. CMA provides daily averages of surface pressure, wind speed, 

temperature, and relative humidity. Access to higher temporal resolution observational data is 

limited. We convert hourly (d01) and half-hourly (d02, d03) WRF output to daily averages before 

evaluation. We use a combination of NCAR Command Language v6.1.2 (NCL; 

http://dx.doi.org/10.5065/D6WD3XH5) and R v2.9.0 (https://www.r-project.org/) to process the 

observed and simulated output. The standard post-processing toolbox, consisting of the WRF 

Unified Post Processor  and METv4.1 Point-Stat Tool (http://www.dtcenter.org/code/) is not used 

here because of the low temporal resolution of observational data and file format mismatches. 

However, we base our evaluation method and procedures on the METv4.1 Point-Stat Tool. Both 

the METv4.1 and our version of the Point-Stat tool match WRF forecast fields to observation point 

locations for comparison. For surface observations, no interpolation is performed. Forecasts are 

instead matched to nearest CMA surface station observation point. Fig. S1 displays a map of the 

CMA surface network in 2006 and 2008, with approximate WRF domains overlaid with CMA 

station 54511 (C54511; 39.8N, 116.47E) highlighted in d03. We display sample evaluation results 

from C54511 in Fig. S3 through Fig. S5, using observed and simulated fields from 2006. In the 

evaluation, WRF forecast fields are matched to the nearest observation point.  

 

Comparing against publicly available 2006 CMA data from 35 stations across the d02 and d03 

domains (Fig S1), the median modeled wind speed was 15% higher than observations, with a 

median absolute deviation of 16%. We emphasize that a more robust evaluation of WRF 

windspeed (or other meteorological) biases relative to observations would require access to higher 

temporal resolution meteorological observations. Currently, we are restricted by data availability 

to 24-hour averages which blur smaller timescale processes and therefore likely underestimates 

the WRF surface wind speed bias relative to observations. We do not include d01 comparisons in 

this analysis, as the distance between nearest station and WRF gridcell center can be on the order 

of tens of kilometers, decreasing the information and value of the comparison. The graphics 

associated with the d02 and d03 comparisons are available from 

https://dx.doi.org/10.7910/DVN/OJESO0 as “006_WRFvCMAplots_2006_d0X.pdf”. 
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S2 STILT Model Set-up and Run Details 

The version of WRF-STILT1  used in this study corresponds to STILT release r701 of the AER-

NOAA branch at the STILT svn repository2, and Release-3-5 of the WRF-STILT interface3. Spin-

up periods are removed from the WRF meteorological data and the WRF netcdf output files are 

converted to .arl format (Air Research Laboratory; 

https://ready.arl.noaa.gov/HYSPLIT_data2arl.php#INFO) prior to being ingested into STILT. 

 

In this study, we transport an ensemble of 500 particles 7-days back in time to model footprints 

for each measurement hour at the receptor. The receptor (Miyun; 40°29′N, 116°46.45′E, 152 m 

above sea level (asl)) has the measurement inlet (STILT particle “release” point) located 6m above 

ground level (agl) (Fig. S2). We employ dynamic regridding, which accounts for resolution 

changes among the nested WRF domains. Mixing height is derived from WRF PBL heights; we 

set the surface layer as 50% of the mixed layer height. Footprints are integrated hourly. We set up 

the STILT runs as “pleasantly parallel” by running each month of a year simultaneously; hours 

within a month are run serially.  

 

When the receptor release occurs outside of peak daylight hours, stratification of the PBL becomes 

significant. Therefore, as is common practice in virtually all emissions optimization/assessment 

studies, we model the 1100 to 1600 (local time) subset. These daylight hours represent a typical 

window for which STILT reliably models transport (e.g., 4). We examine the unadjusted model 

performance at all times, averaged seasonally and diurnally, in Sec S7.   

 

S3 Anthropogenic CO2 inventories 
 

In order to facilitate comparison among the three anthropogenic inventories used in this study, we 

interpolate the two global inventories (EDGAR, 0.1ºx0.1º; CDIAC, 1ºx1º) to the same 0.25ºx0.25º 

grid as the regional inventory (ZHAO). We use the NCL Earth System Modeling Framework 

(ESMF) Conserve regridding method which minimizes deviation of the variable’s integral between 

source and destination grids. We evaluate the impact of regridding in Fig. S6 by comparing annual 

totals (MtCO2) before and after regridding. The ZHAO inventory remains on its native grid. We 

show that regridding does not appreciably affect the total emissions reported for mainland China 

by EDGAR and CDIAC, providing confidence in our representation of the two original 

inventories.  

 

The ZHAO inventory provides estimates of total annual emissions for 2005 through 2009. In 

addition, the 2005 and 2009 ZHAO emissions are spatially allocated to a 0.25º x0.25º grid. We 

average the 2005 and 2009 percent contributions of each grid cell to the total emissions to provide 

weights for spatially allocating 2006 through 2008 total annual emissions. Fig. S7 evaluates the 

validity of this assumption by identifying regions where the 2009 gridcell contribution to the total 

emissions is outside +/- 2% of its 2005 contribution (Fig. S7a) and +/-50% of its 2005 contribution 

 
1 https://www.bgc-jena.mpg.de/bgc-systems/projects/stilt/pmwiki/pmwiki.php?n=WRFSTILT.WRF-STILT 
2 https://projects.bgc-jena.mpg.de/STILT/svn/branches 
3 available from http://files.aer.com/external/CarbonSoftware 
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(Fig. S7b). We find the assumption to be valid; the mean change per gridcell from 2009 relative to 

2005 is -0.011% with a 2-s of 15%.  

 

Total uncorrected emissions for each anthropogenic inventory are calculated on the 0.25ºx0.25º 

grids and provided in Table S1. We provide emissions summed for each administrative region in 

the study domain, each STILT influence contour, and all China. Differences among the inventories 

zoomed to the L_0.90 region, are displayed in Fig. S8. Miyun and Beijing are encompassed by the 

L_0.25 contour. We display the average gridcell emissions of ZHAO (Fig. S8a) and the differences 

of EDGAR and CDIAC relative to ZHAO (Fig. S8b and Fig. S8c, respectively). In heavily emitting 

regions, ZHAO is typically higher than EDGAR and CDIAC. In regions where ZHAO is 

consistently lower than CDIAC, the differences are lower than the instances where ZHAO is 

higher. Note that, in the case of CDIAC, the uniformity of the differences includes artefacts from 

downscaling the gridded CDIAC inventory from 1°x1° to 0.25°x0.25°. 

 

S4 CT2015: Background Concentration Selection and Evaluation of Model Bias 
 

We derive estimates of background CO2 concentrations from NOAA CarbonTracker (CT2015; 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2015/). CT2015 enables us to estimate 

concentrations of CO2 prior to interaction with the surfaces in the study domain. Background value 

selection is summarized as follows. For each hour, the end x-y-z-time coordinates for each of 500 

particles is found and linked to its corresponding CT2015 CO2 concentrations using a 

spatiotemporal nearest neighbor approach. Only instances where a particle originated at the edge 

of the outermost domain and/or an altitude greater than or equal to 3000masl is included in the 

average background concentration calculation for that hour. If less than 75% of particles for an 

hour have valid background concentrations, that hour is not used in subsequent analyses. This 

selection criteria for background CO2 mole fractions enables realistic modeling of true background 

conditions that have not interacted with the domain within each hourly measurement’s maximum 

seven-day regional influence period. For the five-year study period, this method of boundary 

selection retains approximately 85% of hourly modelled values per year and across years.  

 

The CT2015 model for the study domain is heavily trained by observations made approximately 

weekly via flask sampling at four World Meteorological Organization (WMO) sites in the region 

(https://www.esrl.noaa.gov/gmd/dv/site/). Mt. Waliguan to the west of the receptor (WLG) 

represents free tropospheric background air; Ulaan Uul (UUM) in Mongolia represents clean 

continental air; Tae-ahn Peninsula (TAP) in South Korea represents urban-influenced air from the 

east; Lulin (LLN) in Taiwan represents urban-influenced air from the southeast. TAP and LLN 

become more prominent in their representation upwind/background air sites during the spring and 

summer months when the East Asian Monsoon begins to influence regional air trajectory patterns. 

WLG and UUM are prominent in their representation of upwind/background air at all times of the 

year but particularly weight background air during the winter and fall seasons. 

 

We quantify bias in the background model by evaluating observations against the nearest CT2015 

model pixel and level. Observations are filtered using highest quality flask sample points only. 

Fig. S10(top panel) displays the time series of 3-hourly modeled CT2015 values and observed 

WMO measurements. Deviation of residuals from a normal distribution are displayed in Fig. S10 
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(bottom panel). The typical 1-s model bias is 2ppm, but not all of the distributions are normal. For 

UUM, and therefore, CT2015 parameterization of clean continental background, the model-

measurement residuals largely follow a normal distribution centered around 0. The clean 

continental background generally exhibits well-mixed behavior and is not defined by large 

excursions in the CO2 signal. At the high-altitude WLG site representative of the free troposphere, 

the residuals follow a normal distribution centered around 0 but deviate from normal during 

instances where significant excursions in the CO2 signal are present. This is also the case at LLN 

(distribution centered near 2.5ppm). TAP residuals deviate significantly from normal. In general 

CT2015 does not capture CO2 events that are significantly different from global means; CT2015 

underestimates uptake processes and overestimates lower or higher than global mean.  

 

As not all deviations from observations can be represented as normal distributions, we place the 

model-measurement residuals at the four WMO sites in an error pool and select as part of the 

overall bootstrapping procedure for the modeling framework. 

 

As shown in Fig. S10, LLN shows CO2 depletion relative to CT2015 suggesting that for this 

analysis it is not representative as a background site. (CT is not responsive to all sites). The LLN 

observed CO2 drawdown compared to modeled CT2015 suggests that LLN sees a lot of surface 

influence on account of its location in the middle of an island in vegetated surroundings. Moreover, 

LLN is not an important sector for the influence region of this study; we include it primarily for 

reference for future studies considering regions of China that would be more sensitive to the sector 

associated with LLN. 

 

S5 Scaling Results and Methodology 

We translate the resulting mole fraction (ppm) mismatch between observed and modeled DCO2 to 

inventory corrections at annual and seasonal timescales. We scale in the L_0.90 region (Fig. S9) 

which represents regions that substantially influence the receptor without disproportionally 

weighting pixels that contribute very little to the observed signal (Fig. S11). As discussed in the 

main text, we are still using surface influences from the entire STILT footprint to derive the CO2 

concentration at the receptor, but we ascribe the resulting model-observation mismatch as 

dominated by the L_0.90 region. Table S2 provides seasonal fluxes for each year before and after 

scaling. Annual scaling results are in Table 2 of the main text. 

 

At annual scales, the dominant contributor to the CO2 signal are anthropogenic emissions; 

correction at annual scales is therefore applied only to the anthropogenic emissions inventories. 

The other significant contributors include longer term biological and ocean carbon sinks and 

interannual variability within these components, but for this study region, these components are 

embedded in the background concentrations. In particular, 13% of the northern China ecosystems 

and 20% of northeastern China’s ecosystems are mixed forests. However, the ecosystems with 

greatest influence on this single site are croplands with high intra-annual carbon turnover rates. 

The heavily cropped L_0.90 region implies rapid turnaround of vegetation carbon stocks at the 

annual scale, justifying this assumption. At these timescales, we derive the DCO2,obs/DCO2,mod ratio 

which represents the factor by which the annual anthropogenic inventory must be scaled in order 

to match observations. We use a model of the mean method to derive the annual scaling factors, 
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where hh represents each local afternoon hour (1100 to 1600) in the year. SF>1 implies the model 

underestimates CO2 concentrations while SF<1 implies the model overestimates CO2 

concentrations. We obtain 95% confidence bounds by bootstrapping uncertainties in the numerator 

and denominator separately, and obtaining the 0.025 and 0.975 quantiles from the ratio of the 

means of the two distributions. The annual influence contours are overlayed on the IGBP land use 

map in Fig. S9, and shows the dominant grassland/cropland influence on the modeled Miyun signal 

at annual scales. As stated previously, The Miyun CO2 signal is certainly affected by other 

biological/oceanic/interannual variability; but these are not demonstrated to be significant parts of 

the regional (DCO2) signal. These are longer term features embedded in the background 

concentrations. 

 

At the seasonal timescales, however, evaluation of CO2 processes is complicated by the biogenic 

flux contribution during the growing season and, to a lesser extent, the effects of ecosystem 

respiration in the dormant season. At these timescales, we derive additive corrections from 

converting observation-model mole fraction mismatch to the total CO2 to be added or subtracted 

from the inventories. We correct the anthropogenic and vegetation inventories together as it is not 

possible to distinguish the contributions from our existing observational data set. For each modeled 

hour we derive a residual-based flux correction, DFhh, in µmolCO2m
-2s-1: 

 

$122 =
$%&',+,-.. − $%&',/+0..

∑ 56672289:;2
<

	
                            

where hh represents each local afternoon hour (1100 to 1600) in the season and h represents the 

STILT footprint back-trajectory hour up to 7 days back in time. Given that anthropogenic 

emissions are positive terms and the biogenic component is a net balance of two opposing terms 

(uptake and release) of CO2 during the growing seasons, use of inventory scaling factors for 

growing season scaling is inappropriate. That is, even a small mole fraction difference between 

modeled and observed in the growing season can result in meaningless scaling factors when there 

is a difference in sign involved. While scaling factors are appropriate during dormant seasons, for 

consistency we apply the same method of additive corrections across all seasons and report the 

adjusted inventory as fluxes (kg CO2 m-2 season-1). The methods are comparable; inventory 

corrections obtained by both methods during the winter and fall exhibit converging 95% 

confidence intervals. 
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C54511 

Fig. S1. CMA Station Map (2006, 2008) with WRF domain boundaries. 

Sample WRF evaluation results are provided for Station 54511 (indicated by 

arrow on map), near Miyun receptor. 

(a) (b) 

Fig. S2. Miyun Receptor and surroundings, April 2007. (a) Miyun inlet at 

6magl/158masl, looking ENE,  shows a small rural village in the valley below site, a small 

patch of short pines, that are generally in downwind direction. Even in spring there is still 

considerable bare ground. (b) view from Miyun sampling site, looking SW. Foreground 

shows a farmhouse and various outbuildings that were no longer in active use. Small-scale 

agricultural fields that were being converted to fruit-tree orchards. Unmanaged lands 

were grassy/shrub vegetation on hillsides. 
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(a) 

(b) 

(c) 

(d) 

Fig. S3. Evaluation of WRF output against observational data. 2006 Meteorology 

timeseries for sample WRF gridcell (39.825N, 116.51E) evaluated against nearest CMA 

Station C54511 (39.800N 116.47E). WRF Meteorology averaged from half-hourly to daily 

for (a) Specific Humidity; (b) Surface Temperature; (c) Surface Pressure; (d) Surface Wind 

Speed. Original half-hourly output displayed in grey. Shaded yellow region represents 

observed daily range; daily minimum for windspeed is not available, but assumed to be 

0m/s. 
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Fig. S5. Q-Q plots of Observed and WRF Modeled (Forecast) meteorology for sample WRF 
gridcell. Gridcell (39.825N, 116.51E) evaluated against nearest CMA Station C54511 (39.800N 

116.47E). Time-base of fields is daily average. 

Fig. S4. Observed vs WRF Modeled (Forecast) meteorology for sample WRF gridcell. 
Gridcell (39.825N, 116.51E) evaluated against nearest CMA Station C54511 (39.800N 

116.47E). Time-base of fields is daily average. 
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Fig. S6. ZHAO, EDGAR, and CDIAC estimates of total annual CO2 emissions for 
Mainland China, 2005 to 2009. EDGAR and CDIAC are regridded to 0.25ºx0.25º 

grid using the NCL Earth System Modeling Framework Conserve regridding function. 
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(a) (b) 

2009-2005 Threshold: 2% Difference 2009-2005 Threshold: 50% Difference 
Fig. S7 Spatial Allocation of ZHAO inventories (2006-2008). Mean percent difference of gridcell 

contribution to total emissions is -0.011% ±15% (2-s). We highlight instances where 2009 gridcell 

contribution to total annual emissions differs from its 2005 value by (a) more than 2% and (b) more 

than 50%. Blue represents a relative DECREASE in 2009 relative to 2005; red represents a relative 

INCREASE; grey represents values WITHIN the specified threshold.   

(a) (b) (c) 

Fig. S8 Mean annual anthropogenic emissions (Mt CO2 yr-1, 2005-2009) zoomed to approximate 
d02 extent. Black contour lines represent the 25th, 50th, and 75th, and 90th percentiles of multi-year mean 

annual STILT footprint influences. (3a) displays emissions estimated by ZHAO; black and green circle 

represents Miyun receptor. (3b) displays EDGAR inventory difference relative to ZHAO; (3c) displays 

CDIAC inventory difference relative to ZHAO. ZHAO is consistently higher than EDGAR and CDIAC 

in the Beijing area. Both EDGAR and CDIAC are regridded from their original grids to the ZHAO grid 

via ESMF Conserve regridding technique. 
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Fig. S10. Evaluation of CT2015 model bias. ~Weekly flask samples from WMO sites (LLN, 

TAP, UUM, WLG) used to train CT2015 compared with nearest CT2015 pixel. Top row: 

timeseries. Bottom row: QQ plots of model-measurement residuals. 

Fig. S9. IGBP land use categories in domain overlaid with STILT influence contours.  

Note western edge of domain is slightly truncated. 

L_0.90 Region 
L_0.75 Region 
L_0.50 Region 
Miyun Receptor 
Beijing 
 * 
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Fig. S11. Example surface influence maps and basis for percentile contours. (a) Sample 

hourly STILT footprint. Measurement hour on January 23, 2005 at 0700UTC (1500 Local). 

Surface influences are provided in ppm µmol-1m-2s-1. Receptor release point is indicated by the 

green cross. (b) Example of annual average footprint for 2005 as log10(ppm µmol-1m-2s-1).  

Influence of gridcells on receptor drops by 5 orders of magnitude from L_0.90 contour to d01 

edges. Note scale differences in sensitivity axes for (a) and (b). Black rectangles are d02 and 

d03 domain boundaries. (c) Cumulative sum of sorted (high to low) mean annual footprint 

from 2005-2009. Percentiles selected as points at or below fractional cutoff (0.5, 0.75, 0.9, 

0.95, 0.99) of summed ordered footprint. Effect of excluding points outside each contour 

region is evident by steepness of curve beyond the respective vertical cutoff. 
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Table S1. Comparison of unadjusted annual anthropogenic CO2 emissions (TgCO2) by region. EDGAR and 
CDIAC are reported as percent differences relative to ZHAO. *: Based on sums AFTER spatial allocation of ZHAO 
inventories but are <0.1% different from original inventory totals. 

 
 STILT 

L_0.25 
STILT 
L_0.50 

STILT 
L_0.75 

STILT 
L_0.90 

IM NE N C SE S SW All 
China 

20
05

 ZHAO 135.1 697.0 1796 3015 252.1 682.8 2244 502.4 1486 519.6 759.5 7126 
EDGAR -31% -35% -28% -23% +1.9% +1.2% -32% +1.2% -12% -19% -25% -17% 
CDIAC -49% -44% -42% -36% -48% -32% -32% +13% -23% -1.7% +17% -19% 

20
06

 ZHAO 124.8 734.4 1922 3273 311.7 690.6 2440 558.9 1590 567.6 822.9 7726* 
EDGAR -17% -32% -26% -21% -8.2% +13% -31% +2.1% -7.9% -19% -23% -15% 
CDIAC -39% -41% -40% -34% -54% -26% -31% +13% -21% -0.74% +20% -17% 

20
07

 ZHAO 136.8 805.0 2107 3588 341.6 757.0 2675 612.6 1743 622.1 902.0 8469* 
EDGAR -18% -33% -27% -22% -9.8% +12% -32% +0.76% -9.3% -21% -25% -16% 
CDIAC -41% -43% -42% -37% -55% -29% -33% +9.2% -23% -4.2% +15% -20% 

20
08

 ZHAO 140.5 826.8 2164 3685 350.9 777.5 2747 629.2 1790 639.0 926.4 8699* 
EDGAR -12% -27% -21% -16% -3.8% +18% -26% +7.5% -1.9% -14% -20% -9.7% 
CDIAC -39% -41% -40% -35% -54% -27% -31% +12% -21% -1.4% +19% -18% 

20
09

 ZHAO 125.1 864.7 2301 3974 424.6 777.2 2967 694.8 1903 693.4 997.2 9370 
EDGAR +5.4% -26% -20% -17% -16% +25% -27% +3.5% -1.8% -15% -21% -11% 
CDIAC -26% -40% -40% -36% -60% -22% -32% +8.0% -21% -3.5% +17% -19% 
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Table S2. Seasonal Flux Corrections and 95% CI (kg CO2 m-2 month-1) for L_0.90 region. Original fluxes are in regular font; 
corrected fluxes and 95% CI are in bold 

 JFM/Winter AMJ/Spring JAS/Summer OND/Fall 
20

05
 

ZHAO 0.133 
0.129 (0.103, 0.105) 

0.0492 
0.0735 (0.0195, 0.135) 

-0.0540 
-0.170 (-0.237,-0.106) 

0.132 
0.164 (0.137, 0.193) 

EDGAR 0.108 
0.151 (0.124, 0.174) 

0.0256 
0.116 (0.0597, 0.176) 

-0.076 
-0.120 (-0.186, -0.0478) 

0.110 
0.181 (0.154, 0.204) 

CDIAC 0.0937 
0.144 (0.117, 0.170) 

0.0117 
0.132 (0.0734, 0.185) 

-0.0972 
-0.121 (-0.183, -0.0445) 

0.0951 
0.177 (0.147, 0.206) 

20
06

 

ZHAO 0.131 
0.146 (0.122, 0.167) 

0.0601 
0.156 (0.0990,0.217) 

-0.0568 
-0.135 (-0.197,-0.0708) 

0.140 
0.174 (0.124, 0.217) 

EDGAR 0.106 
0.169 (0.145, 0.190) 

0.0421 
0.185 (0.126, 0.246) 

-0.0771 
-0.0951 (-0.157, -0.0310) 

0.114 
0.204 (0.152, 0.251) 

CDIAC 0.0929 
0.165 (0.139, 0.189) 

0.0260 
0.194 (0.134, 0.254) 

-0.102 
-0.0912 (-0.157, -0.0171)  

0.0965 
0.223 (0.168, 0.270) 

20
07

 

ZHAO 0.139 
0.154 (0.118, 0.189) 

0.0831 
0.109 (-0.00290, 0.217) 

-0.0735 
-0.151 (-0.205, -0.0958) 

-0.171 
0.174 (0.129, 0.214) 

EDGAR 0.109 
0.171 (0.133,0.205) 

0.0569 
0.141 (0.0282, 0.264) 

-0.103 
-0.110 (-0.170, -0.0528) 

0.138 
0.192 (0.151, 0.231) 

CDIAC 0.0917 
0.157 (0.119, 0.191) 

0.0323 
0.149 (0.0381, 0.271) 

-0.123 
-0.113 (-0.173, -0.490) 

0.119 
0.184 (0.138, 0.222) 

20
08

 

ZHAO 0.120 
0.134 (0.109, 0.160) 

0.0577 
0.0157 (-0.0470,0.0794)  

-0.0290 
-0.170 (-0.247, -0.0940)  

0.143 
0.201 (0.159, 0.243) 

EDGAR 0.0973 
0.145 (0.120, 0.171) 

0.0459 
0.0492 (-0.0140,0.111) 

-0.419 
-0.127 (-0.207,-0.0447) 

0.118 
0.219 (0.174, 0.259) 

CDIAC 0.0785 
0.139 (0.109, 0.166) 

0.0135 
0.0559 (-0.0114, 0.122) 

-0.0800 
-0.134 (-0.217, -0.0494) 

0.0960 
0.224 (0.179, 0.264) 

20
09

 

ZHAO 0.144 
0.231 (0.130, 0.300) 

0.0809 
-0.0655 (-0.127, -0.00290) 

0.0277 
-0.125 (-0.193, -0.0449) 

0.134 
0.215 (0.158, 0.265) 

EDGAR 0.130 
0.249 (0.156, 0.313) 

0.0563 
-0.0653 (-0.124, 0.00) 

-0.00797 
-0.122 (-0.197, -0.0399) 

0.112 
0.217 (0.165, 0.266) 

CDIAC 0.0970 
0.238 (0.147, 0.306) 

0.0355 
-0.0404 (-0.105, 0.0239) 

-0.0312 
-0.110 (-0.192, -0.0267) 

0.0874 
0.215 (0.162, 0.270) 


