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Abstract. One of the challenges of understanding atmo-
spheric organic aerosol (OA) particles stems from its com-
plex composition. Mass spectrometry is commonly used to
characterize the compositional variability of OA. Clustering
of a mass spectral dataset helps identify components that ex-
hibit similar behavior or have similar properties, facilitating
understanding of sources and processes that govern com-
positional variability. Here, we developed an algorithm for
clustering mass spectra, the noise-sorted scanning cluster-
ing (NSSC), appropriate for application to thermal desorp-
tion measurements of collected OA particles from the Filter
Inlet for Gases and AEROsols coupled to a chemical ion-
ization mass spectrometer (FIGAERO-CIMS). NSSC, which
extends the common density-based special clustering of ap-
plications with noise (DBSCAN) algorithm, provides a ro-
bust, reproducible analysis of the FIGAERO temperature-
dependent mass spectral data. The NSSC allows for the de-
termination of thermal profiles for compositionally distinct
clusters of mass spectra, increasing the accessibility and en-
hancing the interpretation of FIGAERO data. Applications

of NSSC to several laboratory biogenic secondary organic
aerosol (BSOA) systems demonstrate the ability of NSSC to
distinguish different types of thermal behaviors for the com-
ponents comprising the particles along with the relative mass
contributions and chemical properties (e.g., average molecu-
lar formula) of each mass spectral cluster. For each of the sys-
tems examined, more than 80 % of the total mass is clustered
into 9–13 mass spectral clusters. Comparison of the average
thermograms of the mass spectral clusters between systems
indicates some commonality in terms of the thermal proper-
ties of different BSOA, although with some system-specific
behavior. Application of NSSC to sets of experiments in
which one experimental parameter, such as the concentration
of NO, is varied demonstrates the potential for mass spectral
clustering to elucidate the chemical factors that drive changes
in the thermal properties of OA particles. Further quantitative
interpretation of the thermograms of the mass spectral clus-
ters will allow for a more comprehensive understanding of
the thermochemical properties of OA particles.
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1 Introduction

Atmospheric particles are composed of hundreds to thou-
sands of individual compounds (e.g., Hamilton et al., 2004;
Goldstein and Galbally, 2007), reflecting the many differ-
ent sources and the variety of chemical pathways that lead
to their formation and growth. Various mass spectrometry
(MS) methods provide for the characterization of this compo-
sitional variability, among other techniques. Individual MS
methods yield different insights into particle composition,
dependent upon the chemical selectivity of the method. Ap-
plication of various data reduction methods, such as cluster-
ing or matrix factorization, helps to reduce the inherent com-
positional complexity and develop an understanding of the
sources and chemical transformations that determine particle
composition. Clustering and matrix factorization are com-
plementary methods. In this work, we develop and apply a
new clustering method to measurements of the evolved gas
composition derived from the thermal desorption of organic
aerosol, specifically to mass spectral measurements from the
Filter Inlet for Gases and AEROsols (Lopez-Hilfiker et al.,
2014) coupled with chemical ionization mass spectrome-
try (Lee et al., 2014) (FIGAERO-CIMS). The mass spectral
clustering method developed here facilitates an interpretation
of variability in organic aerosol composition and volatility, as
well as how these depend on formation conditions.

Clustering methods applied across many research fields
have aided in the interpretation and understanding of large
datasets. Clustering methods work by classifying data into
several groups according to the similarity between one or
more properties. In the field of atmospheric chemistry, clus-
tering methods have been applied to a variety of data types.
Examples include the following: back trajectories of trace
gases (Cape et al., 2000) or particles (Abdalmogith and Har-
rison, 2005; Pinero-Garcia et al., 2015), helping to elucidate
the origin and transport of pollutants; particle size distribu-
tions, providing information on aerosol emission and forma-
tion (Beddows et al., 2009; Wegner et al., 2012); and organic
functional groups comprising individual particles, allowing
for the classification of the types of organic carbon (Taka-
hama et al., 2007).

Beyond the above examples, clustering methods have been
extensively applied to the interpretation of single-particle
mass spectra, serving to characterize variability in their
chemical composition and identify the sources and extent of
chemical processing (e.g., Gaston et al., 2013; Lee et al.,
2015). While clustering is a general method, a variety of
specific algorithms have been developed for application to
a given particle mass spectral dataset. The algorithms ap-
plied to the analysis of single-particle mass spectra include
k-means (Giorio et al., 2012; Liu et al., 2013; Lee et al.,
2015), fuzzy c-means (Kirchner et al., 2003; Roth et al.,
2016), density-based special clustering of applications with
noise (DBSCAN) (Zhou et al., 2006), neural-network-based
methods, such as an algorithm derived from adaptive reso-

nance theory (ART-2a) (Song et al., 1999; Zhao et al., 2008;
Giorio et al., 2012), hierarchical clustering (Murphy et al.,
2003; Rebotier and Prather, 2007), and some combined algo-
rithms (Zhao et al., 2008; Reitz et al., 2016). Each clustering
algorithm has strengths and weaknesses. In some cases, dif-
ferent algorithms are equally effective and lead to a similar
categorization of the same dataset, while in other cases quite
different results are obtained (Zhao et al., 2008). For exam-
ple, k-means and ART-2a gave broadly similar results on a re-
gional particle dataset (Giorio et al., 2012), and k-means per-
formed as well as a variant of hierarchical clustering method
on four particle datasets (Rebotier and Prather, 2007).

Here, we describe and apply a clustering method, an ex-
tension of DBSCAN appropriate for the analysis of com-
bined thermal desorption–mass spectral measurements of or-
ganic particle composition, specifically applied to data from
FIGAERO-CIMS. FIGAERO-CIMS has been increasingly
used in field (e.g., Gaston et al., 2016; Lee et al., 2016;
Lopez-Hilfiker et al., 2016; Mohr et al., 2017; Huang et
al., 2018; Le Breton et al., 2019) and laboratory studies
(e.g., Lopez-Hilfiker et al., 2015; D’Ambro et al., 2017;
Wang and Hildebrandt Ruiz, 2018) to develop an under-
standing of the molecular composition of organic aerosols.
A key feature of FIGAERO-CIMS is the ability to charac-
terize the thermal behavior of organic compounds in parti-
cles on a nearly molecular level (Lopez-Hilfiker et al., 2014).
The use of chemical ionization, a relatively soft ionization
method, facilitates the detection and characterization of both
monomeric and oligomeric parent compounds in organic
aerosols. In FIGAERO-CIMS, particles are collected and
then thermally desorbed, with mass spectra of the evolved
gases measured as a function of temperature. This can also
be displayed as a thermogram: the concentration of an ion or
sum of ions as a function of desorption temperature. The tem-
perature at which a thermogram reaches maximum signal, or
Tmax, provides information on the volatility, while particu-
larly broad desorption shapes can indicate thermal decom-
position, suggesting the presence of lower-volatility, possi-
bly oligomeric, material (Lopez-Hilfiker et al., 2014). A typ-
ical FIGAERO-CIMS mass spectrum of either ambient or
laboratory-generated organic aerosol consists of hundreds of
individual ions and thermograms (D’Ambro et al., 2018; Lee
et al., 2018).

Previous studies using FIGAERO-CIMS provided insights
into particle composition, including the presence of lower-
volatility material, based on analysis of the thermograms of
several major ions (Lopez-Hilfiker et al., 2014; D’Ambro
et al., 2017, 2018; Lee et al., 2018). We expand on this
previous work through the application of cluster analysis
to FIGAERO-CIMS thermograms. Clustering of FIGAERO-
CIMS data provides a means to expand the understanding de-
veloped from single-ion thermograms and establish the con-
tributions of different types of thermograms to the bulk par-
ticles. One previous study clustered FIGAERO-CIMS data
using the k-means algorithm using two parameters: the ion
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molecular weight and the maximum desorption temperature
(Faxon et al., 2018). What distinguishes our work is that we
cluster the thermogram across the entire desorption period
for each ion, with ions grouped according to the similarity of
their overall volatility distribution. We have considered the
performance of various clustering algorithms (including k-
means), ultimately concluding that a variant of the DBSCAN
algorithm, which we develop here and name noise-sorted
scanning clustering (NSSC), provides a robust performance
and has several advantages over other existing algorithms
for FIGAERO-CIMS data. The NSSC algorithm is applied
to several laboratory datasets of secondary organic aerosol
(SOA) formed from various precursors and under various
conditions; some are previously described (D’Ambro et al.,
2018). In this work we do not aim to a provide comprehen-
sive interpretation of the resulting clustered thermograms in
terms of their thermochemical properties (Schobesberger et
al., 2018), only to illustrate the potential of clustering to en-
hance the interpretation of FIGAERO-CIMS and other simi-
lar data.

2 Clustering method description

Application of a given clustering algorithm to a particular
data type involves a number of steps. Below, we discuss the
specific steps for clustering FIGAERO-CIMS data, includ-
ing a description of our noise-sorted scanning clustering al-
gorithm. A brief discussion of other algorithms is also pro-
vided.

2.1 Data preprocessing

2.1.1 Exclusion of anomalous thermograms

The quality of the dataset should be examined prior to clus-
tering. A typical thermogram exhibits a continuous evolution
to a peak, peaking during a temperature ramping period, after
which there is a steady decrease in the signal-to-background
ratio over time during a constant temperature soaking pe-
riod; the background-corrected signal at all temperatures re-
mains above zero or around zero within the uncertainties. See
Sect. 3.1 for further details of FIGAERO-CIMS. An anoma-
lous thermogram, however, contains a negative signal with
large magnitude.

Anomalous thermograms should be excluded from the
clustering to ensure the quality of the results, although most
such thermograms do not end up clustered with other ions.
Anomalous thermograms are identified as follows. (i) Esti-
mate a reference noise level (σref) for each thermogram as
the standard deviation of the last 100 points (correspond-
ing to 500 s) of the thermogram at the end of the constant
temperature soaking period, during which the signals are
usually relatively constant. The use of more points incor-
porates times when the signals were still decreasing, while
use of fewer points provides a less robust estimate of the

noise level. (ii) Find the minimum in the thermogram and
calculate the average of this and the 50 points (correspond-
ing to 250 s, or 100 points) before and after the minimum,
Amin. This provides for consistency with the determination of
σref. (iii) Identify thermograms for which Amin <−3 · |σref|

as anomalous and exclude these associated ions from further
analysis. In other words, when a thermogram has a valley
with averaged negative values exceeding the magnitude of 3
times the reference noise level, then it is considered anoma-
lous. The specific criteria specified above were determined
based on consideration of thermograms from 10 distinct SOA
experiments. While these criteria should be robustly appli-
cable to other FIGAERO-CIMS datasets, they can be ad-
justed depending on the specific application, data quality, and
needs.

Ideally, when anomalous ions are identified the original
data would be inspected to identify the likely origin of the
anomalous behavior. Possible origins include problems with
background subtraction when the blank has substantially
higher signal levels than the particle samples, which can hap-
pen when there is residual contamination or incomplete sepa-
ration of ions having the same nominal mass. It is also possi-
ble that the components detected for the same ion are differ-
ent for the particle and blank measurements. In the example
systems considered here, we identified up to five anomalous
ions out of what is typically a few hundred total ions.

In some cases, it is desirable to compare thermograms be-
tween related experiments, for example the experiments dis-
cussed here that investigated the influence of NO concentra-
tion on SOA formation (Sect. 4.3) and the impact of isother-
mal dilution on SOA composition and volatility (Sect. 4.4).
In such cases, ions identified as anomalous for one experi-
ment are excluded from analysis for all related experiments
to ensure consistency.

2.1.2 Euclidean distance

Any clustering algorithm requires a metric to determine the
similarity between two members in the dataset. Here, we ap-
ply the commonly used Euclidean distance (ED) as the met-
ric. A smaller ED indicates greater similarity. A FIGAERO
thermogram has n points, with all thermograms having an
equal number of points in a dataset. A dataset here is de-
fined as the collection of thermograms for all individual ions
measured for a single desorption event. The ED between two
thermograms a and b is calculated as

EDa,b =
∑
n

√
(an− bn)

2. (1)

An individual ED value is obtained for every pair of ions
in the mass spectrum, resulting in an n× n matrix of ED
values with the diagonal elements all zero. The signal lev-
els between individual ions differ substantially, reflecting
their relative abundances. Therefore, the ED calculation uses
normalized thermograms, allowing for comparison between
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thermogram profiles irrespective of signal magnitude. Nor-
malization is achieved by dividing each point of the orig-
inal thermogram by the thermogram maximum, with the
maximum determined after smoothing using a 35-point box-
car moving average with the end points excluded from the
smoothed thermogram. Use of the smoothed maximum in-
stead of the unsmoothed maximum reduces the influence of
noise on normalization. In the FIGAERO datasets used in
this study, a typical thermogram has a temperature resolution
of 1T ∼ 0.7 ◦C during the ramping period, and a 35-point
smooth corresponds to smoothing over ∼ 24.5 ◦C. Typical
FIGAERO thermograms exhibit peaks ca. 40 ◦C wide, and
thus a 35-point smoothing retains the main peak shape while
reducing the influence of noise. In the constant temperature
part of the thermogram (soaking period), signal levels change
slowly with time, on average less than 5 % for a 35-point
(∼ 3 min) period, so a 35-point smoothing is also appropri-
ate. We note that the unsmoothed profiles are those that are
normalized; smoothing relates only to determining the max-
imum signal values used for normalization.

The ED calculation from Eq. (1) gives equal weight to
all points in the thermogram. However, in a FIGAERO ther-
mogram, equal weighting may not be appropriate. The des-
orption process has two stages, ramping and soaking, with
the soaking period comprising approximately 70 % of the
time points in thermograms. However, most thermograms are
featureless in the soaking period. In contrast, many thermo-
grams exhibit a peak, or some otherwise characteristic behav-
ior, in the ramping period. Since the behavior in the ramping
period provides greater information as to the overall similar-
ity between individual thermograms, we recommend down-
weighting the soaking period such that the ramping and soak-
ing periods ultimately carry approximately 4 : 1 weight in the
calculation of the ED. We have tested weighting of 1 : 1, 2 : 1,
and 10 : 1. Weighting of 4 : 1 provides for the most robust
clustering results for the example datasets. We do not rec-
ommend completely excluding the soaking period as this pe-
riod still carries informational content (Schobesberger et al.,
2018). Specifically, in calculating ED we use all data from
the ramping period while down-weighting the data in the
soaking period by calculating and using 10-point averages.

In summary, we calculate the ED based on the following
steps: (i) smooth the original thermogram (with absolute sig-
nal) to find the maximum value; (ii) normalize the original
thermogram to the smoothed maximum; (iii) average every
10 points in the soaking period; and (iv) calculate the ED be-
tween every two normalized, down-weighted thermograms.

2.1.3 Dealing with noise

Noise is an inherent property of any measurement. Noise in
the FIGAERO thermograms results from various sources, in-
cluding detector noise, background subtraction, and imper-
fect fitting of mass spectra. Noise influences the ED calcu-
lated between two thermograms, typically increasing the ED.

Figure 1. The relationship between thermogram noise levels and
the fractional contributions of the corresponding ions to total mass
for α-pinene+OH SOA. The noise threshold, ξref = 0.021, is used
to distinguish high-noise thermograms (cyan markers) from ther-
mograms having acceptable noise levels (pink markers).

Here, the level of noise, ξ , is characterized for each ther-
mogram by calculating the average difference between the
smoothed and unsmoothed normalized thermograms for the
ramping period. The use of only the ramping period in as-
sessing the noise level is consistent with the generally more
characteristic behavior compared to the soaking period. The
use of the normalized thermograms, rather than absolute, al-
lows for comparison of noise between thermograms.

The noise level generally varies inversely with the frac-
tional mass contribution of the ions, illustrated for a case
study of α-pinene+OH SOA (Experiment 1 in Table 1 and
Fig. 1). This indicates that ions contributing more to the to-
tal signal generally have a lower noise level. Detector noise
is nominally independent of ion identity, and thus the low-
signal ions have enhanced ξ after normalization.

Discussed further in Sect. 2.3, clustering algorithms of-
ten perform poorly when overly noisy data are included in
the clustering. This is especially the case for algorithms such
as k-means and partitioning around medoids, which assign
all the members to a cluster. Clustering methods that do not
require the assignment of all members, such as DBSCAN
or our NSSC, are generally less sensitive to the influence of
overly noisy members. However, we have found that the ex-
plicit exclusion of noisy thermograms up front serves to pro-
vide for more robust behavior and also removes the need to
consider each noisy thermogram as a possible single-member
cluster. The inclusion of overly noisy peaks might obscure
the underlying structure of clustered thermograms. Noisy
thermograms are identified as follows. First, the 5 % of ions
having the lowest noise are identified. The ξ value of the
noisiest ion from this subset of low-noise ions is defined as
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Table 1. Details of SOA formation and chamber conditions for all the example SOA systems.

Expt. no. Precursor Oxidant Seeds UV T RH NOe Mp
f FIGAERO

Type Conc.b Type Conc.c Type Dp
d (◦C) (%) (ppb) (µg m−3) operationg

(ppb) (ppm) (nm)

1a α-pinene 10 OH (H2O2) 1.0 ASh 50 On 25 50 – 5.1 Normal

2 1-3-carene 10 OH (H2O2) 0.25 AS 50 On 25 50 – 5.2 Normal

3a
α-pinene 10 OH (H2O2) 1.0 AS 50 On 25 50

5 8.3
3b 10 9.2 Normal
3c 25 9.1

4a

α-pinene 10 O3 0.1 PSi 50 Off 25 80 – 4.0

Normal
4b 1 h wait
4c 3 h wait
4d 6 h wait
4e 24 h wait

a Experiment no. 1 is a case study used to test the performances of different clustering algorithms. b Conc. of precursors refers to the concentrations expected in the chamber
with the absence of any chemistry. c For OH, conc. refers to the concentration of H2O2 injected into the chamber; for O3, conc. refers to the steady-state concentration of O3 in
the chamber during SOA formation. d Seed particles are size-selected in all the experiments. e NO concentration refers to the targeted NO concentration when NO is injected
into the chamber. The actual steady-state concentration of NO is lower than targeted; “–” indicates that no external NO is added to the chamber. f Mp is the estimated mass
concentration of particles including SOA and seeds measured by SMPS when the chamber is at steady state, except for Experiment 4 in which Mp is the mass concentration of
SOA only. g Normal operation mode means the desorption process starts immediately after the collection period. X h wait means that particles are isothermally diluted for X h
before the desorption process is initiated. h AS: ammonium sulfate. i PS: potassium sulfate.

the reference noise level, ξref. Small differences in the choice
of this threshold (e.g., using the lowest 7 % of ions) do not
materially influence the results. Ions for which ξn > 3 · ξref
are considered noisy and excluded from the initial cluster-
ing. For the experiments we examined, there are 88–120 out
of∼ 300 ions left after noise screening, contributing 83.5 %–
92.5 % to the total particle mass.

2.2 Noise-sorted scanning clustering (NSSC)

2.2.1 Algorithm description

The noise-sorted scanning clustering (NSSC) algorithm de-
veloped here is a variant of the commonly used DBSCAN.
In NSSC, the identification and clustering of thermograms
occur based on their similarity to seed thermograms. When
the ED between a given thermogram and the seed is less than
a specified ED criterion (ε) the two members belong to the
same cluster. Importantly, in NSSC the selection of the seed
thermograms occurs based on their respective noise levels.
The least noisy thermogram is selected as the initial seed, the
next noisiest is selected as the second seed (assuming it is not
already clustered), and so on. We have found that low-noise
thermograms typically have more well-defined and charac-
teristic shapes and comprise a substantial fraction of the to-
tal mass. The choice to select seeds based on the noise level
leads to overall more robust and reproducible clustering com-
pared to the random selection of seeds.

The optimal value of the distance criterion, ε, is not known
a priori but must be determined by the user, as discussed in
Sect. 2.2.3. A valid cluster must contain at least Nmin mem-

bers, inclusive of the seed. We use Nmin = 2. The consider-
ation and inspection of individual unclustered thermograms
exhibiting unique behavior occur as a post-clustering process
(Sect. 2.2.2).

The flow of the noise-sorted scanning clustering algorithm
is shown in Fig. 2 and summarized here. Clustering proceeds
in two rounds. For the initial round, the thermograms are
sorted by the noise (ξ ), and the ED values between all pairs of
thermograms are calculated accordingly. All of the thermo-
grams are identified according to whether they have already
been used as seeds (SEED= 0 or 1, with 1 for thermograms
used as seeds) and whether they have already been included
in a cluster (CLUSTER= 0 or 1, with 1 for already clustered
thermograms). At the start, SEED= 0 and CLUSTER= 0 for
all thermograms. Clustering begins using the least noisy ther-
mogram having SEED= 0 and CLUSTER= 0 as the initial
seed. The state of that seed is then changed to SEED= 1. All
thermograms having ED<ε for that seed and with CLUS-
TER= 0 are identified from the ED matrix; these thermo-
grams are considered neighbors of the seed thermogram. The
seed does not evolve as neighbors are added to the cluster
during this step. If the number of neighbors plus the seed is
greater than or equal to Nmin, the cluster is valid and stored,
with the states of all the thermograms in the cluster changed
to CLUSTER= 1. Otherwise, the cluster is dismissed, and
CLUSTER= 0 for all the members. In this case, the current
seed (with SEED= 1 and CLUSTER= 0) will no longer be
used as a seed in the future steps but can still end up clus-
tered as a neighbor in the other clusters. The above steps are
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repeated until all the thermograms have either SEED= 1 or
CLUSTER= 1.

Because a cluster must have at least Nmin elements, not
all the thermograms may end up clustered. Some of these
unclustered thermograms may nonetheless have very similar
shapes to the clustered thermograms. Here, an iterative sec-
ond round of clustering potentially adds these initially un-
clustered thermograms to the initial clusters using the signal-
weighted average thermograms for the clusters from the first
round as the initial seeds. A matrix of ED values is calcu-
lated between the individual unclustered thermograms and
the new seeds. For each unclustered thermogram, the min-
imum ED, corresponding to only one of the seeds, is iden-
tified. When this minimum ED is less than ε, the unclus-
tered thermogram is added into that cluster. A new signal-
weighted average thermogram for the cluster is calculated
and this process repeats until no additional unclustered ther-
mograms can be added to existing clusters. The mass contri-
bution of the remaining unique unclustered thermograms af-
ter this second round can be substantial or negligible, ranging
from < 0.05 % to 2.6 % in the experiments presented here,
and depends largely on the choice of ε. Some of these un-
clustered thermograms are defined as additional one-member
clusters, as discussed in the following section.

2.2.2 Post-clustering processes

After thermograms are clustered, we perform two post-
clustering analyses to better understand the whole dataset:
(1) identifying additional one-member clusters and (2) sort-
ing of the clusters.

Some of the remaining unclustered thermograms have sig-
nificant individual mass contributions and should be con-
sidered one-member clusters. The criterion of “significant”
mass contribution is user-defined. We recommend determin-
ing the significance criterion as follows: (i) sorting all the
ions (before the noise-filtering process) from largest to small-
est individual mass concentration; (ii) calculating the cumu-
lative mass fraction for this sorted list; and (iii) defining as
“significant” all those ions contributing to a cumulative mass
contribution up to 80 %.

The number of significant ions in a dataset depends on the
specific chemical system, varying from only a few to tens
of ions. Significant unclustered ions are identified as addi-
tional one-member clusters. In some cases, the thermograms
for these one-member clusters are unique compared to the
previously identified clusters. In others, their shapes are vi-
sually similar to the previously identified clusters but with the
one-member clusters sufficiently distinct that they were not
clustered. For the purpose of automation, these one-member
clusters are all included in the final clustering results, and the
number of one-member clusters serves as one of the param-
eters to determine the optimal ε. Users can also choose to
exclude them or some of them manually from the final clus-
tering results based on their judgement. For the example sys-

tems considered in Sect. 4, there are only a few one-member
clusters (ranging from 0 to 4) for the optimal ε used.

Sorting clustered thermograms facilitates the visual pre-
sentation and identification of the similarities and dissimi-
larities among the clusters. The specific method of sorting
can be varied depending on the application and system un-
der consideration. Here, we use the temperature at which
50 % of the mass is desorbed (Tm,50) for the weighted av-
erage cluster thermogram as a first criterion. The Tm,50 is
typically similar to but slightly larger than the temperature at
which the signal reaches a maximum. As such, the Tm,50 is
approximately related to the saturation vapor pressure of the
desorbing compound, at least for compounds that desorb di-
rectly (e.g., Lopez-Hilfiker et al., 2014). When two or more
clustered average thermograms have identical Tm,50, a rare
but occasional occurrence, they are further sorted by Tm,75,
the temperature at which 75 % of the mass is desorbed. The
temperature difference between Tm,50 and Tm,75 indicates the
slope of the thermogram between these two temperatures,
with larger values indicating slower decay. Therefore, these
two parameters generally illustrate the shape of a thermo-
gram. The Tm,50 and Tm,75 are determined by calculating the
cumulative desorbed mass and finding the temperatures at
which 50 % and 75 % are reached.

The sorting process tends to organize the cluster-specific
thermograms such that clusters having lower peak tem-
peratures (lower Tm,50) and steeper downslopes after the
peak (lower Tm,75) come first. Thermograms of this type
are indicative of major contributions from higher-volatility
monomers (Schobesberger et al., 2018). Thermograms hav-
ing higher Tm,50 generally have broader peaks and shallower
downslopes, indicative of substantial contributions from low-
volatility compounds or the decomposition of oligomers. A
further discussion of the interpretation of thermogram shapes
is provided in Sect. 3.2.

2.2.3 Choosing the optimal ε

NSSC is a distance-based clustering method, so the choice of
the distance criterion, ε, is a crucial step. For small ε, mem-
bers within a cluster have high similarity, but few thermo-
grams end up clustered. In contrast, for large ε the major-
ity of the thermograms are clustered into only a few clusters
having comparably low intra-cluster similarity. The choice
of the optimal ε value is guided here by the consideration
of several parameters that vary with ε. The overall aim is
to simultaneously (i) minimize the unclustered mass fraction
(fm,unclustered) while (ii) maximizing the number of clusters
(Nc) having two or more members and (iii) minimizing the
number of one-member clusters (Nc,one) yet (iv) maintaining
inter-cluster separation (RinterClst).

In general, Nc increases with ε for small ε because more
thermograms of different shapes get clustered and fewer ther-
mograms remain unclustered. As ε further increases, some
clusters are combined and a greater number of thermograms
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Figure 2. Flow of the noise-sorted scanning clustering. There are two rounds of clustering. (a) Round 1: the EDs between all thermogram
pairs are calculated and two parameters, ε and Nmin, are set. Each thermogram is initialized with state SEED= 0 and CLUSTER= 0. Only
thermograms with SEED= 0 and CLUSTER= 0 can serve as seeds, while thermograms with CLUSTER= 0 can be added to new clusters.
The procedure terminates when all the thermograms are marked either SEED= 1 or CLUSTER= 1. (b) Round 2: seeds are specified as the
weighted average thermogram for each cluster, and any remaining unclustered thermograms from Round 1 are potentially added to these
clusters. With the indexing, j refers to the total number of thermograms, i to the number of clusters, and k to the number of unclustered
thermograms after Round 1.

are assigned to a single cluster. Consequently, as ε increases
the Nc generally increases, reaches a maximum level, and
then decreases. The maximum Nc and the ε at which the
maximum occurs depend on the exact size and the properties
of the dataset being examined. We have found that a typical
SOA system usually has 9–13 distinct thermogram clusters.
We recommend selecting an ε that provides for Nc at or near
the maximum as this captures the greatest number of thermo-
gram types.

The mass fraction of unclustered thermograms,
fm,unclustered, includes only the unclustered thermograms that
were not excluded based on the noise filtering. In general,
a smaller fm,unclustered is preferable as this indicates that
a greater amount of the OA mass is included in a cluster
(including one-member clusters). The fm,unclustered generally
decreases with ε, then plateaus above a certain value of ε;
ideally this plateau occurs at fm,unclustered = 0. The ε where
the plateau starts is indicated as εMF, where MF stands for

mass fraction. Given that significant one-member clusters
are allowed, the unclustered thermograms that remain above
εMF have individually small mass contributions and are
either truly unique in their shapes or have a sufficiently
high noise level that they cannot be clustered, even after the
noise-screening process. We generally recommend selecting
ε ≥ εMF to minimize the unclustered mass.

The number of one-member clusters, Nc,one, generally de-
creases with ε, as these ions are incorporated into multi-
member clusters. Ideally, these one-member clusters would
exhibit clear, visually distinct behavior compared to other
one-member clusters and to multi-member clusters. How-
ever, we find this is often not the case, especially at smaller
ε. Thus, the number of one-member clusters should gener-
ally be minimized; we suggest Nc,one be held to 5 or fewer in
general.

The inter-cluster separation parameter, RinterClst, charac-
terizes the dissimilarity between clusters and is the ratio be-
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tween the average inter-cluster distance (EDseed,avg) and ε,
where

RinterClst =
EDseed,avg

ε
=

Nc,total∑
i=1

Nc,total∑
j=1

EDseed,i,j

Nc,total ·
(
Nc,total− 1

)
· ε
, (2)

and EDseed,i,j is the distance between the seeds for the dif-
ferent clusters i and j and Nc,total =Nc+Nc,one. For a 2-D
dataset, the seed can be visualized as the center of a circle
and ε the radius of the circle. Thus, when EDseed,i,j/ε < 2,
the two circles defining the boundaries of these two clusters
have overlapping areas. Good separation (i.e., cluster dis-
similarity) is indicated when EDseed,i,j/ε > 2. Although our
dataset is more than two dimensions, this illustrates the idea
of establishing the level of similarity (or dissimilarity) be-
tween clusters, i.e., the extent to which they are unique. We
recommend selecting an ε that results in RinterClst ≥ 2, when
possible.

All four parameters should be considered when determin-
ing the optimal ε. Consideration of the parameters individu-
ally may not result in the same optimal ε. Ultimately, the user
must consider each parameter and aim to select an optimal ε
that balances the different information provided in each pa-
rameter. This can be achieved by plotting the above parame-
ters as a function of ε and then selecting as the optimal value
the ε that results in (i) a small fm,unclustered with (ii) Nc near
the maximum and (iii) a small Nc,one and (iv) RinterClst near
or above 2. In addition, visual comparison of the clustering
results, illustrated as the average thermogram of each cluster,
can be helpful. For the example data considered below, we
find that the optimal ε tends to fall within a relatively narrow
range of values.

2.2.4 Summary

The NSSC allows for the clustering of ion peaks
in temperature-dependent mass spectra measured by
FIGAERO-CIMS, from which mass thermograms of the
different clusters are determined. The NSSC emphasizes the
contributions of ions having high a signal-to-noise ratio by
selecting seeds for the mass spectral clusters according to
a decreasing signal-to-noise ratio. The NSSC also accounts
for the full temperature-dependent behavior of each ion,
weighted towards the temperature ramping period during
which the ions generally exhibit more characteristic des-
orption profiles. However, the NSSC requires as user input
a distance criterion, ε, which characterizes the minimum
similarity required between a selected seed ion thermogram
and all other (non-clustered) ion-specific thermograms
for the non-seed ion to be considered part of the mass
spectral cluster. The appropriate ε value must be uniquely
determined for a given experiment or set of experiments, but
we recommend that it should be selected to provide both
the greatest amount of clustered mass and the number of

mass spectral clusters having two or more members while
also maintaining the greatest average separation between
the mass spectral clusters. Altogether, these steps facilitate a
robust, reproducible determination of mass spectral clusters
from a given dataset.

2.3 Alternative clustering methods

We have alternatively considered the performance of some
of the most commonly used clustering algorithms (k-means,
k-medoids, mean shift, DBSCAN) and a less commonly
used one (FPClustering; Gonzalez, 1985) for interpreting
FIGAERO-CIMS observations. The clustering methods con-
sidered are summarized in Table 2, with some of their
pros and cons listed, and described in further detail in Ap-
pendix A. We discuss them briefly here in the context of
FIGAERO-CIMS data. All the methods considered require
the input of at least one key user-specified parameter. These
parameters and the associated clustering algorithms can be
generally classified into two categories: number-based and
distance-based. Number-based clustering algorithms require
the specification of the desired number of retrieved clusters;
this includes k-means and k-medoids. Number-based algo-
rithms usually assign all members to clusters. The extent
of similarity among members of a cluster can vary greatly
since there is no strict distance criterion for each cluster.
When applied to FIGAERO-CIMS thermograms, we have
found these number-based algorithms are particularly sen-
sitive to the presence of noisy members and the initializa-
tion method. In contrast, some clustering algorithms require
the specification of a distance (similarity) criterion. This in-
cludes the mean shift, DBSCAN, and our NSSC algorithm.
These distance-based algorithms need not cluster all mem-
bers of the initial population and generally emphasize intra-
cluster similarity or the density of the points. The methods
differ in terms of the procedure used for the selection of the
initial seed or center and the extent to which they emphasize
point density versus cluster similarity. Noisy members tend
to naturally be excluded from any clusters. NSSC is a variant
of DBSCAN. It does, however, differ from the standard DB-
SCAN algorithm because NSSC only searches for neighbors
of the seed, while DBSCAN also searches for neighbors of
the neighbors. In doing so, NSSC emphasizes cluster similar-
ity rather than point density. This is particularly useful when
clustering thermograms, as the behavior of the entire thermo-
gram is considered; inclusion of neighbors of neighbors may
cluster together thermograms that exhibit especially similar
behavior in one region (e.g., the soaking period) but not an-
other, an undesirable result. Accordingly, the sorting of seeds
by noise levels is a key aspect of the NSSC algorithm, which
we have found provides for more robust clustering results.

Most of these clustering algorithms, including k-means, k-
medoids, and mean shift, are initialized with a random choice
of the initial cluster centers (or seeds). For large datasets, this
randomness usually leads to different results of clustering
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Table 2. Comparison of different clustering algorithms.

Clustering algorithms k-means k-medoids Mean shift DBSCAN FPClustering NSSC

Assign all the members? Yes Yes No No Yes No
Identify single-member clusters? No No Yes No No Yes
Robust solution? No No No Yes No Yes
Controlled distance from the center of clusters? No No Yes No No Yes
Influence of noise? Large Large Small Small Large Small
Key preset parameters Nc Nc ε, Nmin ε Initial seed ε, Nmin
Software used in this study Igor R Python Igor Igor Igor

with different runs. The extent to which this impacts the anal-
ysis and clustering of FIGAERO-CIMS data is considered
using SOA from the α-pinene+OH SOA system as the case
study (Sect. 4.1). For the FIGAERO-CIMS data we find that
the various clustering results exhibit a moderate sensitivity to
how the initial seeds are selected for all of these algorithms,
although the final clusters are generally similar between dif-
ferent runs for the same input parameter. This may reflect
either the relatively small size of the dataset (∼ 300 mem-
bers originally and ∼ 100 members after noise screening) or
that there are generally characteristic peak shapes with over-
all good separation. However, some differences between in-
dependent clustering runs result, which is undesirable. For
FIGAERO-CIMS data we know that not all thermograms are
of equal quality; i.e., they have different noise levels reflect-
ing in part their different overall contributions to the total
mass. The standard clustering methods do not account for
this information. The NSSC algorithm developed here takes
into account this measure of data quality and uses it to iden-
tify the seeds for clustering. This provides for an entirely re-
producible clustering and generally emphasizes the behavior
of the ions that contribute most to the FIGAERO-CIMS sig-
nal while still allowing for the consideration of the contribu-
tions of low-signal ions.

We find that different clustering algorithms can result in
similar numbers of clusters, with the cluster-averaged ther-
mograms having visually similar shapes when each is run
with appropriate user-selected parameters, although the de-
tails and robustness of each cluster vary method by method.
The “appropriate” parameters, however, are different from
the “optimal” parameters. There is usually different guidance
for different algorithms on how to find the optimal parame-
ters that result in the greatest similarity within clusters and
dissimilarity among clusters. In the case of k-medoids, for
example, the average silhouette indicates an optimal number
of clusters of two for the case study system. Yet, this is cer-
tainly too few clusters based on the other methods.

In summary, we propose NSSC as the preferred algorithm
in dealing with the FIGAERO dataset based on the following:
(i) the ability to generate similar results as the other com-
monly used clustering algorithms; (ii) good reproducibility
and stability of results due to accounting for the noise of in-

dividual thermograms; (iii) good control over the similarity
within the clusters by using a user-definable distance crite-
rion; and (iv) a capability to identify unique thermograms as
one-member clusters.

3 FIGAERO measurements and experiments

3.1 Instrument and experiment description

The FIGAERO-CIMS instrument has been described pre-
viously in detail (Lee et al., 2014; Lopez-Hilfiker et al.,
2014). A brief description is provided here, with some ad-
ditional details in the Supplement. FIGAERO-CIMS mea-
sures the evolved gases from filter-collected particles dur-
ing temperature-programmed thermal desorption. The ther-
mal desorption of particles occurs in two stages: a ramping
period and a soaking period. During ramping, the temper-
ature increases from room temperature to 200 ◦C, typically
at 10 ◦C min−1. Most OA mass desorbs during the ramping
stage. The temperature is held at 200 ◦C for ca. 30–40 min
during the soaking period to facilitate evaporation of the
remaining low-volatility organic mass from the filter. The
evolved gas-phase compounds are measured using CIMS
with the iodide (I−) reagent ion, appropriate for the charac-
terization of generally highly oxygenated components com-
prising most secondary organic aerosol (Lopez-Hilfiker et al.,
2016; Isaacman-VanWertz et al., 2017; Lee et al., 2018). The
resulting signal or mass concentration versus temperature (or
equivalently time) curves for each ion constitute a thermo-
gram. All individual thermograms are background-corrected
by subtracting the observed thermograms from appropriate
blank experiments. The overall bulk thermogram is obtained
by summing together the individual thermograms.

Several example applications of the clustering on
FIGAERO-CIMS data are discussed in Sect. 4. These cover
laboratory experiments on SOA derived from the following:
(1) OH+α-pinene and (2) OH+1-3-carene, both at low NOx
conditions; (3) OH+α-pinene as a function of [NO]; and
(4) O3+α-pinene, but with the SOA allowed to isothermally
evaporate at 80 % RH for varying amounts of time prior to
thermal desorption. These experiments are summarized in
Table 1, with further details in the Supplement and associated
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publications (D’Ambro et al., 2018, 2019); all data are pub-
licly available (Cappa et al., 2019). All the experiments were
done in a 10.6 m3 Teflon environmental chamber at Pacific
Northwest National Laboratory (PNNL) (Liu et al., 2012,
2016).

3.2 General interpretation of FIGAERO-CIMS
thermograms

This work focuses on the development of the clustering
method rather than on interpretation of the FIGAERO-CIMS
thermograms; an illustrative thermogram is shown in Fig. 3b.
However, a discussion of the clustering results is aided by
a general understanding of how FIGAERO-CIMS thermo-
grams have been previously interpreted. Ions contributed by
semi-volatile and low-volatility compounds that desorb di-
rectly tend to exhibit strongly peaked, Gaussian-like ther-
mograms with single-mode peaks of around 50 to 120 ◦C;
the lower the peak desorption temperature (Tpeak) the higher
the volatility of the desorbing compound (Lopez-Hilfiker
et al., 2014, 2015). We therefore refer to thermograms, or
portions of thermograms, having this general shape as the
“monomeric” content of the ion hereafter; direct evaporation
of thermally stable dimers or other oligomers is possible, al-
though it will typically occur at higher temperatures due to
the comparably lower volatility of these compounds. When
multiple monomeric compounds having different vapor pres-
sures contribute to the same ion, the resulting thermogram
exhibits a broader peak and shallower slopes or, in particular
cases, multiple distinct peaks (Lopez-Hilfiker et al., 2015).
However, very broad thermograms, especially those that
peak at higher temperatures (> 120 ◦C or so), can also indi-
cate contributions from the thermal decomposition of very
low-volatility monomers, dimers, and oligomers (Lopez-
Hilfiker et al., 2015; Gaston et al., 2016; Schobesberger et al.,
2018). Dimers and oligomers can evaporate directly, with-
out thermal decomposition, as observed for isoprene-derived
SOA (D’Ambro et al., 2017) and ambient monoterpene ox-
idation products (Mohr et al., 2017). However, fragments of
dimers or oligomers are generally more abundant, indicating
the importance of thermal decomposition for the desorption
of these low-volatility compounds. Both the direct evapora-
tion of extremely low-volatility compounds and the decom-
position of large molecules or oligomers can lead to high sig-
nal levels above ∼ 120 ◦C. We refer to both peaks and the
slowly varying signal above ∼ 120 ◦C as the “oligomeric”
content of the ion hereafter. We use the terms monomer and
oligomer in a qualitative manner. A more quantitative anal-
ysis of the thermograms can help distinguish between direct
evaporation, thermal decomposition, and the contributions of
monomers versus oligomers (Schobesberger et al., 2018), yet
this is beyond the scope of the current work.

4 Example applications

To illustrate the broad utility of NSSC for the interpretation
and analysis of FIGAERO-CIMS data, we apply NSSC to
the laboratory-generated SOA systems described above. The
systems include SOA formed from a single precursor under
NOx-free conditions, SOA formed from a single precursor
as a function of input [NO], and SOA formed from a sin-
gle precursor with thermal desorption following isothermal
evaporation.

4.1 α-pinene + OH SOA

A total of 298 ions were characterized by FIGAERO-CIMS
for SOA generated from the α-pinene+OH reaction (Ta-
ble 1). Four ions were characterized as anomalous and ex-
cluded from further analysis (see Sect. 2.1.1). The mass
concentration of each ion was calculated by integrating the
signal across the entire desorption period and assuming an
equal sensitivity of CIMS for all the compounds. The to-
tal mass concentration is the sum of all the non-anomalous
ions. The mass spectrum and bulk thermogram of the re-
maining 294 ions are shown in Fig. 3, with the bulk ther-
mogram shown versus both temperature (Fig. 3b) and time
(Fig. 3c) to illustrate the difference between the ramping and
soaking periods. The individual thermograms exhibited a va-
riety of shapes. The noise threshold for this dataset was ξref =

0.020893. A total of 188 ions were screened out via noise fil-
tering. The remaining 106 ions contribute 92.5 % to the total
mass detected by FIGAERO-CIMS. The optimal ε was es-
tablished through consideration of the codependencies ofNc,
Nc,total, fm,unclustered, and RinterClst on ε (Fig. 4; Table 3). For
this dataset, we determine the optimal ε = 2.6. The choice of
a much smaller ε, around 1.5, gives a maximum in Nc but
leaves a large fraction of the mass unclustered. The choice
of ε = 2.1 or 2.2 yields larger Nc and RinterClst than ε = 2.6,
with a reasonably small fm,unclustered. However, there is one
type of thermogram (Clst no. 11 in Fig. 5) that is only cap-
tured with ε ≥ 2.6, and this yields fm,unclustered = 0. Using
ε ≥ 2.7 also yields fm,unclustered = 0 and Nc,one = 0, but Nc
and RinterClst decrease from ε = 2.6, indicating increasing
similarity between clusters with fewer types of shapes cap-
tured. The choice of ε = 2.6 provides a compromise be-
tween maximizingNc, minimizing fm,unclustered, and keeping
RinterClst above 2. The parameters and thresholds used for this
dataset are summarized in Table 3.

A total of 11 clusters are identified with no one-member
clusters. The unweighted and mass-weighted average ther-
mograms for each cluster are shown along with the thermo-
grams of individual members in Fig. 5a. The differences be-
tween weighted and unweighted average clusters are negli-
gible, in general. Clusters are organized and numbered (as
Clst no. N ) from low to high Tm,50, with deeper to shal-
lower downslope. Clst no. 1 through Clst no. 6 all have a
clear peak below 120 ◦C, but with different peak widths and
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Table 3. Parameters and thresholds used for the data processing and noise-sorted scanning clustering for all the example experiments.

Expt. no. SOA type Preprocessing Clustering

Ntotal Nanomalous Nfiltered fm,filtered ξref fm,ref ε Nc Nc,one fm,unclustered RinterClst

1 α-pinene 298 4 188 7.5 0.021 0.67 2.6 11 0 0.00 2.01
+OH

2 1-3-carene 298 5 183 9.3 0.019 0.57 2.1 9 1 0.27 2.36
+OH

3a
Single

6 204 15.3 0.025 0.55 2.2 9 1 1.52 2.06
3b 298 6 204 17.5 – – – 9 1 1.72 –
3c α-pinene 6 204 21.0 – – – 9 1 2.27 –

3a +OH+NO
Multi

2 208 15.5 0.025 0.55 2.2 9 1 1.52 2.06
3b 298 3 195 12.6 0.027 0.54 2.3 10 1 1.29 2.10
3c 6 200 12.8 0.028 0.43 2.5 12 1 1.21 1.96

4a

Single

10 185 11.5 0.025 0.42 2.2 10 2 0.67 2.28
4b 10 185 14.0 – – – 10 2 0.79 –
4c 312 10 185 14.0 – – – 10 2 0.84 –
4d 10 185 13.8 – – – 10 2 0.83 –
4e α-pinene 10 185 17.6 – – – 10 2 0.82 –

4a +O3

Multi

1 191 11.4 0.025 0.41 2.2 11 2 1.04 2.22
4b 0 210 16.5 0.044 0.41 3.3 8 4 0.00 2.02
4c 312 5 205 14.3 0.048 0.42 3.1 9 2 1.06 1.66
4d 3 203 12.8 0.055 0.39 3.3 8 1 2.50 1.80
4e 3 213 16.1 0.053 0.41 3.4 7 2 0.98 1.97

Ntotal – total number of ions characterized by CIMS. Nanomalous – number of anomalous ions. Nfiltered – number of ions filtered out from the following clustering due to high
levels of noises. fm,filtered – mass fraction of the ions filtered out due to high levels of noises, expressed in percent. ξref – noise threshold. Ions with noise levels above this threshold
are excluded from clustering. fm,ref – the threshold of mass contribution (%) to identify an ion as significant. ε – distance criterion. Nc – number of clusters determined with
two or more members. Nc,one – number of clusters determined with only one member. fm,unclustered – mass fraction of unclustered ions, expressed in percent. RinterClst – the ratio
of the average inter-cluster distance over the distance criterion ε.

Figure 3. (a) Mass spectrum of α-pinene+OH SOA measured by
FIGAERO-CIMS. The mass excludes iodine. (b) Normalized ther-
mogram of the bulk SOA versus temperature. (c) Normalized ther-
mogram of the bulk SOA versus time (black line) and the variation
in desorption temperature with time (dark red dashed line). The long
tail during the soaking period is evident when the thermogram is
considered in time space. The light blue shaded area denotes the
ramping period and the pink shaded area the soaking period.

downslopes. Clst no. 7 and Clst no. 8 are a bit noisier with
only a few members each, exhibiting a sharp upslope and
shallow downslope. Clst no. 9 has a very broad peak. Clst
no. 10 peaks at around 150 ◦C after an initial rise and tem-
porary plateau. Clst no. 11 exhibits behavior somewhat like
Clst no. 10, but with a peak that occurs just into the soak-
ing period, evident if viewed in time space, at 200 ◦C with a
rapid drop afterwards.

The total mass concentration of a given cluster (Mc,N ) is
the sum across all cluster members, calculated by integrating
the summed mass concentration across the entire desorption
period. The percentage mass contribution of each cluster and
of the unclustered and the noise-filtered ions, as well as the
number of members for each cluster, are shown in Fig. 5b
and Table S1 in the Supplement. Clst no. 2 and Clst no. 3
contain the majority of the mass (20.1 % and 44.3 %, respec-
tively) and consist of nearly half of the clustered ions (11
and 42, respectively). Clst no. 4 and Clst no. 9 also contain
a notable percentage of the total mass (8.2 % and 9.8 %, re-
spectively) and include a notable number of ions (13 and 17,
respectively). Other clusters contribute relatively little to the
total mass and contain a small fraction of ions.

The mass-weighted average molecular formulas
(CxHyOzNm) differ between clusters, as do the O : C
and H : C atomic ratios (Table S1). There is no clear relation-
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Figure 4. The variation of four parameters, Nc, Nc,total,
fm,unclustered, and RinterClst, as a function of the distance crite-
rion ε. The black horizontal dashed line guides the judgement for
RinterClst ≥ 2. The values highlighted by a rectangle are the values
corresponding to the optimal ε used for the clustering analysis.

ship between Tm,50 (or cluster number) and the number of
carbon atoms, MW, or O : C. There is, however, a reasonable
inverse correlation between Tm,50 and H : C (r2

= 0.78).
The number of carbon atoms is notably larger for Cluster 6
(x = 11.1) and Cluster 7 (x = 15.3); if those two clusters
are excluded there is an inverse relationship between Tm,50
and the number of carbon atoms (r2

= 0.79) and with MW
(r2
= 0.59). While the reason for these two clusters having

comparably large numbers of carbon atoms is unknown,
this nonetheless suggests that the contribution of oligomer
decomposition might increase for clusters having higher
Tm,50 values.

Interpretations of previous FIGAERO-CIMS studies have
largely focused on the behavior of the bulk thermogram or
of several major ions or sums of ions based on common fac-
tors such as the number of carbon atoms (Lopez-Hilfiker et
al., 2016; D’Ambro et al., 2017, 2018; Stolzenburg et al.,
2018; Wang and Hildebrandt Ruiz, 2018; Joo et al., 2019).
The normalized thermograms of the top five ions contribut-
ing most to the total mass for the experiments here are shown
in Fig. 5c, along with the bulk thermogram. Together, these
five ions make up nearly 30 % of the total mass, exhibit very
similar thermogram shapes to each other and to the bulk ther-
mogram, and belong solely to either Clst no. 2 or Clst no. 3.
Thus, examining these ions only would capture only a frac-
tion of the overall diversity in thermal behaviors. The cluster-
ing method developed here provides a means to more com-
prehensively investigate the variability in volatility between
aerosol components.

4.2 1-3-carene + OH SOA

A total of 298 ions were characterized by FIGAERO-CIMS
for SOA generated from the reaction of 1-3-carene+OH
(Table 1). Five were identified as having anomalous thermo-

grams and excluded from further analysis. The mass spec-
trum and bulk thermograms of 1-3-carene+OH SOA are
shown in Fig. 6. Compared to the α-pinene+OH SOA de-
scribed above, the mass spectrum of1-3-carene SOA is quite
different, with one ion (C8H12O5) dominant. The bulk ther-
mograms of the two SOA systems both look bell-like, but
with the 1-3-carene SOA thermogram having a peak tem-
perature ca. 9 ◦C higher. After noise filtering, 110 ions re-
mained for clustering, contributing 90.7 % to the total mass.
The optimal ε is 2.1, established again by considering the
system-specific dependence of Nc, Nc,one, fm,unclustered, and
RinterClst on ε (Fig. S1 in the Supplement), with the parame-
ters and thresholds summarized in Table 3.

A total of 10 clusters are identified, including one one-
member cluster, with thermograms shown in Fig. 7a and the
mass contribution and number of ions in a cluster in Fig. 7b.
The chemical properties of each cluster are summarized in
Table S2. The general characteristics of the thermograms
identified in 1-3-carene+OH SOA are similar to those of
the low NOx α-pinene+OH SOA described above but with
different mass contributions. For example, Clst no. 4 has a
nearly identical shape of the thermogram as Clst no. 3 in the
α-pinene SOA but contributes less to the total mass: 28.0 %
compared to 44.3 %. Clst no. 6 in the 1-3-carene SOA con-
tributes 14.8 % to the total mass and resembles Clst no. 5 in
the α-pinene SOA, which contributes only 4.0 % to the total
mass.

In general, Clst nos. 1–6 in the 1-3-carene SOA all ex-
hibit a peak below 120 ◦C, with clear peaks of varying width
and downslopes of varying steepness, but nominally in order
of narrow to wide and steep to shallow, respectively. These
clusters carry the majority of the desorbed mass. Clst no.
7 and Clst no. 8 both exhibit relatively flat thermograms in
the ramping period after their initial rise and contribute 9 %
to the total mass. Clst no. 9 has a peak temperature above
150 ◦C and Clst no. 10 reaches a maximum during the soak-
ing period. These last two clusters contribute little to the total
mass (0.6 % and 0.3 %, respectively).

The thermograms of the five largest ions are shown in
Fig. 7c. These five ions together carry ∼ 35 % of the SOA
mass. A wider variety of thermogram shapes is captured by
the top five ions compared to the α-pinene SOA system.
However, thermograms characteristic of Clst nos. 7–10 are
not represented by these top five ions; this remains true even
if the top 10 ions are considered (not shown).

There are ultimately three major differences between the
two SOA systems. For one, there is a different relationship
between fractional contribution and cluster number (and thus
Tm,50) between the two. Secondly, the α-pinene SOA con-
tains ions with especially narrow peaks at ca. 100 ◦C (i.e.,
Clst nos. 7 and 8) that are not observed with1-3-carene SOA
(compare Fig. 5 with Fig. 7). Lastly, the thermograms of the
top five ions for 1-3-carene SOA differ to a greater extent
than for α-pinene SOA. Although we are unable to deter-
mine the reasons for these differences here, this illustrates
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Figure 5. Clustering results for α-pinene+OH SOA. (a) Unweighted average thermograms (bold gray lines), mass-weighted average ther-
mograms (bold black lines), and individual members (colored lines) of the 11 clusters identified. (b) Percentage contribution of each cluster
to the total mass, the filtered-out and unclustered mass percentage (left bar), the number of ions in each cluster, and the unclustered number
of ions (right bar). (c) Thermograms of the top five ions in terms of mass contribution. The cluster colors are consistent between (a) and (b).

Figure 6. Same as Fig. 3, but for 1-3-carene+OH SOA. (a) SOA
mass spectrum measured by FIGAERO-CIMS. The mass ex-
cludes iodine. The normalized thermogram of the bulk SOA ver-
sus (b) temperature and (c) time. In (c) the light blue shaded area
denotes the ramping period and the pink shaded area the soaking
period.

the potential for clustering to help identify and understand
differences between different SOA systems.

4.3 α-pinene + OH + NO SOA

Thermograms from SOA generated from the reaction of
α-pinene+OH at varying NO concentrations (5, 10, and
25 ppb; Table 1) are considered as a set of experiments. To-
gether, the differences between them illustrate the impact of
changes to the fate of RO2 peroxy radical intermediates on
the SOA composition and thermal properties (Praske et al.,
2018; Zhao et al., 2018). Clustering proceeds here using two
complementary approaches. In the single-clustering method,
clustering is performed for one reference experiment (i.e.,
at one NO concentration, 5 ppb, Expt. no. 3a). Then, aver-
age thermograms are calculated for the other experiments
in the set using the same cluster members as identified in
the reference experiment. In the multiple-clustering method,
clusters are independently determined for each experiment in
the set, and the shapes, relative abundances, and contributing
ions are compared between experiments. For all three exper-
iments, the same initial set of 298 ions were characterized by
FIGAERO-CIMS.

4.3.1 Single clustering

The ions identified as anomalous in each experiment differed.
This most likely results from shifts in the background sig-
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Figure 7. Same as Fig. 5, but for 1-3-carene + OH SOA. (a) Unweighted average thermograms (bold gray lines), mass-weighted average
thermograms (bold black lines), and individual members (colored lines) of the 10 clusters identified. (b) Percentage contribution of each
cluster to the total mass, the filtered-out and unclustered mass percentage (left bar), the number of ions in each cluster, and the unclustered
number of ions (right bar). (c) Thermograms of the top five ions in terms of mass contribution. The cluster colors are consistent between (a)
and (b).

nal levels between experiments. To maintain consistency be-
tween the three experiments, ions identified as anomalous in
any of the experiments were excluded from all the experi-
ments, with four ions excluded in total. A total of 88 ions
were kept for clustering after noise filtering using the 5 ppb
NO reference experiment, contributing 84.5% to the total
mass. The optimal ε is 2.2 (Fig. S2 and Table 3), resulting
in 10 clusters with one one-member cluster. The same sets of
ions were then used to calculate the cluster-averaged thermo-
grams for the 10 and 25 ppb NO experiments. The chemical
characteristics of the clusters are summarized in Table S3.

Mass spectra for the three experiments are compared in
Fig. 8a and the bulk thermograms shown in Fig. 8b and c.
The 5 and 10 ppb NO SOA mass spectra are nearly identical.
The mass spectrum for the 25 ppb NO experiment, however,
exhibits a notable shift of the most abundant ions towards
lower m/z. The bulk thermograms for the 5 and 10 ppb NO
experiments are nearly identical, peaking near 80 ◦C. The
25 ppb NO bulk thermogram similarly peaks near 80 ◦C but
exhibits a much slower decay as temperature increases fur-
ther. Additionally, the change in slope at the transition from
the ramping to soaking period is more pronounced in the
25 ppb NO experiment. Overall, a greater fraction of the mass
desorbs above 100 ◦C and during the soaking period for the
25 ppb NO experiment compared to lower-NO experiments.

Despite the differences in the bulk thermograms, the
shapes of the weighted average thermograms of clusters for

all the NO experiments are generally similar, with the excep-
tion of Clst no. 6 (Fig. 9a). In particular, the 25 ppb thermo-
gram shape of Clst no. 6 differs substantially from those of
low NO conditions, with a much reduced initial peak (around
80 ◦C) and a more pronounced second peak at high tempera-
ture (around 200 ◦C). However, this cluster contributes negli-
gibly to the overall mass. There is some suggestion of similar
behavior for Clst no. 10, although to a lesser extent. For the
three most abundant clusters, Clst nos. 1, 2, and 4, there is
a slightly increased relative contribution of the 100–200 ◦C
tail for 25 ppb NO, consistent with differences in the bulk
thermograms.

The most notable NO-dependent change is in the rela-
tive abundances of the clusters between the 5 and 10 ppb
NO experiments and the 25 ppb NO experiment (Fig. 9b).
The cluster mass fractions are nearly identical between the
5 and 10 ppb NO experiments. The relative contributions of
higher-number clusters (which have been ordered according
to increasing Tm,50) increase for the 25 ppb NO experiment.
This is consistent with the increased persistence of the 25 ppb
NO bulk thermogram to higher temperatures and the nearly
identical nature of the 5 and 10 ppb NO bulk thermograms
(Fig. 8b). The clustering analysis suggests that differences in
the bulk thermogram arise from shifts in the relative contri-
butions of the various SOA components that result from the
altered photochemical environment. These observations gen-
erally suggest an increasing fraction of oligomeric content,
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Figure 8. (a) Mass spectra of α-pinene+OH SOA formed with dif-
ferent NO concentrations, normalized to the mass concentration of
the most abundant ions. The mass excludes iodine. Normalized ther-
mograms of the bulk SOA versus (b) temperature and (c) desorption
time, with the desorption temperature shown as a dark red dashed
line. The vertical purple dashed line delineates between ramping
and soaking. In all the panels, colors correspond to the NO concen-
tration (see legend).

or less-volatile compounds, formed in the particle phase –
or potentially the gas phase – when the SOA was generated
under higher NO chamber conditions (Schobesberger et al.,
2018).

4.3.2 Multiple clustering

With multiple clustering, each experiment was processed
and clustered independently with experiment-specific ξref,
Nc, and ε, among other parameters (Fig. S4 and Table 3).
The clustered thermograms from the three experiments are
compared in Fig. 10a–c. The number of clusters identified
increases with NO concentration. Comparison between the
shapes of the clusters from the 5 ppb NO (Fig. 10a) and
10 ppb NO (Fig. 10b) experiments indicates generally similar
types of thermograms, consistent with the single-clustering
method; 10 of the 11 total 10 ppb clusters match a 5 ppb clus-
ter. The one additional unique cluster at 10 ppb NO (Clst no.
9) is a one-member cluster with a sharp, narrow peak at low
temperatures and a broader, shallow second peak at high tem-
peratures. This ion was filtered out due to a high noise level
in the 5 ppb NO experiment.

The 25 ppb NO experiment (Fig. 10c) results in more
clusters compared to the lower NO experiments: 13 for the

25 ppb NO experiment versus 10 and 11 for the 5 and 10 ppb
experiments, respectively. Some of the 25 ppb NO clusters
have shapes similar to the lower NO experiments, but many
differ substantially. For example, two of the unique 25 ppb
NO clusters (Clst nos. 12 and 13) have thermograms for
which the signal increases continuously through the ramp-
ing period and even into the soaking period. These clusters
were not found in the single-clustering analysis because the
5 ppb NO experiment was used as the reference.

The new types of thermograms observed in the 25 ppb NO
experiment indicate either the formation of new compounds
or a change in the relative contributions of different compo-
nents to the same ions. Either could result from a change in
the fate of the peroxy radical intermediates as the NO con-
centration increases, leading to notably different products.
There were numerous nitrogen-containing ions observed for
the three experiments. These N-containing ions belong to
Clst nos. 1–7 for all three [NO] conditions (Table S4). The
higher-number clusters did not include N-containing ions,
also indicating a limited influence of the N-containing prod-
ucts on these lower-volatility thermograms, although frag-
mentation complicates the interpretation. Overall, the forma-
tion of new N-containing compounds at the high NO condi-
tion does not seem to explain the unique thermograms in the
25 ppb NO experiments.

The percent contribution of different clusters to total mass,
along with the noise-filtered and unclustered ions, differs be-
tween experiments (Fig. 10d). Note that for the multiple-
clustering method, clusters having the same index number
are not necessarily directly comparable between experiments
because different sets of ions are included. For example,
while Clst no. 1 in the 5 ppb NO experiment and Clst no. 1
in the 10 ppb NO experiment are comparable, the most sim-
ilar cluster in the 25 ppb experiment is Clst no. 2. Nonethe-
less, there are some common features shared by the same,
or closely indexed, clusters. For example, Clst nos. 1–4 in
all three experiments exhibit a narrow, single peak with the
peak temperature below 120 ◦C. The mass contribution of
Clst nos. 1–4 is similar between the 5 and 10 ppb NO ex-
periment but ∼ 15 % lower in the 25 ppb NO experiment.
Clusters that reach their maximum signal at or above 150 ◦C
(Clst nos. 9 and 10 for 5 ppb, Clst nos. 10 and 11 for 10 ppb,
and Clst nos. 10–13 for 25 ppb) together contribute ∼ 6 %
in the low NO experiments and ∼ 13 % in the high NO ex-
periments. Thus, there is some evidence that at higher NO
there is an increased contribution of oligomeric compounds,
indicated by the increased contribution of clusters that peak
at higher temperatures and exhibit broader overall thermo-
grams. However, overall these observations suggest complex
shifts in the distribution of products, both monomeric and
oligomeric, with sufficient increases in NO to change the fate
of the peroxy radical intermediates.
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Figure 9. Single-clustering results for α-pinene+OH SOA as a function of NO concentration. (a) Comparison of the normalized, weighted
average thermograms of the 10 clusters for the 5 ppb NO (navy), 10 ppb NO (green), and 25 ppb NO (orange) experiments. (b) Contribution
of each cluster to the total mass, including the contribution from filtered-out ions (black) and unclustered ions (gray). The total mass is
calculated independently for each experiment.

4.4 α-pinene + O3 SOA

SOA formed from the dark ozonolysis of α-pinene was col-
lected and then allowed to isothermally evaporate for varying
amounts of time (0, 1, 3, 6, and 24 h) before thermal desorp-
tion (Table 1, Expt. no. 4). As above for the SOA formed
at varying NO concentrations, these experiments are con-
sidered to be a set and interpreted using both the single-
clustering and multiple-clustering approaches. The single-
clustering approach uses the 0 h (no-wait) experiment as the
reference for initial clustering. In this set of experiments, 312
ions were characterized by FIGAERO-CIMS for each exper-
iment.

4.4.1 Single clustering

Only a few ions, if any, were identified as anomalous in each
experiment; a total of 10 ions were removed from all the
experiments to maintain consistency between experiments.
The mass spectra and bulk thermograms of the remaining
302 ions for the five experiments are shown in Fig. 11. As
the isothermal evaporation time increases, the mass spectrum
changes significantly, as previously reported by D’Ambro et
al. (2018). In the no-wait experiment, the mass spectrum is
dominated by one ion, C10H14O6. Upon isothermal evapo-
ration, the relative abundance of this ion notably decreases,
with the extent of decrease increasing with wait time; over
time, a greater number of ions contribute to the total mass,
both at lower and higher m/z. With isothermal evaporation,
the bulk thermograms also exhibit a shift from a more peaked
shape, reminiscent of that from a single compound (Lopez-
Hilfiker et al., 2014), to a more flattened peak with a shal-

lower rise (Fig. 11). In other words, with increasing isother-
mal evaporation the majority of the mass desorbed during
thermal desorption shifts from a lower- to higher-temperature
region. This behavior largely reflects the loss of compara-
bly more volatile compounds during isothermal evaporation,
leaving behind SOA that is overall less volatile (Fig. S6a).
It can also in part be due to higher-molecular-weight, lower-
volatility compounds being produced with time via accretion
reactions in the condensed phase.

There are 12 clusters determined from the no-wait exper-
iment exhibiting a wide variety of shapes (Fig. 12a), with
the parameters used for data preprocessing and clustering re-
ported in Table 3 and shown in Fig. S5. Focusing first on
the no-wait experiment, the cluster thermogram shapes in-
clude those having clear peaks at relatively low temperatures
(∼ 60 ◦C) and with a sharp rise and fall (e.g., Clst nos. 1–3),
those having sharp peaks at relatively low temperatures but
with a shallow downward slope (e.g., Clst no. 6), those with
a broad peak at somewhat higher temperatures (∼ 100 ◦C)
and long tails (e.g., Clst no. 7), and those having a wide peak
at even higher temperatures ∼ 120 ◦C with a very broad rise
and fall (e.g., Clst no. 10).

Changes to the shapes of the thermograms that occur upon
isothermal evaporation differ between the clusters. Some of
the clusters exhibit almost step changes from the no-wait to
the longer time experiments (e.g., Clst nos. 2 and 6), while
others exhibit more continuous changes (e.g., Clst nos. 3 and
5). However, in all cases the clusters shift to have peaks that
occur at higher temperatures with generally broader ther-
mograms. In other words, the Tm,50 of all the clusters in-
creases as a function of evaporation time, but with larger in-
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Figure 10. Multiple-clustering results for α-pinene + OH SOA as a function of NO concentration. Clustering results are separately shown
for the (a) 5 ppb NO, (b) 10 ppb NO, and (c) 25 ppb NO experiments. Each panel includes unweighted average thermograms (gray lines),
mass-weighted average thermograms (black lines), and individual cluster members (colored lines). (d) The contribution of each cluster to
the total mass for each experiment. The mass contribution of filtered-out ions (black bar) and unclustered ions (gray bar) is also shown.

creases observed for the clusters having initially lower Tm,50
(Fig. 12b). For some of the clusters with a clear peak below
100 ◦C, such as Clst nos. 1–6, the peaks broaden to become
less obvious and shift to higher temperatures with longer
isothermal evaporation. For clusters that originally have very
wide peaks, such as Clst nos. 8–10 and 12, isothermal evapo-
ration engenders a general shift in the thermograms towards
higher temperatures. Different from the clusters described
above, thermograms for two clusters, Clst no. 7 and Clst no.
11, exhibit only a minor shift of peak temperature and shapes.
The thermograms of these two clusters share the common
features of a moderate-width peak that reaches a maximum
between 100 and 120 ◦C. The Tm,50 of these two clusters cor-
respondingly exhibits small changes compared to other clus-
ters.

Isothermal evaporation generally leads to a reduction of
the monomeric character of clusters, leaving behind com-
ponents that exhibit increased oligomeric content. Differ-
ences in how the individual cluster thermograms evolve with
isothermal evaporation are therefore likely indicative of dif-

fering relative contributions of monomeric versus oligomeric
components. For example, Clst no. 1 and Clst no. 10 have
distinctly different shapes in the 0 h wait experiment but very
similar shapes in the 24 h wait experiment. This indicates that
ions in Clst no. 1 are not contributed from a single compo-
nent, as might be inferred from the single-mode peak in the
0 h wait experiment. Instead, they are contributed by multi-
ple components, though initially dominated by monomeric
compounds, so the shift in peak temperature and broadness
is substantial. On the other hand, ions in Clst no. 10 must
also derive from multiple components, but with only a small
fraction of monomeric compounds that evaporate in the 24 h.
Consequently, the loss of low-temperature mass is apparent
yet small. In contrast, ions in clusters such as Clst nos. 7
and 11 must be composed of only low-volatility components
because they exhibit minimal changes in the thermogram
shapes.

The extent of mass loss with isothermal evaporation dif-
fers between clusters. In general, clusters that exhibit larger
changes in shape have greater total mass loss, although with
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Figure 11. (a) Normalized mass spectra of α-pinene+O3 SOA
measured after different extents of isothermal evaporation at room
temperature. The mass excludes iodine. The normalized thermo-
grams of bulk SOA versus (b) temperature and (c) time, with the
desorption temperature shown as a red dashed line. The vertical
black dashed line in (c) delineates between ramping and soaking.
The mass spectrum or thermogram colors indicate the isothermal
evaporation time (see legend), with darker colors indicating shorter
times.

variability (Fig. S6c). Consequently, the mass contributions
of the clusters evolve with isothermal evaporation (Fig. 12b).
The contribution of Clst no. 1 decreases significantly and
most notably as wait time increases. The most prominent
ion in the no-wait experiment, C10H14O6, is grouped in Clst
no. 1. The continuous mass loss of Clst no. 1 indicates the
rapid evaporation of its members. The mass contributions of
the other clusters that exhibited similar changes in shape as
Clst no. 1 (Clst nos. 3, 5, and 6) remain comparably con-
stant, although with Clst no. 3 decreasing slightly. The rel-
ative abundances of the clusters for which the thermogram
shapes changed negligibly (Clst nos. 7 and 11) increase con-
tinually, implying the slowest evaporation of the ions in these
two clusters in the 24 h evaporation period.

For comparison, D’Ambro et al. (2018) reported changes
in the shapes of the thermograms for the five most abundant
individual ions from the no-wait to 24 h experiment, together
carrying ∼ 15 % of the particle mass. They observed the in-
dividual ion thermograms generally all evolved in a manner
similar to our Clst nos. 1, 3, and 5, shifting from narrower,
more peaked profiles towards broader profiles with a shal-
lower rise, less evident peak, and increased evaporation at
higher temperatures. Here, with the clustering of data, we

are able to track the change in the thermal behaviors of ions
carrying ∼ 87 % of the initial mass. We are able to confirm
that ∼ 70 % of the mass exhibits similar thermal behaviors
and responses to isothermal evaporation as the top five ions.
However, we are also able to identify another ∼ 17 % of the
mass having initial thermograms not characterized by the top
five ions, including 12 % of the mass (Clst nos. 7 and 11)
that behaves distinctly differently upon evaporation at room
temperature.

4.4.2 Multiple clustering

The number of clusters identified with the multiple-
clustering method, using experiment-specific optimal ε val-
ues (Table 3 and Fig. S7), decreases with isothermal evap-
oration time from 13 (no-wait) to 12 (1 h) to 11 (3 h) and
then to 9 (6 and 24 h) (Fig. 13b–f). The noise levels of the
thermograms increase with evaporation time due to decreas-
ing absolute particle mass. Nonetheless, the typical shapes
of the cluster-specific thermograms clearly evolve with in-
creasing isothermal evaporation. For short isothermal evap-
oration times, many cluster-specific thermogram profiles are
relatively narrow, peaking at lower temperatures (70–120 ◦C)
and with rapid rises and evident downslopes. For longer
isothermal evaporation times, the cluster-specific profiles in-
stead have broad peaks with slow rises and most of the mass
desorbing at higher temperatures.

To aid further general interpretation, the cluster-specific
thermograms with Tm,50 < 120 ◦C are grouped together as
higher-volatility clusters. The number of higher-volatility
clusters decreases with isothermal evaporation, from 10 for
the no-wait experiment, to five in the 1 h experiment, two
in the 3 and 6 h experiment, to none in the 24 h experiment
(Fig. 14). The mass contributions of the higher-volatility
clusters decrease from 81.9 % to 60.4 %, 17.2 %, 9.4 %, and
to 0.0 % with increasing isothermal evaporation time. This
overall behavior is consistent with results from the single-
clustering method and indicates the compounds with a wide
range of volatilities make up much of the mass in the ini-
tial particles, while the SOA after isothermal evaporation is
composed of compounds having lower volatilities.

After isothermal evaporation, some cluster-specific ther-
mograms have signals that increase continuously during the
ramping period, for example Clst nos. 11 and 12 in the 1 h ex-
periment; such clusters were not observed in the no-wait ex-
periment. The relative abundance of these very low-volatility
clusters increases with isothermal evaporation, from 1.7 % in
the 1 h experiment (Clst nos. 11 and 12) to 13.4 % in the 24 h
experiment (Clst nos. 7 and 9). The absence of these clus-
ters for the no-wait experiment suggests that they are formed
over time through condensed-phase reactions. Their increas-
ing contribution over time may reflect both the evaporation of
higher-volatility components and continued formation. Clus-
ters having thermograms with very broad peaks, such as Clst
nos. 11 and 13 in the 0 h experiment, are also observed in all
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Figure 12. Single-clustering results for α-pinene+O3 SOA for different isothermal evaporation times. (a) Comparison of the normalized,
weighted average thermograms of the 12 clusters for the 0 h wait (navy), 1 h wait (blue), 3 h wait (green), 6 h wait (yellow), and 24 h wait
(orange) experiments. Note that the absolute signals of all of the clusters decrease with evaporation but to varying extents (Fig. S6).

the other experiments, with an increasing contribution to the
total mass.

The multiple-clustering method reveals the disappearance
of certain types of thermograms (e.g., the no-wait Clst no. 3)
and the emergence of other types of thermograms (e.g., the
1 h Clst no. 11) as evaporation time increases. This comple-
ments the single-clustering method, which illustrates grad-
ual changes in the shapes of cluster-specific thermograms,
by allowing for the identification of completely new thermo-
gram shapes and divergent behavior between ions within ini-
tial clusters. The multiple-clustering method also confirms
the decrease in the diversity of the desorption profiles, as

suggested by the single-clustering method. The two methods
complement each other and together provide a detailed look
into (i) how the desorption profiles of sets of ions evolve with
isothermal evaporation and (ii) how the fraction of different
types of thermograms changes with evaporation time.

5 Conclusions

We developed a new clustering algorithm, the noise-sorted
scanning clustering (NSSC) algorithm, for application to
FIGAERO-CIMS datasets. The NSSC algorithm provides a
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Figure 13. Multiple-clustering results for α-pinene+O3 SOA as a function of isothermal evaporation time. (a) The contribution of each
cluster to the total mass for each experiment, along with the contributions of filtered-out ions (black bar) and unclustered ions (gray bar). The
number of clusters obtained generally decreases with isothermal evaporation time. (b–f) The unweighted average (gray) and mass-weighted
average (black) thermograms, along with the thermograms of individual members of clusters for the (b) 0 h, (c) 1 h, (d) 3 h, (e) 6 h, and
(f) 24 h wait experiments. The cluster colors are consistent between panels.

robust method for clustering FIGAERO-CIMS thermograms
having distinct thermal desorption profiles and determining
the mass contribution of each cluster. Each of the ions con-
tributing to a cluster results from one or more molecules
sharing similar thermochemical properties. These molecules
either evaporate directly or decompose and then evaporate.
Compared to other existing clustering algorithms, NSSC is
strictly similarity-based, reproducible, and takes into consid-
eration differences in noise levels between individual ions.
The application of NSSC has the potential to make FI-
GAERO data more accessible to the atmospheric chemistry
community.

For the four different SOA systems we examined, more
than 80 % of the total mass is clustered, with the number
of clusters ranging from 9 to 13. The shapes of the cluster-
specific average thermograms exhibit substantial variation
for a given system. Some have relatively sharp peaks, others
broad peaks with slowly decreasing signal as heating contin-
ues, and others still having signals that continually increase
up to very high temperatures or long desorption times. The
mass contribution of a cluster varies from 0.2 % to 44.3 %. A
few (two to three) clusters usually contain more than 50 % of
the total mass in all the chemical systems examined. Com-
parison of the cluster-specific thermogram shapes between
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Figure 14. The Tm,50 values of the cluster-specific thermograms
from multiple clustering for the five isothermal evaporation experi-
ments.

different SOA systems allows for a qualitative assessment of
the similarity or uniqueness.

We also demonstrated the potential of the NSSC for guid-
ing the interpretation of sets of experiments in which one
experimental condition varies (e.g., NO concentration and
evaporation time). For such experiments, two complemen-
tary methods are suggested: (i) the single-clustering method,
whereby one experiment is used to determine the ions be-
longing to individual clusters and then clusters comprising
the same ions are calculated for the other experiments, and
(ii) the multiple-clustering method, whereby each experi-
ment is clustered independently and then compared. The first
approach helps establish how the properties of individual
clusters evolve as a set, while the second approach helps
identify changes in the diversity of cluster-specific thermo-
gram shapes, properties, and mass contributions. The two ap-
proaches complement each other and provide guidance for
future efforts to cluster ambient observations having long
time series.

This paper focuses only on the description of the clus-
tering algorithm and its potential as a tool to characterize
the thermal properties of organic aerosol in further detail.
The application of NSSC can be potentially expanded to any
other composition-resolved datasets, such as diurnal changes
in different compounds measured in ambient air, temporal
changes in different generations of species in a smog cham-
ber, and composition-dependent size distributions. All of the
above datasets share a common property that the noise of the
curve and/or spectrum is related to the composition. There-
fore, NSSC would facilitate the analysis by taking noise into
consideration. Interpretation of the cluster-specific thermo-
grams using frameworks such as that of Schobesberger et
al. (2018) will allow for a more comprehensive understand-

ing of the thermochemical properties of the organic aerosol,
which is the subject of future work. This will provide insights
into the thermal behavior of organic aerosol and the rela-
tive contributions of thermally stable (e.g., monomer) versus
thermally unstable (e.g., dimers or oligomers) compounds,
the volatility distribution of the thermally stable compounds,
and the T -dependent rate coefficients for oligomer dissocia-
tion and formation.
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https://doi.org/10.5281/zenodo.3361797).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-20-2489-2020-supplement.

Author contributions. ZL developed the NSSC algorithm. ELD’A,
SS, CJG, FDLH, JL, JES, and ZL performed measurements. ELD’A
and SS performed detailed data processing. ZL and CDC analyzed
data and wrote the paper, with contributions from all coauthors.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The SOAFFEE campaign was done at Pacific
Northwest National Laboratory, supported by the U.S. Department
of Energy (DOE) Office of Science, Office of Biological and Envi-
ronmental Research, as part of the Atmospheric Systems Research
(ASR) program. PNNL is operated for the DOE by the Battelle
Memorial Institute under contract DE-AC05-76RL01830.

Financial support. This research has been supported by the Na-
tional Science Foundation (grant no. ATM-1151062) and the
U.S. Department of Energy (grant nos. DE-SC0011791 and DE-
SC0018221). Emma L. D’Ambro was supported by the National
Science Foundation Graduate Research Fellowship (grant no. DGE-
1256082), and Siegfried Schobesberger was supported by the
Academy of Finland (grant nos. 272041 and 310682).

Review statement. This paper was edited by Rob MacKenzie and
reviewed by two anonymous referees.

www.atmos-chem-phys.net/20/2489/2020/ Atmos. Chem. Phys., 20, 2489–2512, 2020

https://doi.org/10.25338/B87S43
https://github.com/chriscappa/NSSC
https://github.com/chriscappa/NSSC
https://doi.org/10.5281/zenodo.3361797
https://doi.org/10.5194/acp-20-2489-2020-supplement


2510 Z. Li et al.: A robust clustering algorithm for composition-dependent analysis

References

Abdalmogith, S. S. and Harrison, R. M.: The use of trajectory clus-
ter analysis to examine the long-range transport of secondary
inorganic aerosol in the UK, Atmos. Environ., 39, 6686–6695,
https://doi.org/10.1016/j.atmosenv.2005.07.059, 2005.

Beddows, D. C. S., Dall’Osto, M., and Harrison, R. M.: Clus-
ter Analysis of Rural, Urban, and Curbside Atmospheric
Particle Size Data, Environ. Sci. Technol., 43, 4694–4700,
https://doi.org/10.1021/es803121t, 2009.

Cape, J. N., Methven, J., and Hudson, L. E.: The use of tra-
jectory cluster analysis to interpret trace gas measurements
at Mace Head, Ireland, Atmos. Environ., 34, 3651–3663,
https://doi.org/10.1016/S1352-2310(00)00098-4, 2000.

Cappa, C. D., Li, Z., D’Ambro, E. L., Schobesberger, S., Shilling,
J. E., Lopez-Hilfiker, F., Liu, J., Gaston, C. J., and Thorn-
ton, J. A.: Initial application of the noise-sorted scanning clus-
tering algorithm to the analysis of composition-dependent or-
ganic aerosol thermal desorption measurements, UC Davis Dash,
Dataset, https://doi.org/10.25338/B87S43, 2019.

D’Ambro, E. L., Lee, B. H., Liu, J., Shilling, J. E., Gaston, C. J.,
Lopez-Hilfiker, F. D., Schobesberger, S., Zaveri, R. A., Mohr,
C., Lutz, A., Zhang, Z., Gold, A., Surratt, J. D., Rivera-Rios,
J. C., Keutsch, F. N., and Thornton, J. A.: Molecular compo-
sition and volatility of isoprene photochemical oxidation sec-
ondary organic aerosol under low- and high-NOx conditions, At-
mos. Chem. Phys., 17, 159–174, https://doi.org/10.5194/acp-17-
159-2017, 2017.

D’Ambro, E. L., Schobesberger, S., Zaveri, R. A., Shilling,
J. E., Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., and
Thornton, J. A.: Isothermal Evaporation of alpha-Pinene
Ozonolysis SOA: Volatility, Phase State, and Oligomeric
Composition, ACS Earth Space Chem, 2, 1058–1067,
https://doi.org/10.1021/acsearthspacechem.8b00084, 2018.

D’Ambro, E. L., Schobesberger, S., Gaston, C. J., Lopez-Hilfiker,
F. D., Lee, B. H., Liu, J., Zelenyuk, A., Bell, D., Cappa, C.
D., Helgestad, T., Li, Z., Guenther, A., Wang, J., Wise, M.,
Caylor, R., Surratt, J. D., Riedel, T., Hyttinen, N., Salo, V.-
T., Hasan, G., Kurtén, T., Shilling, J. E., and Thornton, J.
A.: Chamber-based insights into the factors controlling epoxy-
diol (IEPOX) secondary organic aerosol (SOA) yield, compo-
sition, and volatility, Atmos. Chem. Phys., 19, 11253–11265,
https://doi.org/10.5194/acp-19-11253-2019, 2019.

Faxon, C., Hammes, J., Le Breton, M., Pathak, R. K., and Hal-
lquist, M.: Characterization of organic nitrate constituents of
secondary organic aerosol (SOA) from nitrate-radical-initiated
oxidation of limonene using high-resolution chemical ioniza-
tion mass spectrometry, Atmos. Chem. Phys., 18, 5467–5481,
https://doi.org/10.5194/acp-18-5467-2018, 2018.

Gaston, C. J., Quinn, P. K., Bates, T. S., Gilman, J. B., Bon, D. M.,
Kuster, W. C., and Prather, K. A.: The impact of shipping, agri-
cultural, and urban emissions on single particle chemistry ob-
served aboard the R/V Atlantis during CalNex, J. Geophys. Res.-
Atmos., 118, 5003–5017, https://doi.org/10.1002/jgrd.50427,
2013.

Gaston, C. J., Lopez-Hilfiker, F. D., Whybrew, L. E., Hadley,
O., McNair, F., Gao, H. L., Jaffe, D. A., and Thornton,
J. A.: Online molecular characterization of fine particulate
matter in Port Angeles, WA: Evidence for a major impact

from residential wood smoke, Atmos. Environ., 138, 99–107,
https://doi.org/10.1016/j.atmosenv.2016.05.013, 2016.

Giorio, C., Tapparo, A., Dall’Osto, M., Harrison, R. M., Bed-
dows, D. C. S., Di Marco, C., and Nemitz, E.: Comparison of
three techniques for analysis of data from an Aerosol Time-
of-Flight Mass Spectrometer, Atmos. Environ., 61, 316–326,
https://doi.org/10.1016/j.atmosenv.2012.07.054, 2012.

Goldstein, A. H. and Galbally, I. E.: Known and unexplored organic
constituents in the earth’s atmosphere, Environ. Sci. Technol., 41,
1514–1521, https://doi.org/10.1021/es072476p, 2007.

Gonzalez, T. F.: Clustering to Minimize the Maximum In-
tercluster Distance, Theor. Comput. Sci., 38, 293–306,
https://doi.org/10.1016/0304-3975(85)90224-5, 1985.

Hamilton, J. F., Webb, P. J., Lewis, A. C., Hopkins, J. R., Smith,
S., and Davy, P.: Partially oxidised organic components in urban
aerosol using GCXGC-TOF/MS, Atmos. Chem. Phys., 4, 1279–
1290, https://doi.org/10.5194/acp-4-1279-2004, 2004.

Huang, W., Saathoff, H., Pajunoja, A., Shen, X., Naumann, K.-
H., Wagner, R., Virtanen, A., Leisner, T., and Mohr, C.: α-
Pinene secondary organic aerosol at low temperature: chem-
ical composition and implications for particle viscosity, At-
mos. Chem. Phys., 18, 2883–2898, https://doi.org/10.5194/acp-
18-2883-2018, 2018.

Isaacman-VanWertz, G., Massoli, P., O’Brien, R. E., Nowak, J.
B., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., Su, L.,
Knopf, D. A., Misztal, P. K., Arata, C., Goldstein, A. H., and
Kroll, J. H.: Using advanced mass spectrometry techniques to
fully characterize atmospheric organic carbon: current capa-
bilities and remaining gaps, Faraday Discuss., 200, 579–598,
https://doi.org/10.1039/c7fd00021a, 2017.

Joo, T., Rivera-Rios, J. C., Takeuchi, M., Alvarado, M. J., and Ng,
N. L.: Secondary Organic Aerosol Formation from Reaction of
3-Methylfuran with Nitrate Radicals, Acs Earth Space Chem., 3,
6, https://doi.org/10.1021/acsearthspacechem.9b00068, 2019.

Kirchner, U., Vogt, R., Natzeck, C., and Goschnick, J.: Single par-
ticle MS, SNMS, SIMS, XPS, and FTIR spectroscopic analy-
sis of soot particles during the AIDA campaign, J. Aerosol Sci.,
34, 1323–1346, https://doi.org/10.1016/S0021-8502(03)00362-
8, 2003.

Le Breton, M., Psichoudaki, M., Hallquist, M., Watne, A. K., Lutz,
A., and Hallquist, A. M.: Application of a FIGAERO ToF CIMS
for on-line characterization of real-world fresh and aged par-
ticle emissions from buses, Aerosol Sci. Tech., 53, 244–259,
https://doi.org/10.1080/02786826.2019.1566592, 2019.

Lee, A. K. Y., Willis, M. D., Healy, R. M., Onasch, T. B.,
and Abbatt, J. P. D.: Mixing state of carbonaceous aerosol
in an urban environment: single particle characterization us-
ing the soot particle aerosol mass spectrometer (SP-AMS), At-
mos. Chem. Phys., 15, 1823–1841, https://doi.org/10.5194/acp-
15-1823-2015, 2015.

Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurten, T.,
Worsnop, D. R., and Thornton, J. A.: An Iodide-Adduct High-
Resolution Time-of-Flight Chemical-Ionization Mass Spec-
trometer: Application to Atmospheric Inorganic and Or-
ganic Compounds, Environ. Sci. Technol., 48, 6309–6317,
https://doi.org/10.1021/es500362a, 2014.

Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist,
M., Lee, L., Romer, P., Cohen, R. C., Iyer, S., Kurten, T., Hu,
W. W., Day, D. A., Campuzano-Jost, P., Jimenez, J. L., Xu, L.,

Atmos. Chem. Phys., 20, 2489–2512, 2020 www.atmos-chem-phys.net/20/2489/2020/

https://doi.org/10.1016/j.atmosenv.2005.07.059
https://doi.org/10.1021/es803121t
https://doi.org/10.1016/S1352-2310(00)00098-4
https://doi.org/10.25338/B87S43
https://doi.org/10.5194/acp-17-159-2017
https://doi.org/10.5194/acp-17-159-2017
https://doi.org/10.1021/acsearthspacechem.8b00084
https://doi.org/10.5194/acp-19-11253-2019
https://doi.org/10.5194/acp-18-5467-2018
https://doi.org/10.1002/jgrd.50427
https://doi.org/10.1016/j.atmosenv.2016.05.013
https://doi.org/10.1016/j.atmosenv.2012.07.054
https://doi.org/10.1021/es072476p
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.5194/acp-4-1279-2004
https://doi.org/10.5194/acp-18-2883-2018
https://doi.org/10.5194/acp-18-2883-2018
https://doi.org/10.1039/c7fd00021a
https://doi.org/10.1021/acsearthspacechem.9b00068
https://doi.org/10.1016/S0021-8502(03)00362-8
https://doi.org/10.1016/S0021-8502(03)00362-8
https://doi.org/10.1080/02786826.2019.1566592
https://doi.org/10.5194/acp-15-1823-2015
https://doi.org/10.5194/acp-15-1823-2015
https://doi.org/10.1021/es500362a


Z. Li et al.: A robust clustering algorithm for composition-dependent analysis 2511

Ng, N. L., Guo, H. Y., Weber, R. J., Wild, R. J., Brown, S. S.,
Koss, A., de Gouw, J., Olson, K., Goldstein, A. H., Seco, R.,
Kim, S., McAvey, K., Shepson, P. B., Starn, T., Baumann, K.,
Edgerton, E. S., Liu, J. M., Shilling, J. E., Miller, D. O., Brune,
W., Schobesberger, S., D’Ambro, E. L., and Thornton, J. A.:
Highly functionalized organic nitrates in the southeast United
States: Contribution to secondary organic aerosol and reactive
nitrogen budgets, P. Natl. Acad. Sci. USA, 113, 1516–1521,
https://doi.org/10.1073/pnas.1508108113, 2016.

Lee, B. H., Lopez-Hilfiker, F. D., D’Ambro, E. L., Zhou, P., Boy,
M., Petäjä, T., Hao, L., Virtanen, A., and Thornton, J. A.:
Semi-volatile and highly oxygenated gaseous and particulate or-
ganic compounds observed above a boreal forest canopy, Atmos.
Chem. Phys., 18, 11547–11562, https://doi.org/10.5194/acp-18-
11547-2018, 2018.

Li, Z. and Cappa, C. D.: Noise Sorted Scanning
Clustering Algorithm (Version v1.0.3), Zenodo,
https://doi.org/10.5281/zenodo.3361797, 2019

Liu, J. M., D’Ambro, E. L., Lee, B. H., Lopez-Hilfiker, F. D., Za-
veri, R. A., Rivera-Rios, J. C., Keutsch, F. N., Iyer, S., Kurten,
T., Zhang, Z. F., Gold, A., Surratt, J. D., Shilling, J. E., and
Thornton, J. A.: Efficient Isoprene Secondary Organic Aerosol
Formation from a Non-IEPDX Pathway, Environ. Sci. Technol.,
50, 9872–9880, https://doi.org/10.1021/acs.est.6b01872, 2016.

Liu, S., Shilling, J. E., Song, C., Hiranuma, N., Zaveri, R. A.,
and Russell, L. M.: Hydrolysis of Organonitrate Functional
Groups in Aerosol Particles, Aerosol Sci. Tech., 46, 1359–1369,
https://doi.org/10.1080/02786826.2012.716175, 2012.

Liu, S., Russell, L. M., Sueper, D. T., and Onasch, T. B.:
Organic particle types by single-particle measurements us-
ing a time-of-flight aerosol mass spectrometer coupled with
a light scattering module, Atmos. Meas. Tech., 6, 187–197,
https://doi.org/10.5194/amt-6-187-2013, 2013.

Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E.,
Wildt, J., Mentel, Th. F., Lutz, A., Hallquist, M., Worsnop, D.,
and Thornton, J. A.: A novel method for online analysis of gas
and particle composition: description and evaluation of a Filter
Inlet for Gases and AEROsols (FIGAERO), Atmos. Meas. Tech.,
7, 983–1001, https://doi.org/10.5194/amt-7-983-2014, 2014.

Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist,
E., Wildt, J., Mentel, Th. F., Carrasquillo, A. J., Daumit, K.
E., Hunter, J. F., Kroll, J. H., Worsnop, D. R., and Thorn-
ton, J. A.: Phase partitioning and volatility of secondary or-
ganic aerosol components formed from α-pinene ozonolysis and
OH oxidation: the importance of accretion products and other
low volatility compounds, Atmos. Chem. Phys., 15, 7765–7776,
https://doi.org/10.5194/acp-15-7765-2015, 2015.

Lopez-Hilfiker, F. D., Mohr, C., D’Ambro, E. L., Lutz, A., Riedel,
T. P., Gaston, C. J., Iyer, S., Zhang, Z., Gold, A., Surratt, J.
D., Lee, B. H., Kurten, T., Hu, W. W., Jimenez, J., Hallquist,
M., and Thornton, J. A.: Molecular Composition and Volatility
of Organic Aerosol in the Southeastern U.S.: Implications for
IEPOX Derived SOA, Environ. Sci. Technol., 50, 2200–2209,
https://doi.org/10.1021/acs.est.5b04769, 2016.

Mohr, C., Lopez-Hilfiker, F. D., Yli-Juuti, T., Heitto, A., Lutz, A.,
Hallquist, M., D’Ambro, E. L., Rissanen, M. P., Hao, L. Q.,
Schobesberger, S., Kulmala, M., Mauldin, R. L., Makkonen, U.,
Sipila, M., Petaja, T., and Thornton, J. A.: Ambient observations
of dimers from terpene oxidation in the gas phase: Implications

for new particle formation and growth, Geophys. Res. Lett., 44,
2958–2966, https://doi.org/10.1002/2017gl072718, 2017.

Murphy, D. M., Middlebrook, A. M., and Warshawsky, M.: Cluster
analysis of data from the Particle Analysis by Laser Mass Spec-
trometry (PALMS) instrument, Aerosol Sci. Tech., 37, 382–391,
https://doi.org/10.1080/02786820300971, 2003.

Pinero-Garcia, F., Ferro-Garcia, M. A., Chham, E., Cobos-Diaz,
M., and Gonzalez-Rodelas, P.: A cluster analysis of back tra-
jectories to study the behaviour of radioactive aerosols in the
south-east of Spain, J. Environ. Radioactiv., 147, 142–152,
https://doi.org/10.1016/j.jenvrad.2015.05.029, 2015.

Praske, E., Otkjaer, R. V., Crounse, J. D., Hethcox, J. C., Stoltz,
B. M., Kjaergaard, H. G., and Wennberg, P. O.: Atmospheric
autoxidation is increasingly important in urban and subur-
ban North America, P. Natl. Acad. Sci. USA, 115, 64–69,
https://doi.org/10.1073/pnas.1715540115, 2018.

Rebotier, T. P. and Prather, K. A.: Aerosol time-of-flight
mass spectrometry data analysis: A benchmark of
clustering algorithms, Anal. Chim. Acta, 585, 38–54,
https://doi.org/10.1016/j.aca.2006.12.009, 2007.

Reitz, P., Zorn, S. R., Trimborn, S. H., and Trimborn, A.
M.: A new, powerful technique to analyze single particle
aerosol mass spectra using a combination of OPTICS and
the fuzzy c-means algorithm, J. Aerosol Sci., 98, 1–14,
https://doi.org/10.1016/j.jaerosci.2016.04.003, 2016.

Roth, A., Schneider, J., Klimach, T., Mertes, S., van Pinxteren,
D., Herrmann, H., and Borrmann, S.: Aerosol properties, source
identification, and cloud processing in orographic clouds mea-
sured by single particle mass spectrometry on a central European
mountain site during HCCT-2010, Atmos. Chem. Phys., 16, 505–
524, https://doi.org/10.5194/acp-16-505-2016, 2016.

Schobesberger, S., D’Ambro, E. L., Lopez-Hilfiker, F. D., Mohr,
C., and Thornton, J. A.: A model framework to retrieve ther-
modynamic and kinetic properties of organic aerosol from
composition-resolved thermal desorption measurements, Atmos.
Chem. Phys., 18, 14757–14785, https://doi.org/10.5194/acp-18-
14757-2018, 2018.

Song, X. H., Hopke, P. K., Fergenson, D. P., and Prather, K. A.:
Classification of single particles analyzed by ATOFMS using an
artificial neural network, ART-2A, Anal. Chem., 71, 860–865,
https://doi.org/10.1021/ac9809682, 1999.

Stolzenburg, D., Fischer, L., Vogel, A. L., Heinritzi, M., Schervish,
M., Simon, M., Wagner, A. C., Dada, L., Ahonen, L. R., Amorim,
A., Baccarini, A., Bauer, P. S., Baumgartner, B., Bergen, A.,
Bianchi, F., Breitenlechner, M., Brilke, S., Mazon, S. B., Chen,
D. X., Dias, A., Draper, D. C., Duplissy, J., Haddad, I., Finken-
zeller, H., Frege, C., Fuchs, C., Garmash, O., Gordon, H., He, X.,
Helm, J., Hofbauer, V., Hoyle, C. R., Kim, C., Kirkby, J., Kon-
tkanen, J., Kuerten, A., Lampilahti, J., Lawler, M., Lehtipalo,
K., Leiminger, M., Mai, H., Mathot, S., Mentler, B., Molteni,
U., Nie, W., Nieminen, T., Nowak, J. B., Ojdanic, A., On-
nela, A., Passananti, M., Petaja, T., Quelever, L. L. J., Ris-
sanen, M. P., Sarnela, N., Schallhart, S., Tauber, C., Tome,
A., Wagner, R., Wang, M., Weitz, L., Wimmer, D., Xiao, M.,
Yan, C., Ye, P., Zha, Q., Baltensperger, U., Curtius, J., Dom-
men, J., Flagan, R. C., Kulmala, M., Smith, J. N., Worsnop,
D. R., Hansel, A., Donahue, N. M., and Winkler, P. M.: Rapid
growth of organic aerosol nanoparticles over a wide tropospheric

www.atmos-chem-phys.net/20/2489/2020/ Atmos. Chem. Phys., 20, 2489–2512, 2020

https://doi.org/10.1073/pnas.1508108113
https://doi.org/10.5194/acp-18-11547-2018
https://doi.org/10.5194/acp-18-11547-2018
https://doi.org/10.5281/zenodo.3361797
https://doi.org/10.1021/acs.est.6b01872
https://doi.org/10.1080/02786826.2012.716175
https://doi.org/10.5194/amt-6-187-2013
https://doi.org/10.5194/amt-7-983-2014
https://doi.org/10.5194/acp-15-7765-2015
https://doi.org/10.1021/acs.est.5b04769
https://doi.org/10.1002/2017gl072718
https://doi.org/10.1080/02786820300971
https://doi.org/10.1016/j.jenvrad.2015.05.029
https://doi.org/10.1073/pnas.1715540115
https://doi.org/10.1016/j.aca.2006.12.009
https://doi.org/10.1016/j.jaerosci.2016.04.003
https://doi.org/10.5194/acp-16-505-2016
https://doi.org/10.5194/acp-18-14757-2018
https://doi.org/10.5194/acp-18-14757-2018
https://doi.org/10.1021/ac9809682


2512 Z. Li et al.: A robust clustering algorithm for composition-dependent analysis

temperature range, P. Natl. Acad. Sci. USA, 115, 9122–9127,
https://doi.org/10.1073/pnas.1807604115, 2018.

Takahama, S., Gilardoni, S., Russell, L. M., and Kilcoyne, A.
L. D.: Classification of multiple types of organic carbon com-
position in atmospheric particles by scanning transmission X-
ray microscopy analysis, Atmos. Environ., 41, 9435–9451,
https://doi.org/10.1016/j.atmosenv.2007.08.051, 2007.

Wang, D. S. and Hildebrandt Ruiz, L.: Chlorine-initiated oxi-
dation of n-alkanes under high-NOx conditions: insights into
secondary organic aerosol composition and volatility using
a FIGAERO–CIMS, Atmos. Chem. Phys., 18, 15535–15553,
https://doi.org/10.5194/acp-18-15535-2018, 2018.

Wegner, T., Hussein, T., Hameri, K., Vesala, T., Kul-
mala, M., and Weber, S.: Properties of aerosol signa-
ture size distributions in the urban environment as de-
rived by cluster analysis, Atmos. Environ., 61, 350–360,
https://doi.org/10.1016/j.atmosenv.2012.07.048, 2012.

Zhao, W. X., Hopke, P. K., and Prather, K. A.: Com-
parison of two cluster analysis methods using single
particle mass spectra, Atmos. Environ., 42, 881–892,
https://doi.org/10.1016/j.atmosenv.2007.10.024, 2008.

Zhao, Y., Thornton, J. A., and Pye, H. O. T.: Quan-
titative constraints on autoxidation and dimer formation
from direct probing of monoterpene-derived peroxy radi-
cal chemistry, P. Natl. Acad. Sci. USA, 115, 12142–12147,
https://doi.org/10.1073/pnas.1812147115, 2018.

Zhou, L. M., Hopke, P. K., and Venkatachari, P.: Clus-
ter analysis of single particle mass spectra mea-
sured at Flushing, NY, Anal. Chim. Acta, 555, 47–56,
https://doi.org/10.1016/j.aca.2005.08.061, 2006.

Atmos. Chem. Phys., 20, 2489–2512, 2020 www.atmos-chem-phys.net/20/2489/2020/

https://doi.org/10.1073/pnas.1807604115
https://doi.org/10.1016/j.atmosenv.2007.08.051
https://doi.org/10.5194/acp-18-15535-2018
https://doi.org/10.1016/j.atmosenv.2012.07.048
https://doi.org/10.1016/j.atmosenv.2007.10.024
https://doi.org/10.1073/pnas.1812147115
https://doi.org/10.1016/j.aca.2005.08.061

	Abstract
	Introduction
	Clustering method description
	Data preprocessing
	Exclusion of anomalous thermograms
	Euclidean distance
	Dealing with noise

	Noise-sorted scanning clustering (NSSC)
	Algorithm description
	Post-clustering processes
	Choosing the optimal 
	Summary

	Alternative clustering methods

	FIGAERO measurements and experiments
	Instrument and experiment description
	General interpretation of FIGAERO-CIMS thermograms

	Example applications
	-pinene+OH SOA
	-3-carene+OH SOA
	-pinene+OH+NO SOA
	Single clustering
	Multiple clustering

	-pinene+O3 SOA
	Single clustering
	Multiple clustering


	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

