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S1 The regression and model selection framework

We construct a series of statistical experiments to evaluate whether we can detect spatial and
temporal variations in biospheric CO2 fluxes within different global regions using current OCO-2
observations. This section of the SI describes these experiments in greater detail. This approach
is identical to Miller et al. (2018), and that study provides additional detail.

These experiments are based upon a regression framework, as described in the main article.
The regression has the following form:

z = h(X)β + b+ ε (S1)

where z (dimensions n×1) are the OCO-2 observations, and X (m×p) contains p different CO2

flux tracers. These tracers include terrestrial biosphere model (TBM) estimates of CO2 fluxes
and remote sensing vegetation indices that are known to correlate with patterns in CO2 fluxes
(Sect. S2). There are different columns of X corresponding to each CO2 flux tracer in each
different month and each different global region; we run the regression on all months simulta-
neously. These tracers (both the TBMs and vegetation indices) are subsequently run through
an atmospheric transport model h(), in this case the Parameterized Chemistry and Transport
(PCTM) model (Kawa et al., 2004). The coefficients estimated as part of the regression (β,
p× 1) scale these model outputs to best match the observations (z). Furthermore, b (n× 1) is
the model spinup or CO2 mixing ratios at the beginning of the experiments, and ε (n× 1) are
the model–data residuals.

We pair this regression with model selection; model selection will determine which com-
bination of model outputs (i.e., columns of h(X)) best describe variability in current OCO-2
observations. It will identify the set of model outputs with the greatest power to describe the
data and ensures that the regression does not overfit the data (e.g., Zucchini, 2000). We specif-
ically implement model selection based on the Bayesian Information Criterion (BIC), one of
the most commonly-used forms of model selection (Schwarz, 1978; Mueller et al., 2010; Gourdji
et al., 2012). We calculate a BIC score for many different combinations of model outputs, and
each combination has a different set of columns (h(X)). The best combination has the lowest
BIC score:

BIC = L + p ln(n∗) (S2)

where L is the log likelihood of a specific combination of model outputs, p is the number of model
outputs in that combination, and n∗ is the effective number of independent observations from
OCO-2 during the study period. The log likelihood equation rewards combinations of model
outputs that improve model-data fit, described in detail in Miller et al. (2018). By contrast, the
second term in the equation (p lnn∗) penalizes combinations with a greater number of model
outputs, and it ensures that the selected combination is not an over-fit. This penalty and the
log likelihood (L) not only depend upon the number of model outputs but also the effective
number of independent observations (n∗). This number reflects the level of spatial and temporal
correlation in the observational and model errors. If the spatial and temporal error correlations
are large (i.e., bias-type errors), then the n∗ will be small relative to the total number of OCO-2
observations. By contrast, if the errors are uncorrelated and completely independent, then n∗

will equal the total number of OCO-2 observations. The companion paper Miller et al. (2018)
describes in detail how we estimate this quantity.

S2 Additional detail on the tracers used in model selection

This section provides additional detail on the TBMs and vegetation indices that are used in
the model selection experiments. These TBMs and vegetation indices are used as the input
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tracers in PCTM. We then generate forward atmospheric model simulations using PCTM and
interpolate these model outputs to the locations and times of the OCO-2 observations to gen-
erate modeled XCO2 total columns. These modeled columns become the columns of h(X) in
the model selection experiments (Eq. S1). Note that the multiple regression will scale the
magnitude of the TBMs and vegetation indices in each region and each month to best match
the observations (Eq. S1). As a result of this setup, the overall magnitude of each TBM and
of each vegetation index does not affect the model selection results. Rather, this study assesses
the degree to which the spatial and temporal patterns in the TBMs and vegetation indices, after
being transported through the atmosphere to the times and location of OCO-2 observations,
can explain the spatial and temporal patterns in OCO-2 observations.

We include four TBMs from the recent Multi-scale Synthesis and Terrestrial Model In-
tercomparison Project (MsTMIP) (Huntzinger et al., 2013). These TBMs have very differ-
ent space-time patterns and therefore represent a wide range of plausible flux patterns. The
TBMs include the Dynamic Land Ecosystem Model (DLEM; e.g., Tian et al., 2011), the Lund-
Potsdam-Jena Model Wald Schnee und Landschaft version (LPJ; e.g., Sitch et al., 2003), the
Global Terrestrial Ecosystem Carbon Model (GTEC; e.g., King et al., 1997), and the Simple
Biosphere Model with the Carnegie-Ames-Stanford Approach (SIBCASA; e.g., Schaefer et al.,
2008). The original MsTMIP products have a spatial resolution of 0.5◦ latitude by 0.5◦ longi-
tude resolution, and we regrid these products to the PCTM model grid (1◦ latitude by 1.25◦

longitude). Furthermore, Fisher et al. (2016) downscaled the MsTMIP products to a 3-hourly
temporal resolution; we use this version of the MsTMIP products in the present study.

The MsTMIP estimates are available through year 2010. Because these estimates are not
available for the years of this study (2014-2015), we use a multi-year average as inputs in
the PCTM model. Specifically, downscaled MsTMIP products are available from Fisher et al.
(2016) for years 2004-2010, and we average the MsTMIP models over those years within each
separate model grid box and for each separate 3-hourly time period to produce a multi-year
average for each MsTMIP estimate. The resulting CO2 flux estimates vary hour to hour and
day to day but not year to year. Note that some recent inverse modeling studies using OCO-2
observations incorporate a prior flux estimate that has been generated for more recent years
(e.g., Crowell et al., 2019). Unlike inverse modeling studies that often require a single prior
flux estimate, we require numerous 3-hourly CO2 flux tracers that represent a wide range of
plausible patterns for the statistical model used in this study. The creation of a new, updated
TBM inter-comparison is beyond the scope of this study. Furthermore, the objective of this
study is to compare how the CO2 flux constraint has improved as the retrievals have evolved
from version 7 to versions 8 and 9. To facilitate this comparison, we have used the same set of
flux models from MsTMIP as in the preceding companion paper (Miller et al., 2018).

In addition to these TBMs, we also utilize several vegetation indices as possible tracers of
CO2 fluxes within the regression (X in Eq. S1). These include the enhanced vegetation index
(EVI), normalized difference vegetation index (NDVI), and solar-induced fluorescence (SIF).
Numerous studies indicate that biospheric CO2 fluxes correlate with these vegetation indices –
with EVI (e.g., Sims et al., 2008; Wu et al., 2011), NDVI (e.g., Cihlar et al., 1992; Wylie et al.,
2003), and SIF (e.g., Guanter et al., 2014; Yang et al., 2015; Shiga et al., 2018). These indices
are therefore good candidate CO2 flux tracers to use within the model selection experiments.

We specifically use EVI and NDVI estimates from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) Aqua product MYD13C1 (Didan, 2015a) and the MODIS Terra product
MOD13C1 (Didan, 2015b). These products are collectively available at 8-day intervals. Specif-
ically, the individual Aqua and Terra products are each available at 16-day intervals. However,
the two products are staggered, so Aqua and Terra can be combined to produce EVI and NDVI
estimates every 8 days. These products have a 0.05◦ latitude by 0.05◦ longitude, and we regrid
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them to the PCTM model grid (1◦ latitude by 1.25◦ longitude). Both of these products are
available for 2014 and 2015, the time period of this study.

We also use level 2 SIF retrievals from the Global Ozone Monitoring Experiment-2 (GOME-
2) (Joiner, 2014). We convert the level 2 retrievals to a gridded SIF product using a block kriging
method described by Tadić et al. (2017). This gridded product has a daily temporal resolution
and the same spatial resolution as PCTM. We use this product as an input to the PCTM model
and incorporate the resulting model outputs as candidate variables in the h(X) matrix.

S3 Differences in the model selection results for versions 8 and
9 of the observations

The model selection results using versions 8 and 9 of the observations are very similar but exhibit
a few subtle differences (Fig. 3 and 4). Specifically, we select slightly fewer CO2 flux tracers
using version 9 than version 8 in Fig. 3. These small differences are due to the stochastic
nature of the statistical model. The regression model used in this manuscript requires an
estimate of error variances and estimates of the error correlation length and correlation time.
These estimates are used to calculate n∗ (Eq. S2). We estimate these parameters using a
randomized sub-selection of the observations due to the very large size of the OCO-2 dataset,
a procedure described in Miller et al. (2018). The results of the regression analysis therefore
exhibit a subtle stochasticity depending upon which observations were randomly selected for
the variance and covariance estimation. For example, when we re-run the analysis in Fig. 3,
we sometimes select a flux model in one or two more months using version 9 relative to version
8 and sometimes obtain identical results using versions 8 and 9.
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Tadić, J. M., Qiu, X., Miller, S., and Michalak, A. M.: Spatio-temporal approach to moving
window block kriging of satellite data v1.0, Geosci. Model Dev., 10, 709–720, https://doi.org/
10.5194/gmd-10-709-2017, 2017.

Tian, H., Melillo, J., Lu, C., Kicklighter, D., Liu, M., Ren, W., Xu, X., Chen, G., Zhang,
C., Pan, S., Liu, J., and Running, S.: China’s terrestrial carbon balance: Contributions
from multiple global change factors, Global Biogeochem. Cy., 25, https://doi.org/10.1029/
2010GB003838, gB1007, 2011.

Wu, C., Chen, J. M., and Huang, N.: Predicting gross primary production from the enhanced
vegetation index and photosynthetically active radiation: Evaluation and calibration, Remote
Sens. Environ., 115, 3424 – 3435, https://doi.org/10.1016/j.rse.2011.08.006, 2011.

Wylie, B. K., Johnson, D. A., Laca, E., Saliendra, N. Z., Gilmanov, T. G., Reed, B. C.,
Tieszen, L. L., and Worstell, B. B.: Calibration of remotely sensed, coarse resolution NDVI
to CO2 fluxes in a sagebrush-steppe ecosystem, Remote Sens. Environ., 85, 243 – 255,
https://doi.org/10.1016/S0034-4257(03)00004-X, 2003.

5



Yang, X., Tang, J., Mustard, J. F., Lee, J.-E., Rossini, M., Joiner, J., Munger, J. W., Kornfeld,
A., and Richardson, A. D.: Solar-induced chlorophyll fluorescence that correlates with canopy
photosynthesis on diurnal and seasonal scales in a temperate deciduous forest, Geophys. Res.
Lett., 42, 2977–2987, https://doi.org/10.1002/2015GL063201, 2015GL063201, 2015.

Zucchini, W.: An Introduction to Model Selection, J. Math. Psychol., 44, 41 – 61,
https://doi.org/10.1006/jmps.1999.1276, 2000.

6


	The regression and model selection framework
	Additional detail on the tracers used in model selection
	Differences in the model selection results for versions 8 and 9 of the observations

