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Abstract. China is currently the world’s largest emitter of
both CO2 and short-lived air pollutants. Ecosystems in China
help mitigate a part of the country’s carbon emissions, but
they are subject to perturbations in CO2, climate, and air
pollution. Here, we use a dynamic vegetation model and
data from three model inter-comparison projects to exam-
ine ecosystem responses in China under different emission
pathways towards the 1.5 ◦C warming target set by the Paris
Agreement. At 1.5 ◦C warming, gross primary productiv-
ity (GPP) increases by 15.5± 5.4 % in a stabilized path-
way and 11.9± 4.4 % in a transient pathway. CO2 fertiliza-
tion is the dominant driver of GPP enhancement and climate
change is the main source of uncertainties. However, differ-
ences in ozone and aerosols explain the GPP differences be-
tween pathways at 1.5 ◦C warming. Although the land car-
bon sink is weakened by 17.4±19.6 % in the stabilized path-
way, the ecosystems mitigate 10.6± 1.4 % of national emis-
sions in the stabilized pathway, more efficient than the frac-
tion of 6.3± 0.8 % in the transient pathway. To achieve the
1.5 ◦C warming target, our analysis suggests a higher allow-
able carbon budget for China under a stabilized pathway with
reduced emissions in both CO2 and air pollutants.

1 Introduction

The past decade has seen record-breaking warming largely
related to anthropogenic greenhouse gas emissions (Mann et
al., 2017). This warming trend presents a challenge to achiev-
ing the temperature control target of 1.5 ◦C above the pre-
industrial (PI) level set by the 2015 Paris Agreement. Many
studies have shown that a conservative level of warming such
as 1.5 ◦C is necessary to limit climatic extremes (Nangombe
et al., 2018), avoid heat-related mortality (Mitchell et al.,
2018), reduce economic loss (Burke et al., 2018), and alle-
viate ecosystem risks (Warszawski et al., 2013) compared to
stronger anthropogenic warming. To achieve this target, each
country must aim to control its greenhouse gas emissions.
A full understanding of regional ecosystem response to the
changing climate and environmental stress is essential to re-
duce uncertainties in allowable carbon budget estimates at
1.5 ◦C (Mengis et al., 2018). China is covered with a wide
range of terrestrial biomes (Fang et al., 2012). While China’s
ecosystem response to possible future climate has been ex-
plored (Wu et al., 2009; He et al., 2017; Dai et al., 2016),
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impacts on the regional carbon budget of differing pathways
to the 1.5 ◦C target are not known.

There are two distinct pathways to the 1.5 ◦C global warm-
ing. One is a fast process in which global temperature passes
1.5 ◦C and continues to increase (scenarios assuming high
CO2 emissions and no climate mitigation) while the other is
a stabilized process with an equilibrium warming right be-
low 1.5 ◦C that lasts for decades before the end of 21st cen-
tury (scenarios including climate mitigation; James et al.,
2017). The stabilized pathway is the one proposed by the
2015 Paris Agreement. However, the unprecedented warm-
ing in 2016 results in an increase of global average tempera-
ture by 1.1 ◦C above PI (https://public.wmo.int/, last access:
27 February 2019), suggesting that the 1.5 ◦C limit may be
broken in the near future under a transient pathway (Hen-
ley and King, 2017). A few studies have compared allowable
carbon budgets between these two pathways (Collins et al.,
2018; Millar et al., 2017), but none has estimated the mit-
igation potential of regional ecosystems with joint impacts
of changes in climate, CO2, and air pollution under different
pathways.

Here, we apply the Yale Interactive terrestrial Bio-
sphere (YIBs) model (Yue and Unger, 2015, 2018) to in-
vestigate the response of terrestrial ecosystem productivity
in China to both stabilized and transient global warming of
1.5 ◦C relative to the PI period. We focus on the changes
of gross primary productivity (GPP) and net ecosystem ex-
change (NEE). GPP represents total canopy photosynthesis
through gross carbon assimilation. NEE is the residue af-
ter subtraction of GPP from ecosystem (plant+ soil) res-
piration (Reco−GPP), indicating the net carbon sink from
land to atmosphere. The larger the GPP values, the stronger
the carbon assimilation by ecosystems. In contrast, the more
negative the NEE, the stronger the carbon sink of the land.
The YIBs model is driven with meteorology from an en-
semble of climate models in Climate Model Intercompari-
son Project Phase 5 (CMIP5). The stabilized global warming
pathway is represented by the RCP2.6 low-emissions sce-
nario that yields an equilibrium change in global mean tem-
perature (1GMT) of 1.49 ◦C by 2050–2070 with selected
climate models (Fig. S1 in the Supplement). The transient
pathway is represented by RCP8.5 high-emission scenario in
which 1GMT grows rapidly and realizes a transient 1.5 ◦C
around the years 2021–2041. We select the present-day pe-
riod of 1995–2015 as a reference.

2 Methods

2.1 Datasets

2.1.1 CMIP5 data

We use both daily and monthly meteorology predicted
by CMIP5 models (https://esgf-node.llnl.gov/, last access:

1 February 2020). The daily data are used as input for YIBs.
In total, we select 15 climate models (Table S1 in the Sup-
plement) with all available daily meteorology, including sur-
face air temperature, precipitation, specific humidity, surface
downward shortwave radiation, surface pressure, and sur-
face wind speed, for a historical scenario and two future
scenarios (RCP2.6 and RCP8.5). These two scenarios as-
sume distinct emission pathways of both CO2 and air pol-
lutants, with the RCP2.6 scenario projecting much lower
CO2 and pollution concentrations than RCP8.5. Simulated
annual GMT is smoothed with a 21-year window to re-
move decadal variations. The ensemble changes of GMT
relative to PI period (1861–1900) from two scenarios are
examined (Fig. S1a). The low-emission scenario RCP2.6
yields an equilibrium 1GMT of 1.85 ◦C by 2100. We remove
eight climate models predicting stabilized 1GMT higher
than 1.85 ◦C by the end of century. The seven remaining
models yield an ensemble warming close to 1.5 ◦C (1.49 ◦C
for 2050–2070, Fig. S1b). Meanwhile, 1GMT in the high-
emission scenario RCP8.5 grows fast and realizes a tran-
sient 1.5 ◦C warming around the years 2021–2041. Daily me-
teorology from seven selected models (Table S1) are then
interpolated to the uniform 1◦× 1◦ resolution and used to
drive YIBs to simulate terrestrial carbon fluxes in China
for 1850–2100. Due to the large data storage, we retain only
the domain of (15–60◦ N, 60–150◦ E) covering Chinese ter-
ritory. We bias correct modeled meteorology with WFDEI
(WATCH Forcing Data methodology applied to ERA-Interim
reanalysis) data (Weedon et al., 2014):

V s
d = Vd× Sw

/
Sm . (1)

Here Vd is the original daily variables and V s
d is the scaled

value. Sw is the two-dimensional WFDEI value averaged
for 1980–2004 and Sm is the modeled values averaged for
the same period. In this case, the average climate from each
individual model matches observations at present day; mean-
while, climate variability from models are retained to esti-
mate uncertainties in carbon fluxes.

2.1.2 TRENDY-v6 data

We acquire the global GPP and NEE datasets from 1901
to 2016 simulated by 14 dynamic global vegetation mod-
els (DGVMs) participating in the TRENDY project (Ta-
ble S2). All DGVMs are implemented following the same
simulation protocol and are driven by consistent input
datasets, including CRU-NCEP climate data, and atmo-
spheric CO2 concentrations, but fixed present-day land use
(Le Quéré et al., 2018).

2.1.3 ACCMIP O3 data

We use monthly output of surface O3 concentrations from
12 models joining the Atmospheric Chemistry and Climate
Model Intercomparison Project (ACCMIP, Lamarque et al.,
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2013; Table S3). The ACCMIP models have a wide range of
horizontal and vertical resolutions, natural emissions, chem-
istry schemes, and interaction with radiation and clouds.
However, these models apply the same anthropogenic and
biomass burning emissions specified for CMIP5 RCP sce-
narios (e.g., RCP2.6 or RCP8.5), though different models
perform simulations at different time slices. Here, we use
surface O3 and interpolate the original output to 1◦× 1◦ res-
olution. We fill the temporal gaps between two adjacent time
slices using a linear fitting approach. In this way, we derive
the monthly O3 from 1850 to 2100 for each model and their
ensemble average at each grid point.

2.1.4 Diffuse radiation data

The original CMIP5 archive does not provide a diffuse com-
ponent of shortwave radiation. Here, we use empirical re-
lations between total and diffuse radiation from 11 studies
to calculate hourly diffuse radiation (Table S4). The diffuse
fraction kd in all equations depends on clearness index kt,
which is defined as the ratio between global solar radiation It
and extra-terrestrial solar radiation I0 (Ghosh et al., 2017):

kt = It
/
I0 , (2)

I0 = Isc

[
1+ 0.033cos

(
360N

365

)]
cosϕ. (3)

Here Isc = 1367 W m−2 is solar constant, N is Julian day
of the year, and ϕ is solar zenith. The empirical equations
are evaluated using hourly total and diffuse radiation from
Modern-Era Retrospective Analysis for Research and Appli-
cations (MERRA; Rienecker et al., 2011) during 2008–2012.
For each grid in China, we calculate hourly diffuse radia-
tion (Dc) using MERRA total radiation and compare it with
the standard output (Dm). Statistical metrics including cor-
relation, normalized mean bias (NMB), and normalized root
mean square error (NRMSE) are used to evaluate the perfor-
mance of empirical equations:

NMB=
(
Dc−Dm

)/
Dm , (4)

NRMSE=

√∑ (Dc−Dm)2

n

/
Dm . (5)

Here Dc and Dm are mean values of calculated and MERRA
diffuse radiation, respectively. The evaluation is performed
month by month for 2008–2012 and n is the number of
daytime samples (grids with total radiation > 5 W m−2). The
value of n varies from month to month with a minimum
of 540 000 in December 2010. Evaluation shows that the em-
pirical model M01 (Lam and Li, 1996) yields the highest cor-
relation and the lowest NRMSE (Fig. S2). As a result, we use
the M01 model to derive diffuse radiation from CMIP5 mod-
els.

2.2 Model

We apply the YIBs model (Yue and Unger, 2015; Yue et al.,
2017) to simulate historical and future (1850–2100) ecosys-
tem productivity. The YIBs model dynamically calculates
leaf area index (LAI) and tree height based on carbon as-
similation and allocation. Leaf-level photosynthesis is calcu-
lated hourly using the well-established Farquhar et al. (1980)
scheme and is upscaled to canopy level by the separation of
sunlit and shaded leaves (Spitters, 1986). Sunlit leaves can
receive both direct and diffuse radiation, while shaded leaves
receive only the diffuse component (Yue and Unger, 2017).
The assimilated carbon is in part used for maintenance and
growth respiration, and the rest is allocated among leaf, stem,
and root for plant growth (Clark et al., 2011). Soil respiration
is calculated as the loss of carbon flows among 12 soil carbon
pools (Schaefer et al., 2008). The YIBs model considers nine
plant functional types (PFTs) including evergreen needle-
leaf forest (ENF), deciduous broadleaf forest (DBF), ever-
green broadleaf forest (EBF), shrubland, tundra, C3 grass-
land, C4 grassland, C3 cropland, and C4 cropland. The land
cover is prescribed based on satellite retrievals from the
Moderate Resolution Imaging Spectroradiometer (MODIS;
Hansen et al., 2003) and the Advanced Very High Resolution
Radiometer (AVHRR; Defries et al., 2000). For this study,
we fix the land cover to isolate impacts of CO2 and climatic
changes. Other studies also show only moderate changes
in vegetation fraction and composition at a low warming
level (Warszawski et al., 2013). The YIBs model can be ap-
plied at the site, regional, and global scales. The site-level
model has been evaluated with measured carbon fluxes from
145 FLUXNET sites (Yue and Unger, 2015). For this study,
all simulations are performed at the 1◦× 1◦ resolution over
China. During the period of 1982–2011, YIBs predicts an av-
erage GPP of 7.17 Pg C yr−1 in China (Fig. S3), close to the
7.25 Pg C yr−1 estimated in the benchmark product (Jung et
al., 2009).

YIBs calculates O3 damage to plant photosynthesis using
a flux-based parameterization (Sitch et al., 2007). The inhibi-
tion rate of GPP is dependent on both ambient O3 concentra-
tions and stomatal conductance. Compared to meta-analyses
of hundreds of data sources from China (Table S5) and the
world (Yue and Unger, 2018), the scheme shows good per-
formance in estimating GPP responses to O3 for DBF, EBF,
C3, and C4 herbs (Fig. S4). The predicted O3 damaging ef-
fects on ENF might be underestimated. The YIBs model sep-
arates the effects of diffuse and direct light on plant photo-
synthesis (Spitters, 1986). Simulated GPP responses to direct
and diffuse radiation show good agreement with observations
at 24 global flux tower sites from FLUXNET network (Yue
and Unger, 2018). In general, diffuse radiation is more ef-
ficient at enhancing canopy photosynthesis compared to the
same level of direct radiation.
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2.3 Simulations

We perform two main groups of simulations, one for RCP2.6
and the other for RCP8.5. For each group, seven sub-groups
are designed with varied climatic or CO2 forcings (Table S6).
In each sub-group, separate runs are conducted for the YIBs
model driven with climate variables from seven selected
CMIP5 models (Table S1), making a total of 98 runs. A
baseline group simulation (HIST_2000) is performed with
fixed meteorology and CO2 after the year 2000. Another four
sub-group simulations are performed to quantify O3 effects
on photosynthesis (Table S7). These simulations are driven
with both CMIP5 meteorology and monthly O3 concentra-
tions from an ensemble of 12 ACCMIP models. The runs are
distinguished with different O3 damaging sensitivity (high or
low) and scenario projections (RCP2.6 or RCP8.5). Monthly
O3 concentrations are downscaled to an hourly time step us-
ing the diurnal cycle simulated by a chemistry–climate model
NASA ModelE2 (Schmidt et al., 2014). The O3-affected
GPP or NEE are calculated as the average of simulations with
low and high sensitivities.

For each run, a 251-year simulation is performed with
the historical climate for 1850–2000 and the future cli-
mate for 2001–2100. For simulations driven with meteorol-
ogy from the same climate model, all sensitivity tests ap-
ply the same climate forcing during the historical period
but utilize varied forcings after the year 2000. For exam-
ple, RCP26_CO2 is identical to RCP26_MET for the pe-
riod of 1850–2000. However, after the year 2000, the for-
mer runs fixed climatic conditions for the year 2000 but al-
lows changes in CO2 concentrations year by year for 2001–
2100 following the pathway projection, while the latter fixes
the CO2 level for the year 2000 but continues to use day-
to-day meteorology after 2000. For all simulations, we ini-
tialize vegetation and soil carbon pools in the YIBs model
with a 200-year spin-up by recycling meteorology for the
year 1850. Contributions of individual factors are calcu-
lated as the differences between sensitivity and baseline
group (e.g., RCP26_CO2–HIST_2000 for CO2 fertilization
in RCP2.6 scenario).

The main focus of this study is to quantify how the differ-
ences of anthropogenic emissions, including both CO2 and
air pollution, which are usually associated, will cause differ-
ent responses in the land carbon budget to the same global
warming target. We highlight that the role of air pollution
on the land carbon cycle has always been ignored. The as-
sumptions of land use can be quite uncertain between future
pathways (Stehfest et al., 2019), and these assumptions are
not necessarily associated with CO2 and air pollution emis-
sions. As a result, for this study, we consider fixed land cover
in all simulations. We do not consider ecosystem–climate in-
teractions as in earlier studies (e.g., Yue et al., 2017), so as to
take advantage of climate projections from multiple models.

3 Results

3.1 Changes of atmospheric compositions and
radiation

The ensemble concentrations of ACCMIP O3 show good
agreement with ground-based observations from 1580 sites
in China (Fig. 1). The spatial correlation is R = 0.80 (p <

0.01) between observations and the ensemble O3 concentra-
tions ([O3]), though the latter is higher by 25 % (Fig. 1a–
c). Such overestimation can likely be attributed to the high
[O3] at night in the models, because the evaluation of maxi-
mum daily 8 h average (MDA8) [O3], which mainly occurs in
the daytime, shows more reasonable predictions with a lower
bias of 10 % (Fig. 1d–f). Since O3 vegetation damage in gen-
eral occurs in the daytime, when both plant photosynthesis
and [O3] are at high levels, the ACCMIP [O3] can be used as
input for YIBs to derive long-term O3 inhibition effects on
ecosystem productivity.

The ensemble radiation from CMIP5 models matches ob-
servations at 106 sites in China (Fig. 2). For total shortwave
radiation, the model prediction shows high values in the west
and low values in the southeast, consistent with observations
for a correlation coefficient of R = 0.79 (p < 0.01) and a
mean bias of 8.9 %. The derived diffuse radiation is highest
in the southeast, where the total radiation is lowest. Observed
diffuse radiation is available only at 17 sites. Compared to
these sites, predictions show reasonable spatial distribution
with a correlation of R = 0.65 (p < 0.01) and a low bias of
7.1 %. Both the total radiation and derived diffuse radiation
are used as input for YIBs to estimate GPP responses to joint
changes in direct and diffuse radiation caused by aerosol re-
moval.

Atmospheric compositions and radiation show varied
changes in different scenarios. The GMT changes mainly fol-
low those in CO2 concentrations, which show fast growth
in RCP8.5 but slow changes in RCP2.6 (Fig. 3a). The lat-
ter assumes a large reduction of carbon emissions globally
after the year 2020 (Meinshausen et al., 2011). Global CO2
levels reduce slightly after the year 2030 in RCP2.6, while
GMT continues growing until 2050 due to air–sea interac-
tions (Solomon et al., 2009). As a low-emission scenario,
RCP2.6 experiences a slow growth in nitrogen oxide (NOx)
emissions and a continuous reduction after the year 2020
(Fig. S5), resulting in a decline of 6.4 ppb (15.2 %) in sur-
face O3 over eastern China under 1.5 ◦C warming at 2060
(Fig. 3b). In contrast, RCP8.5 assumes fast growth of NOx

emissions with delayed controls after the year 2030, lead-
ing to surface O3 enhancements of 6.6 ppb (15.7 %) under
1.5 ◦C warming at 2030. The lower emissions in RCP2.6 also
result in smaller aerosol optical depth (AOD) than RCP8.5
(Fig. S6), leading to higher surface total radiation (Fig. 3c),
with lower diffuse radiation (Fig. 3d) due to reducing light
extinction (Yu et al., 2006).
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Figure 1. Evaluation of surface O3 with site-level observations. Simulations are ensemble (a) mean and (d) daily maximum 8 h aver-
age (MDA8) O3 for the period of 2005–2015 from 12 ACCMIP models. Observations (b, e) are the average during 2015–2018 from
1580 sites operated by Ministry of Ecology and Environment, China. The correlation coefficients (r), relative biases (b), and number of
sites (n, excluding sites lacking data) are shown in the scatter plots (c, f). The blue points in the scatter plots represent sites located within
the box regions in eastern China as shown in (a). The dashed line represents the 1 : 1 ratio. The red line is the linear regression between
simulations and observations.

Figure 2. Evaluation of radiation fluxes with site-level observations. Simulations are surface (a) total shortwave radiation (W m−2) and
(d) diffuse radiation derived with method M01 (Table S4) for the period of 2005–2015 from an ensemble of seven CMIP5 climate models.
Observations (b, e) are the average during 2009–2011 from 106 sites operated by the Climate Data Center, Chinese Meteorological Admin-
istration. The correlation coefficients (r), relative biases (b), and number of sites (n, excluding sites lacking data) are shown in the scatter
plots (c, f). The blue points in the scatter plots represent sites located within the box regions in eastern China as shown in (a). The dashed
line represents the 1 : 1 ratio. The red line is the linear regression between simulations and observations.
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Figure 3. Changes in atmospheric compositions and radiation. Results shown are projected future (a) global CO2 concentrations, and
(b) surface O3 concentrations, (c) total photosynthetically active radiation (PAR), and (d) diffuse PAR at growth season in China. The
average (a) CO2 concentrations at the global warming of 1.5 ◦C are 442 ppm for RCP2.6 scenario (blue, 2050–2070) and 454 ppm for
RCP8.5 scenario (red, 2021–2041). The (b) O3 concentrations are averaged over east of 110◦ E in China from 12 ACCMIP models for
RCP2.6 (blue) and RCP8.5 (red) scenarios. Each dot represents the value averaged for May to September from a chemistry model. The
(c, d) PAR values are averaged over China from seven CMIP5 models for RCP2.6 (blue) and RCP8.5 (red) scenarios. Diffuse PAR is
calculated using hourly total PAR and solar zenith angle based on the parameterization M01. Each dot represents the value averaged for May
to September from a climate model. For each selected year in (b–d), a period of 11 years (5 years before and 5 years after) is used to derive
the decadal mean values.

3.2 Historical ecosystem productivity in China

The ensemble simulations show an increasing trend in GPP
in China of 0.011 Pg C yr−2 over the historical period 1901–
2016 (Fig. 4a). A stronger trend of 0.022 Pg C yr−2 is found
after 1960. Such a change is much faster than the trend of
0.013 Pg C yr−2 estimated by a benchmark product (Jung
et al., 2009) for 1982–2011 but close to a recent esti-
mate of 0.02 Pg C yr−2 from combined machine learning
algorithms and eddy flux measurements from 40 sites in
China (Yao et al., 2018). The simulated trend is also con-
sistent with the TRENDY ensemble, which predicts trends
of 0.013± 0.006 Pg C yr−2 (ensemble± inter-model uncer-
tainty) for 1901–2016 and 0.022± 0.01 Pg C yr−2 for 1961–
2016. The YIBs simulations show variabilities of 0.41±
0.23 Pg C yr−1 (6.2± 3.9 %, blue shading in Fig. 4a) due to
uncertainties in climate from CMIP5 models, much smaller
than the value of 1.33± 0.16 Pg C yr−1 (19.2± 2.6 %, red
shading in Fig. 4a) caused by structural uncertainties across
different vegetation models.

NEE in China is negative, suggesting a regional land car-
bon sink (Fig. 4b). This sink is −94.7 Tg C yr−1 with a
trend of −1.7 Tg C yr−2 during 1901–2016. Such change

matches TRENDY simulations, which predict a multi-model
mean carbon sink of −74.1± 30.8 Tg C yr−1 (uncertain-
ties due to inter-model variations) and a trend of −1.3±
0.7 Tg C yr−2 for the same period. During 1980–1989, the
ground-based estimate (Piao et al., 2009) suggests a sink
of 177± 73 Tg C yr−1 in China, consistent with the sink in-
tensity of 149± 20 Tg C yr−1 from the YIBs ensemble pre-
diction. For the recent period of 1980–2000, YIBs esti-
mates a strengthened sink of 154± 30 Tg C yr−1 in China,
weaker than the estimate of 198± 114 Tg C yr−1 with the
Dynamic Land Ecosystem Model (DLEM; Tian et al., 2011)
but within the estimates of 137–177 Tg C yr−1 based on both
ground and satellite data (Fang et al., 2007). The interan-
nual variability in YIBs simulations is much weaker than
the estimates in other studies, because the ensemble ap-
proach largely dampen variations among different runs. Sim-
ilar to GPP, the NEE simulations exhibit smaller variability
of 62± 50 Tg C yr−1 among different YIBs runs than that of
122± 57 Tg C yr−1 among different TRENDY models.
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Figure 4. Historical carbon fluxes in China. Results shown are simulated (a) gross primary productivity (GPP) and (b) net ecosystem ex-
change (NEE) during the historical period (1901–2016) using YIBs (blue), and the comparison with predictions of 14 terrestrial models from
TRENDY project (red). The bold lines are ensemble means with red shadings for inter-vegetation-model uncertainties and blue shadings for
inter-climate-model uncertainties. All YIBs simulations are driven with daily meteorology from CMIP5 models. All TRENDY simulations
are driven with CRU-NCEP meteorology. The black line in (a) represents benchmark results of 1980–2011 from Jung et al. (2009). The
black point with an error bar in (b) represents the synthesis of ground- and model-based estimates of NEE in China by Piao et al. (2009).

Figure 5. Changes in carbon fluxes by global warming of 1.5 ◦C. Results shown are simulated (a–c) GPP and (d–f) NEE over China between
the period of global warming of 1.5 ◦C and present day (1995–2015) under (a, d) RCP2.6 scenario, (b, e) RCP8.5 scenario, and (c, f) their
differences. The period of global warming of 1.5 ◦C is set to 2050–2070 for RCP2.6 and 2021–2041 for RCP8.5. Simulations are performed
using the YIBs vegetation model driven with daily meteorology from seven CMIP5 models. The O3 damaging effect is included with
predicted ensemble O3 concentrations from 12 ACCMIP models. For each grid, significant changes at p < 0.05 are marked with dots. The
total changes (Pg C yr−1) over China are shown in each panel.

3.3 Future changes of carbon fluxes

Projected GPP continues to increase in both RCP2.6 and
RCP8.5 scenarios after the year 2016 (Fig. S7a). With global
warming of 1.5 ◦C, GPP increases significantly in China, es-
pecially over eastern and northeastern parts (Fig. 5). Com-

pared to the present day, GPP with O3 effects increases by
1.07±0.38 Pg C yr−1 (15.5±5.4 %) in the RCP2.6 scenario
(Fig. 5a) and 0.82±0.30 Pg C yr−1 (11.9±5.4 %) in RCP8.5
(Fig. 5b). The spatial pattern of the GPP changes is similar in
the two pathways (correlation coefficient R = 0.93), except
that 1GPP in RCP2.6 is higher than in RCP8.5 by 30 %, with
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a positive center over eastern China (Fig. 5c). Projected NEE
continues to be more negative in the RCP8.5 scenario after
the year 2016 (Fig. S7b). Meanwhile, future NEE reaches
the minimum value (or the maximum sink strength) around
the year 2025 and then reverses to be less negative in the
RCP2.6 scenario (Fig. S7b). By the time of 1.5 ◦C global
warming, NEE changes in China show opposite tendencies
between the two pathways. Compared to the present day,
NEE increases by 0.03± 0.03 Pg C yr−1 (−17.4± 19.6 %)
in RCP2.6 (Fig. 5d) but decreases by 0.14± 0.04 Pg C yr−1

(94.4±24.9 %) in RCP8.5 (Fig. 5e), suggesting that the land
carbon sink is slightly weakened in the former but strength-
ened in the latter. Their differences exhibit widespread posi-
tive values in China with high centers in the east (Fig. 5f).

The changes in carbon fluxes follow the variations in at-
mospheric composition and climate (Figs. 6 and S8–S11).
With global warming of 1.5 ◦C, a dominant fraction of
GPP enhancement in China is attributed to CO2 fertiliza-
tion (Fig. 6a). For the RCP2.6 scenario, CO2 alone con-
tributes 0.83 Pg C yr−1 (77 %) to 1GPP, with the highest
enhancement of 0.8 g C m−2 d−1 over the southeast coast
(Fig. S8a). For RCP8.5, CO2 fertilization increases GPP
by 0.95 Pg C yr−1, even higher than the total 1GPP of
0.82 Pg C yr−1. The larger CO2-induced 1GPP in RCP8.5
is due to the higher CO2 concentrations (454 ppm) than
RCP2.6 (442 ppm) at the same 1.5 ◦C warming (Fig. 3a).
The 12 ppm differences in CO2 concentrations lead to a
change of 0.12 Pg C yr−1 (1.7 %) in GPP. This sensitivity
of GPP to CO2, 0.14 % ppm−1, falls within the range of
0.05–0.21 % ppm−1 as predicted by 10 terrestrial models
(Piao et al., 2013) and that of 0.01 %–0.32 % ppm−1 as ob-
served from multiple free-air CO2 enrichment (FACE) sites
(Ainsworth and Long, 2005). The higher 1GPP in RCP2.6
instead yields a weakened NEE (more positive) due to the
CO2 effects (Fig. 6b). The stabilization of CO2 concentra-
tions in this scenario (Fig. 3a) results in a stabilized GPP after
the year 2040 (Fig. S7a). Meanwhile, the 55-year (from 2005
to 2060) carbon accumulation enhances soil carbon storage
by 10.5± 1.3 Pg C and promotes soil respiration to 0.71±
0.19 Pg C yr−1. The stabilized GPP with enhanced soil res-
piration (NEE=Reco−GPP; Reco includes both soil and
plant respiration) together lead to a weakened carbon sink
(less negative NEE) in the 1.5 ◦C warming period (Fig. 7b).
In contrast, soil carbon storage increases only 5.2± 0.5 Pg C
in RCP8.5 due to relatively short time period (from 2005
to 2031) for carbon accumulation, leading to lower soil res-
piration of 0.41± 0.15 Pg C yr−1 in the fast warming path-
way. The continuous increase of GPP and lower soil respi-
ration jointly strengthen the land carbon sink (more negative
NEE) in China by 0.1 Pg C yr−1 under the RCP8.5 scenario
(Fig. 6a).

Ozone (O3) damages plant photosynthesis and the land
carbon sink (Sitch et al., 2007; Yue and Unger, 2018). In
the present day, O3 decreases GPP by 6.7± 2.6 % (uncer-
tainties ranging from low to high damaging sensitivities) in

Figure 6. Attribution of changes in GPP and NEE to individual
driving factors. Results shown are the predicted GPP changes in
China between the period of global warming of 1.5 ◦C and present
day (1995–2015) caused by all (ALL) or individual driving fac-
tors, including CO2 fertilization, O3 damage, and meteorological
changes (MET). The perturbations from meteorology is a combina-
tion of those of temperature (T ), radiation (RAD), specific humid-
ity (Q), and soil moisture (SOILM). The contrast is shown between
the scenarios of RCP2.6 (blue, 2050–2070) and RCP8.5 (red, 2021–
2041). The error bars indicate uncertainties of YIBs simulations us-
ing different future meteorology from seven CMIP5 models.

China (Fig. 7d), because of the direct inhibition of photo-
synthesis by 6± 2.4 % (Fig. 7a) and the consequent reduc-
tion of 1.8± 0.8 % in leaf area index (LAI, Fig. 7g). For
1.5 ◦C global warming, this weakening effect shows oppo-
site tendencies in the two RCP scenarios, with a reduced
GPP loss of 4.7± 2.0 % in RCP2.6 (Fig. 7e) but an in-
creased loss of 7.9± 3.0 % in RCP8.5 (Fig. 7f). These im-
pacts are predominantly driven by the variations of surface
O3 concentrations in the two scenarios, as predicted O3 at
1.5 ◦C warming decreases by 15.2 % in the low-emission
pathway but increases by 15.7 % in the high-emission path-
way (Fig. 3b). Consequently, changes in O3 help increase
GPP by 0.1± 0.03 Pg C yr−1 in RCP2.6 but decrease GPP
by 0.14± 0.04 Pg C yr−1 in RCP8.5 for the same 1.5 ◦C
warming. Following the benefits to GPP, the lower O3 de-
creases NEE (strengthens the sink) by 0.06± 0.02 Pg C yr−1

in RCP2.6, offsetting more than half of the negative effect
(weakening the sink) from CO2 (Fig. 6b). For RCP8.5, O3
impacts make limited contributions to 1NEE.

Changes in meteorology account for the rest of the pertur-
bations in the carbon fluxes. With global warming of 1.5 ◦C,
the temperature in China increases by 0.90 ◦C for RCP2.6
and 0.91 ◦C for RCP8.5 (Fig. S12a and b) compared to the
present-day climate. The spatial pattern of these changes is
very similar without significant differences (Fig. S12c), lead-
ing to almost identical GPP responses (Figs. S8d and S9d).
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Figure 7. Damaging effects of O3 to photosynthesis and plant growth. Results shown are ensemble mean changes in (a–c) offline GPP,
(d–f) online GPP, and (g–i) leaf area index (LAI) caused by O3 in the (a, d, g) present day (1995–2015) and 1.5 ◦C warming under
(b, e, h) RCP.6 (2050–2070) and (c, f, i) RCP8.5 (2021–2041) scenarios. The simulations are performed with the YIBs vegetation model
driven with meteorology from 7 CMIP5 models and hourly ozone derived from 12 ACCMIP models. The damaging effect is averaged for
high and low O3 sensitivities. For each grid, significant changes at p < 0.05 are marked with dots. The mean changes over China are shown
in each panel.

Generally, higher temperature is not beneficial for plant pho-
tosynthesis at low latitudes (Piao et al., 2013), where regional
summer climate is already warmer than the optimal temper-
ature threshold for leaf photosynthesis (Corlett, 2011). As
a result, warming leads to negative changes in GPP over
the east. Surface specific humidity exhibits widespread en-
hancement in eastern China (Fig. S13a and b). Air humidity
may rise in a warmer climate because the corresponding en-
hancement of saturation pressure allows the atmosphere to
hold more water vapor. On average, surface specific humid-
ity increases by 0.34 g kg−1 in RCP2.6 and 0.31 g kg−1 in
RCP8.5, leading to a promotion of GPP by 0.14 Pg C yr−1 in
the former and a similar value of 0.12 Pg C yr−1 in the latter

(Figs. S8e and S9e). Precipitation increases by 0.14 mm d−1

(4.6 %) over eastern China in RCP2.6 but decreases by
0.03 mm d−1 (1.2 %) in RCP8.5 (Fig. S12d and e), leading to
higher soil moisture in eastern China for RCP2.6 (Fig. S13d
and e). Nevertheless, most vegetation in eastern China is not
water stressed, leaving moderate GPP responses to soil mois-
ture changes in both RCP scenarios (Figs. S8f and S9f).

For the RCP2.6 scenario, the net effect of climate change
causes an increase of 0.15 Pg C yr−1 in GPP with a range
from −0.54 to 0.62 Pg C yr−1 (Fig. 6a). Such large variabil-
ity in 1GPP is related to the uncertainties in meteorology
from different climate models. For RCP8.5, climate-induced
GPP change is only 0.04 Pg C yr−1 with a range from−0.6 to
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0.26 Pg C yr−1. The discrepancy of 1GPP for the two path-
ways is mainly caused by the different radiation impacts,
which enhance GPP by 0.2 Pg C yr−1 in RCP2.6 but only
0.11 Pg C yr−1 in RCP8.5 (Fig. 6a). Photosynthetically ac-
tive radiation (PAR) is higher by 2.8 W m−2 in RCP2.6 than
in RCP8.5 (Fig. 3c). The distinct changes in radiation are
related to aerosol radiative effects, because global analyses
also show radiation enhancement in regions (e.g., USA and
Europe) with aerosol removal (Fig. S14). The lower AOD in
RCP2.6 helps increase solar insolation at the surface by re-
ducing light extinction (Yu et al., 2006), and promote precip-
itation with weaker aerosol semi-direct and indirect effects
(Lohmann and Feichter, 2005). Although lower aerosols in
RCP2.6 slightly decrease diffuse radiation (Fig. 3d), which
is more efficient in increasing photosynthesis (Mercado et
al., 2009; Yue and Unger, 2018), the overall enhancement
in total radiation helps boost GPP. Climate-induced 1NEE
is −0.02 Pg C yr−1 (strengthened sink) for both pathways
(Fig. 6b), resulting from comparable responses of NEE to
changes in radiation (R = 0.82), temperature (R = 0.71), air
humidity (R = 0.91), and soil moisture (R = 0.73) between
the two pathways (Figs. S10 and S11).

3.4 Impacts on allowable carbon budget

For a warming target of 1.5 ◦C, our analyses suggest that a
simultaneous reduction of CO2 and air pollution emissions
enhances the efficiency of land carbon uptake compared to
a pathway without air pollution emission control. The in-
creased light availability from aerosol removal and decreased
surface O3 jointly promote GPP in China by 0.3 Pg C yr−1,
equivalent to 36 % of the CO2 fertilization. In contrast, air
pollution results in a net GPP inhibition of 0.03 Pg C yr−1

under the high-emission pathway, suggesting a detrimental
environment for plant health. Compared to RCP8.5, the tim-
ing of 1.5 ◦C warming is delayed by 30 years in RCP2.6,
leading to weaker carbon sink in the latter. However, even
with the longer period of accumulation, the total carbon loss
by O3 damage is smaller by 3 %–16 % in RCP2.6 relative to
RCP8.5 at the same warming level (Fig. 8a).

The slow warming increases the allowable cumulative
anthropogenic carbon emissions. Assuming China’s carbon
emission fraction of 27 % of the world (the level at year 2017;
Le Quéré et al., 2018), the total national emissions al-
lowed are 80.4 Pg C in RCP2.6 and 71.9 Pg C in RCP8.5
from the year 2010 to the 1.5 ◦C warming, following the
global emission rates defined for these scenarios. The en-
semble simulations show that ecosystems in China help mit-
igate 8.5±1.1 Pg C in RCP2.6 and 4.5±0.6 Pg C in RCP8.5
(Fig. 8b). Sensitivity experiments with either reduced CO2
(but retaining high pollution) or reduced pollution (but re-
taining high CO2) reveal land carbon uptakes of 7.3±0.9 and
5.0±0.6 Pg C, respectively. These values are both lower than
that in RCP2.6, suggesting that simultaneous control of car-
bon and air pollution emissions can maximize the mitiga-

Figure 8. Accumulated carbon budget in China under 1.5 ◦C global
warming. (a) shows the total carbon loss of ecosystems caused
by O3 damaging effects at different warming thresholds for two
emission pathways. The bottom panel shows the accumulated net
carbon sink by ecosystems in China at the 1.5 ◦C global warm-
ing. The two solid lines represent emissions of CO2 and pollu-
tants from the same scenario, either RCP2.6 (blue) or RCP8.5 (red).
The dashed lines represent sensitivity experiments with inconsistent
CO2 and pollutants, with the blue (red) line driven with CO2 from
RCP2.6 (RCP8.5) but air pollution from RCP8.5 (RCP2.6). The
warming of 1.0 ◦C is the year 2010 for both RCP2.6 and RCP8.5
scenarios.

tion potential of ecosystems. The higher ecosystem assimila-
tion rate in a low-emission pathway (10.6±1.4 % in RCP2.6
vs. 6.3± 0.8 % in RCP8.5) over China, which is not consid-
ered in CMIP5 models, further buffers the pace of warming
to 1.5 ◦C.

4 Discussion and conclusions

Projection of future ecosystem productivity is subject to un-
certainties in climate forcing and biophysical responses. The
multi-model ensemble is a good approach to reduce the un-
certainty in climate (Flato et al., 2013). In this study, we em-
ploy daily meteorology from seven CMIP5 models. A com-
parison with more CMIP5 models is performed (not shown)
and confirms that the changes in meteorology from the seven
selected climate models are robust and representative of fu-
ture projections. As for ecosystem responses, future pro-
jections generally showed increasing GPP in China (Mu et
al., 2008; Ji et al., 2008; Ju et al., 2007); however, climate
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change alone usually reduces productivity by inducing hot
and drought conditions. In contrast, the YIBs simulations re-
veal a net positive effect of climate change on GPP though
with large uncertainties (Fig. 6a). Such discrepancies are re-
lated to structural uncertainties across different vegetation
models. Evaluations suggest that biophysical responses to
environmental forcings in the YIBs model are generally rea-
sonable as compared to the TRENDY ensemble (Fig. 4).

The YIBs simulations do not consider the nitrogen cycle
and its limitation on carbon uptake. Inter-model comparisons
show that models without nutrient constraints tend to over-
estimate GPP responses to CO2 fertilization (Smith et al.,
2016). As a result, the difference of CO2 contributions in
RCP scenarios would be smaller than predicted (Fig. 6a),
suggesting that GPP enhancement in RCP2.6 might be even
higher than RCP8.5 if the nitrogen cycle is included. In con-
trast, nitrogen deposition in RCP2.6 would be much smaller
than that in RCP8.5 due to emission controls (Fig. S5), lead-
ing to lower nitrogen supply for the ecosystem in the former
scenario. Consequently, plant photosynthesis is confronted
with a stronger nutrient limit in RCP2.6 than that in RCP8.5,
resulting in lower CO2 fertilization efficiency in the former
scenario. The net effect of the nitrogen cycle on the land car-
bon cycle is very uncertain (Zaehle et al., 2014; Huntzinger
et al., 2017; Xiao et al., 2015).

For a warming target of 1.5 ◦C, our analyses suggest that
an associated reduction of CO2 and pollution emissions
brings greater benefits to ecosystems in China than a path-
way without emission controls. The slow changes of temper-
ature and other environmental variables due to slow growth
of CO2 are helpful for plant adaptation and limit biome shift
(Warszawski et al., 2013), and the lower O3 and higher solar
radiation from aerosol removal increase plant photosynthe-
sis. Consequently, China’s ecosystems mitigate 10.6±1.4 %
of national emissions in the stabilized pathway, more effi-
cient than the fraction of 6.3±0.8 % in the transient pathway,
allowing for a larger carbon budget for economic develop-
ment.
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