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Abstract. The Orbiting Carbon Observatory 2 (OCO-2) is
NASA’s first satellite dedicated to monitoring CO2 from
space and could provide novel insight into CO2 fluxes across
the globe. However, one continuing challenge is the devel-
opment of a robust retrieval algorithm: an estimate of atmo-
spheric CO2 from satellite observations of near-infrared ra-
diation. The OCO-2 retrievals have undergone multiple up-
dates since the satellite’s launch, and the retrieval algorithm
is now on its ninth version. Some of these retrieval updates,
particularly version 8, led to marked changes in the CO2 ob-
servations, changes of 0.5 ppm or more. In this study, we
evaluate the extent to which current OCO-2 observations can
constrain monthly CO2 sources and sinks from the biosphere,
and we particularly focus on how this constraint has evolved
with improvements to the OCO-2 retrieval algorithm. We
find that improvements in the CO2 retrieval are having a po-
tentially transformative effect on satellite-based estimates of
the global biospheric carbon balance. The version 7 OCO-2
retrievals formed the basis of early inverse modeling stud-
ies using OCO-2 data; these observations are best equipped
to constrain the biospheric carbon balance across only con-
tinental or hemispheric regions. By contrast, newer versions
of the retrieval algorithm yield a far more detailed constraint,
and we are able to constrain CO2 budgets for seven global
biome-based regions, particularly during the Northern Hemi-
sphere summer when biospheric CO2 uptake is greatest. Im-
provements to the OCO-2 observations have had the largest
impact on glint-mode observations, and we also find the
largest improvements in the terrestrial CO2 flux constraint
when we include both nadir and glint data.

1 Introduction

Over the past 5 years, the field of CO2 remote sensing
has evolved rapidly. The sheer number of satellites has in-
creased with the launch of TanSat in 2016 (Yang et al., 2018),
GOSAT-2 in 2018 (e.g., Nakajima et al., 2012), and OCO-3
in 2019 (e.g., Eldering et al., 2019). Several additional satel-
lites have also been funded or proposed (e.g., Polonsky et al.,
2014; Tollefson, 2016). In addition, the actual CO2 observa-
tions or satellite retrievals have also been changing. Roughly
once per year, the NASA Atmospheric CO2 Observations
from Space (ACOS) science team releases a new version of
the OCO-2 and GOSAT observations that incorporates the
most recent advances in the retrieval algorithm and addresses
observational errors that have been identified by the scientific
community (e.g., O’Dell et al., 2012). Early top-down studies
of CO2 fluxes using OCO-2 employed version 7 of the obser-
vations (e.g., Chatterjee et al., 2017; Crowell et al., 2019; Liu
et al., 2017; Nassar et al., 2017), but the ACOS team has sub-
sequently updated the observations through version 9 (at the
time of writing).

The OCO-2 observations have changed markedly through
this process. One of the largest changes occurred with the
release of version 8 of the OCO-2 observations in Septem-
ber 2017 (Fig. 1). This update incorporated a multitude of
changes to the quality control prescreening process, the for-
ward spectroscopy model, the retrieval algorithm, and the
bias correction (O’Dell et al., 2018b). These changes led
to widespread improvements in the observations; version 8
has smaller random errors when compared to ground-based
observations, a smaller bias between land nadir and land
glint observations, and less bias across many northern high-
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Figure 1. Differences between versions 7 and 8 of the OCO-2 observations (a) and between versions 8 and 9 of the observations (b). Version
8 was a much larger update to the observations than version 9. We average all of the differences between observations onto a grid to make
the differences more visually apparent. The results shown here are for observations collected in 2015, the time period analyzed in this study.
In addition, this map only displays grid boxes with more than 250 total observations in 2015.

latitude terrestrial regions (Wunch et al., 2017; O’Dell et al.,
2018b). These improvements had a particularly large impact
on glint-mode observations. For example, a correction to the
averaging kernel reduced a 0.3 ppm bias in land glint data rel-
ative to land nadir (O’Dell et al., 2018b). Previously, inverse
modeling studies using version 7 of the OCO-2 retrieval did
not assimilate land glint and land nadir observations simul-
taneously due to this bias (e.g., Crowell et al., 2019). Fur-
thermore, version 7 glint observations had biases greater than
1 ppm across the southern ocean that have been remedied in
version 8. These errors appeared to be due to high-altitude
aerosols, so the version 8 algorithm includes a new aerosol
layer in the upper troposphere and lower stratosphere that
has remedied many of these biases. Overall, the observations
rated as good quality in version 8 are very different from
those in version 7: 24 % of the observations that were marked
as high quality in version 7 were marked as low quality in
version 8, and 34 % of the observations marked as high qual-
ity in version 8 were marked as low quality in version 7.

More recently, version 9 of the OCO-2 observations was
released in October 2018. Improvements in version 9 of the
retrieval algorithm yielded smaller changes in the observa-
tions (O’Dell et al., 2018a). In particular, this version in-
cludes a correction for small-scale biases over land due to
topography. Furthermore, the ACOS team relaxed a filter
that discards observations collected over dark surfaces, and
this change yields more observations over tropical forests
(O’Dell et al., 2018a). In spite of these advances, there are
still many opportunities for further improving the retrievals.
For example, OCO-2 retrievals appear to show biases across
most of the northern tropical oceans (O’Dell et al., 2018b).

These improvements to the observations should also im-
prove the reliability or accuracy of CO2 fluxes estimated us-
ing the observations. Several studies indicate that errors in
the retrieval can have a substantial impact on the strength of
the CO2 flux constraint (e.g., Chevallier et al., 2007; Baker
et al., 2010; Crowell et al., 2019; Miller et al., 2018). For

example, Miller et al. (2018) explored the detectability of
biospheric CO2 fluxes using version 7 of the OCO-2 obser-
vations. They found that OCO-2 observations can be used
to identify variations in biospheric fluxes within continental
or hemispheric regions but that the observations have lim-
ited ability to constrain biospheric CO2 fluxes across smaller
regions. The authors constructed a series of synthetic data
experiments to understand the most important factors limit-
ing the CO2 flux constraint; they concluded that atmospheric
transport errors and prior flux errors play a role, but retrieval
errors are a particularly salient factor. The OCO-2 science
team has also developed an ensemble of inverse modeling
estimates of CO2 fluxes, and recent comparisons show re-
sults that are broadly parallel to Miller et al. (2018): inverse
models provide consistent CO2 flux totals for continents or
hemispheres but diverge for smaller regions (e.g., Crowell
et al., 2019).

The present study is a follow-up to Miller et al. (2018). We
reexamine the conclusions of that study in light of recent im-
provements in OCO-2 observations of CO2. We also identify
opportunities for future improvements to the retrievals.

2 Methods

2.1 Overview

Uncertainties in biospheric fluxes are thought to be greater
than in other CO2 source types (e.g., National Research
Council, 2010; Huntzinger et al., 2012; Le Quéré et al.,
2018), and the CO2 signal from biospheric fluxes is often
larger than from other source types. Hence, we design a set
of top-down experiments to examine whether we can detect
variations in biospheric CO2 sources and sinks within dif-
ferent regions of the globe and different months of the year
using OCO-2 observations. In the present study, these varia-
tions are defined as any spatial or temporal patterns in CO2
fluxes that have been gridded to the resolution of a global
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Figure 2. The two hemispheric regions (a), four continental re-
gions (b), and seven biome-based regions (c) used in this study.
These regions are based upon the world biome map by Olson et al.
(2001). The two- and four-region maps are constructed by aggregat-
ing individual biomes into larger regions.

atmospheric model: 1◦ latitude by 1.25◦ longitude and a 3-
hourly time interval.

Detecting variations in CO2 fluxes is a prerequisite for
constraining CO2 budgets or flux totals; we must be able to
detect variations in CO2 sources and sinks across a region
if we are to constrain budgets across any region of smaller
size. We begin with two large hemispheric regions and then
decrease the size of those regions to create increasingly chal-
lenging tests of the OCO-2 observations (Fig. 2); we use four

and seven global regions, respectively, in each of these ex-
periments. All of these regions are based on a map of global
biomes presented in Olson et al. (2001). The seven-region
map contains broad global biomes aggregated from those in
Olson et al. (2001), while the two- and four-region maps have
been aggregated from Olson et al. (2001) to form even larger
regions. We use a biome-based map because inverse model-
ing studies often estimate CO2 flux totals for biome-based
regions, and these regions have clear ecological significance.

We construct this set of experiments for each of the last
three versions of the OCO-2 observations and examine how
the results change with the retrieval version. These exper-
iments are identical except for the retrieval version used.
Therefore, this setup provides a means to understand how im-
provements in the observations are improving the constraint
on biospheric CO2 fluxes. We examine these questions for
each month within the year 2015 – to understand how these
results vary by season and by region or biome.

2.2 Implementation of the top-down experiments

We design a regression framework to determine whether we
can detect variations in CO2 fluxes using OCO-2 observa-
tions. This section provides an overview of the approach,
but Miller et al. (2018) provides full descriptive and math-
ematical detail. This regression will try to match CO2 ob-
servations from OCO-2 using numerous atmospheric model
outputs. Each model output estimates the enhancement in to-
tal column CO2 (XCO2) from fluxes in a particular region
and a particular month. We generate all of these model out-
puts of CO2 using the Parameterized Chemistry and Trans-
port Model (PCTM) (Kawa et al., 2004). The model setup
used here has a spatial resolution of 1◦ latitude by 1.25◦ lon-
gitude, and we incorporate CO2 fluxes at a 3-hourly time
resolution. The wind fields used to drive PCTM are from
the Modern-Era Retrospective analysis for Research and Ap-
plications (MERRA) product (Rienecker et al., 2011). This
setup is identical to Miller et al. (2018).

We run many atmospheric model simulations using nu-
merous different biospheric CO2 flux estimates. The regres-
sion will try to reproduce OCO-2 observations using a linear
combination of these model simulations. For example, in the
seven-region experiments, we use seven different geographic
regions, seven biospheric CO2 flux estimates, and 16 differ-
ent months (September 2014–December 2015). We discard
results from the first 4 months as model spin-up. These com-
binations equate to 784 total atmospheric model outputs. We
further run atmospheric model simulations using a spatially
and temporally constant flux in each region and each month,
and we allow the regression to use these model outputs as
well. The Supplement and Miller et al. (2018) describe the
CO2 flux estimates and regression in greater detail.

This approach provides a means to evaluate when and
where current satellite observations can constrain variations
in CO2 fluxes. At least some of the atmospheric model out-
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puts that are driven by biospheric CO2 flux estimates should
help reproduce the OCO-2 observations better than the model
outputs that are driven by spatially and temporally constant
fluxes. If so, a model with spatially and temporally vari-
able fluxes is better able to reproduce OCO-2 observations
than a model with constant fluxes. This result would imply
that OCO-2 observations can be used to detect variations in
biospheric CO2 sources and sinks within a given region for
a given month. By contrast, suppose that the atmospheric
model outputs driven by biospheric CO2 flux estimates do
not reproduce the OCO-2 observations any better than the
model outputs with constant CO2 fluxes. This result would
imply one of several conclusions. First, the observations may
not be sensitive to fluxes from the region or month in ques-
tion. This outcome may occur if the magnitude of fluxes is
small in a given region or if there are no OCO-2 observations
near that region. Second, errors in the atmospheric model or
in the OCO-2 observations may obscure variations in XCO2
that are due to CO2 fluxes. Lastly, the biospheric CO2 flux
estimates used in the atmospheric model may not be skilled
and may not reflect real-world biospheric CO2 fluxes. How-
ever, in this study, we offer up seven biospheric CO2 flux
estimates for each region and each month, and at least one of
these estimates should correlate with real-world CO2 fluxes
to a reasonable extent. Hence, it is unlikely that this explana-
tion would drive the results. Rather, it is more likely that the
observations are not sensitive to fluxes from a given region
or that errors in the model–data system are too large.

Note that anthropogenic, biomass burning, ocean, and bio-
spheric fluxes all contribute to XCO2 observed by OCO-2,
and we need to account for non-biospheric CO2 fluxes in or-
der to isolate the signal from biospheric fluxes in the regres-
sion. We model atmospheric enhancements of XCO2 from
anthropogenic emissions using EDGAR v4.2 FT2010 (Euro-
pean Commission, 2013; Olivier et al., 2014), climatologi-
cal ocean fluxes using Takahashi et al. (2016), and biomass
burning fluxes using the Global Fire Emissions Database
(GFED), version 4.1 (van der Werf et al., 2010; Giglio et al.,
2013); each of these model outputs is considered in the re-
gression.

We further implement model selection to evaluate when
and where current satellite observations can constrain vari-
ations in biospheric CO2 fluxes. Model selection will deter-
mine which combination of atmospheric model outputs to
include in the regression based upon which best reproduces
the OCO-2 observations. If this combination includes at least
one biospheric CO2 flux model for a given region and season,
we conclude that the observations likely can be used to con-
strain variations in CO2 fluxes. However, if this combination
does not include any biospheric CO2 flux model for a given
region and season, we conclude that the observations likely
cannot be used to constrain flux variations for that region and
season.

We specifically employ a form of model selection known
as the Bayesian information criterion (BIC), an approach

commonly used in regression modeling (e.g., Ramsey and
Schafer, 2012, chap. 12) and more recently in atmospheric
inverse modeling (e.g., Gourdji et al., 2012; Miller et al.,
2013; Shiga et al., 2014; Fang et al., 2014; Fang and Micha-
lak, 2015). To this end, we create different combinations of
model outputs and use each combination in the regression.
We score each combination based upon how well it repro-
duces the OCO-2 observations; combinations with a lower
weighted sum of squares error receive a better score. Each
combination is also scored based upon the total number of
model outputs in that combination. Specifically, combina-
tions with a greater number of model outputs receive a larger
penalty for complexity, and this penalty prevents combina-
tions that overfit the data from receiving an anomalously
good score. The best combination of atmospheric model out-
puts is the one with the lowest score. We subsequently ex-
amine this combination and tally whether at least one atmo-
spheric model output using a biospheric flux estimate was
selected for each region and each month of the year. Miller
et al. (2018) and the Supplement describe this approach in
greater detail, including the specific equations for the BIC.

3 Results and discussion

3.1 Strength of the biospheric CO2 flux constraint

The constraint on CO2 fluxes using recent versions of the
OCO-2 observations is a step-change improvement relative
to previous versions. Overall, there was only a limited ability
to detect variations in monthly CO2 fluxes across individual
biomes using version 7 of the retrievals (Fig. 3a–c, Miller
et al., 2018). However, these capabilities have changed using
versions 8 and 9 of the observations (Fig. 3d–i). Variations in
CO2 fluxes are detectable across tropical biomes throughout
much of the year and across temperate biomes in the North-
ern Hemisphere summer when fluxes from these regions are
most variable. These results imply that the updated OCO-2
observations can be used to detect and constrain variations in
monthly CO2 fluxes from seven biome-based regions in cer-
tain circumstances – in about two-thirds of all months in the
tropics and during the Northern Hemisphere summer in the
extratropics.

The improvement in the flux constraint is particularly ev-
ident in the four- and seven-region experiments (Fig. 3b–c
and e–f). In the four-region model selection experiments, the
OCO-2 observations can be used to detect variations in trop-
ical fluxes for most months of the year (Fig. 3e). In other
words, at least one biosphere flux model is found to explain a
sufficiently large fraction of the observed variability in XCO2
as to be selected via the BIC model selection procedure for
the tropical regions for most months. This result indicates
that spatiotemporal variability in CO2 fluxes from within
each of these regions is preserved in the OCO-2 observations.
This represents a marked improvement over results when us-
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Figure 3. Results of the model selection experiments using versions 7, 8, and 9 of the OCO-2 observations. Versions 8 and 9 provide a
much stronger constraint on biospheric CO2 fluxes than version 7. The top row (a, d, g) displays the results of the experiments with two
global regions, the second row (b, e, h) with four global regions, and the third row (c, f, i) with seven global regions. Each box is color-
coded based upon the number of months in which at least one biospheric flux model is chosen using model selection. Dark colors indicate
a strong constraint on monthly CO2 fluxes while light colors indicate a weak constraint. Note that these experiments include nadir-, target-,
glint-mode observations. In addition, version 7 results are the same as those in Miller et al. (2018).

ing observations from version 7 of the OCO-2 retrieval algo-
rithm (Fig. 3b and e, Miller et al., 2018). The results using
the newer versions 8 and 9 also show substantial improve-
ments in other regions, including dryland and dry monsoon
regions, temperate regions, and high-latitude regions (Fig. 3e
and h).

The seven-region model selection experiments are an even
more challenging test of current observations. These experi-
ments examine whether we can detect spatiotemporal vari-
ations in biospheric fluxes across seven broad, aggregated
global biomes. These experiments produce much better re-
sults using versions 8 and 9 of the observations. Specifically,
biospheric flux models are selected across tropical and sub-
tropical biomes for at least 1 month of every season. The
same is true across all temperate and high-latitude biomes
for a minimum of 1 month during the Northern Hemisphere
summer.

These improvements appear greatest across tropical
biomes. There is a consistent flux signal from many tropi-
cal regions throughout the year, and hence we are able to
detect variations in fluxes from tropical regions across dif-
ferent seasons using versions 8 and 9 of the observations.
By contrast, the atmospheric signal due to biospheric CO2
fluxes in northern mid- and high latitudes has the largest ab-
solute magnitude during the Northern Hemisphere summer.
As a result, we see a large improvement in the flux constraint
in midlatitudes in the Northern Hemisphere summer but not
in other times of year when the absolute magnitude of CO2
fluxes is smaller. Furthermore, there are far fewer land nadir
and land glint observations in northern mid- and high lati-
tudes in the Northern Hemisphere winter relative to summer.

One notable feature of all model selection experiments is
the result for dryland and dry monsoon regions (Fig. 2c).
At first glance, it may appear surprising that biospheric flux
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models are selected for so many months in this region, given
that some parts of this region are very dry and presumably
have small CO2 fluxes. Several semiarid regions within this
classification have a very distinct monsoon that can bring
over 500 mm of precipitation per month (e.g., northeastern
Brazil, western India, and Pakistan). As a result, there is a
large spatial contrast in CO2 fluxes across these regions dur-
ing the Northern Hemisphere spring and summer – large CO2
uptake in places with a spring and summer monsoon and little
to no fluxes in places like the Sahara or the Arabian Penin-
sula.

Note that the results using version 9 of the observations
are not very different from those using version 8. The change
in the observations between versions 8 and 9 is only incre-
mental (e.g., Fig. 1b). Version 9 has a lower quality control
threshold for surfaces with low albedo, resulting in more ob-
servations across tropical rainforests (O’Dell et al., 2018a),
and this version includes a topography correction that mostly
manifests at small spatial scales. The latter change could be
very important for studies that estimate point sources or ur-
ban emissions using OCO-2. However, these changes are un-
likely to make a large difference in this study both given
the large size of the regions examined and the 1◦ latitude by
1.25◦ longitude spatial resolution of the atmospheric model
simulations. The Supplement includes a detailed discussion
of the subtle differences between the model selection results
using versions 8 and 9 of the observations.

3.2 Drivers of the results

Numerous factors affect the accuracy of CO2 fluxes esti-
mated from satellite data. These factors include the accuracy
and precision of the observations, the atmospheric transport
model, and the prior flux estimate used in the inverse model.
Improvements in any of these inverse modeling inputs could
improve the constraint on biospheric CO2 fluxes. We find that
recent improvements to the retrieval are having a particularly
large impact on the strength of the CO2 flux constraint. Fur-
thermore, these improvements are not restricted to a single
satellite like OCO-2. Rather, the ACOS retrievals and bias
correction (O’Dell et al., 2012, 2018b) will be directly appli-
cable to other NASA carbon monitoring missions, including
the recently launched OCO-3 mission (Eldering et al., 2019)
and the planned GeoCarb mission (Polonsky et al., 2014).

These improvements to the retrieval algorithm have had an
effect on both glint and nadir observations from OCO-2 col-
lected in almost every region of the globe. The sheer number
of different changes makes it challenging to pinpoint exactly
which have had the largest impact on the CO2 flux constraint;
there have been numerous updates to the quality control pre-
screening, the forward spectroscopy model, the retrieval al-
gorithm, and the bias correction. Furthermore, these updates
have had multiple effects on the reported CO2 observations,
reducing white noise, reducing bias, and changing which ob-

servations do or do not pass quality control. O’Dell et al.
(2018b) detail these changes in much greater detail.

With that said, a few of these improvements appear to have
a particularly salient impact on the results of this study. For
example, the largest improvements have generally been to
the glint-mode observations. A 0.2 to 0.3 ppm bias between
land nadir and land glint observations in version 7 has been
remedied in version 8, and version 8 glint observations show
smaller biases across many ocean regions. Furthermore, ver-
sion 8 exhibits less random noise in all types of observations,
but that noise reduction is largest in glint observations, both
over land and over the oceans (O’Dell et al., 2018b).

Indeed, we also see the largest improvement in the flux
experiments conducted in this study when we include glint
mode observations. Figure 4 displays the results of the model
selection experiments when the glint data are excluded. The
figure shows results using version 7, 8, and 9 of the obser-
vations. The improvement between versions 7 and 8 is much
smaller when the glint observations are excluded than when
they are included (Fig. 3). Even in terrestrial regions, these
glint observations may play a key role in the overall flux con-
straint. For example, the absolute number of nadir and glint
observations over land are roughly equal; there are 4.3×106

land nadir observations with a positive quality control flag for
2015 and 4.3 × 106 land glint observations during the same
time period.

Note that this study focuses on detecting variations in CO2
fluxes from terrestrial regions in individual months. To that
end, certain types of flux estimation problems are beyond the
scope of the current study. For example, there is strong evi-
dence that OCO-2 observations are still biased across north-
ern tropical oceans, and reductions in these biases could
improve ocean flux estimates derived from OCO-2 (Baker,
2018; O’Dell et al., 2018b). Furthermore, there is always a
possibility that the observations have a bias that is correlated
across regions larger than those examined in this study. For
example, the observations show a small, time-dependent drift
from one year to another (O’Dell et al., 2018b). The approach
used in this study would be unlikely to detect the impact of
those biases.

4 Conclusions

CO2 observations from the OCO-2 satellite have changed
enormously with recent improvements to the retrieval algo-
rithm. New observations are more self-consistent (e.g., better
agreement between glint and nadir data) and compare better
against ground-based observations. In some regions, these
changes are comparable in magnitude to the atmospheric
CO2 enhancement due to biospheric CO2 sources and sinks.

In this study, we specifically examine how these changes
to the retrieval algorithm have improved the constraint on
biospheric CO2 fluxes, and we find that the improvement is
large. Using observations based on version 7 of the retrieval
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Figure 4. Results of the model selection experiments using only nadir- and target-mode observations. The improvement between versions
7 and 8 is less pronounced when we exclude glint observations and include only nadir- and target-mode data. Version 7 results here are the
same as those in Miller et al. (2018).

algorithm, we find that biospheric fluxes can only be con-
strained across continental or hemisphere-sized regions, as
these observations can rarely be used to detect or constrain
variations in CO2 fluxes across smaller regions. By contrast,
we find a step-change improvement in the biospheric CO2
flux constraint using updated versions of the OCO-2 obser-
vations, based on versions 8 and 9 of the retrieval algorithm.
Specifically, these improvements make it possible to detect
variations in CO2 fluxes within seven global biome-based re-
gions during many seasons of the year. This improvement is
particularly large when both nadir and glint data are included.

This study indicates that improvements to space-based
CO2 observations are yielding large improvements in global
monitoring of biospheric carbon fluxes. As new CO2 mon-
itoring missions like OCO-3 and GeoCarb launch into or-
bit, these improvements will have a lasting impact on space-
based monitoring of CO2.
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