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Detection of the high C4H9
+ signals 

One possible contribution to the detected C4H9
+ could be the protonated butene, which is emitted by biogenic 

or anthropogenic sources (Goldstein et al., 1996; Hellén et al., 2006; Zhu et al., 2017). In addition, C4H9
+ ions 

are very common fragments of many VOCs in PTR instruments and the peaks are prominent in the mass 

spectra (Pagonis et al., 2019). The fragmentation of butanol also produces significant C4H9
+ signals. Like many 

other alcohols, butanol can easily lose an OH during ionization in PTR sources (Spanel and Smith, 1997). 

During the measurements at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) site in 

Hyytiälä, Finland, Schallhart et al. (2018) concluded that C4H9
+ signal detected by PTR-TOF mainly came 

from butanol used by aerosol instruments, i.e., condensation particle counters (CPCs). In this study, CPCs 

using butanol to measure the particle concentration were also deployed at the site. While the exhaust air emitted 

from these collocated instruments was filtered using charcoal denuder, we cannot exclude the contribution of 

butanol to the identified C4H9
+ signal. The spiky peaks in the time series of C4H9

+ compound also indicated 

the influence of butanol (Fig. S19). Finally, the green leaf volatiles (GLV), a group of six-carbon aldehyde, 

alcohols and their esters which can be directly released by the plants, have been found to fragment at m/z 57 

inside the PTR instruments (Rinne et al., 2005; Pang, 2015) and may also contribute to the observed C4H9
+ 

signal.  

 

Calculation of the steady-state OH concentration from alkene ozonolysis 

If the competition between OH production and removal processes leads to a steady station of OH formation, 

the OH concentration can be calculated using the following equation (Dusanter et al., 2008): 

[𝑂𝐻]𝑠𝑠 =
𝑘𝑂3+𝑉𝑂𝐶𝛼[𝑂3][𝑎𝑙𝑘𝑒𝑛𝑒]

𝑘𝑂𝐻+𝑉𝑂𝐶[𝑎𝑙𝑘𝑒𝑛𝑒] + 𝑘𝑂𝐻+𝑂3[𝑂3]
 

where 𝑘𝑂3+𝑉𝑂𝐶 is the rate constant for O3+alkene reaction with an OH yield of 𝛼, 𝑘𝑂𝐻+𝑉𝑂𝐶 is the rate constant 

for OH+alkene reaction, 𝑘𝑂𝐻+𝑂3 is the rate constant for OH+ O3 reaction. The rate constant of OH and O3 

reactions was obtained from Atkinson et al. (1992).  At night, alkene concentrations in the Landes forest were 

dominated by monoterpenes, mainly α- and β-pinene (Riba et al., 1987; Simon et al., 1994). For the calculation 

of OH concentration, the loss of OH from reaction with O3 was neglected, as it was much smaller than the loss 

of OH due to its reaction with monoterpenes (Gill and Hites, 2002). The rate constant of O3 and monoterpene 

reactions was taken from Hakola et al. (2012), and the OH formation yield from O3 and monoterpene reactions 

was obtained from Alicke et al. (2003). Finally, we assumed the equal contribution of α- and β-pinene to OH 

formation through alkene ozonolysis in this study. Hence, using an O3 concentration of ~20 ppb at 8 pm, the 

OH concentration is estimated to be 0.012 ppt.  
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Figure S1. Examples of peak identification with the LTOF mass analyzer.  
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Figure S2. The built empirical relationship between the sensitivities and the proton-transfer reaction rate 

coefficients (k) using the calibrated data of monoterpenes and p-cymene: Sensitivity (cps ppb-1) = 828.9 × k.  
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Figure S3. Correlation of the time variations between C3H5
+ and C5H9

+ signals.  
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Figure S4. Correlation of the time variations between C5H11O+ and C5H9
+ signals.  
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Figure S5. Diurnal patterns of non-nitrate isoprene oxidation products: (a) C4H6O, (b) C4H6O2, (c) C4H6O3, 

(d) C4H6O4, and (e) C4H6O5. 

 

  



 

Figure S6. Diurnal patterns of non-nitrate isoprene oxidation products: (a) C4H8O, (b) C4H8O2, (c) C4H8O3, 

(d) C4H8O4, and (e) C4H8O5. 

 

  



 

Figure S7. Diurnal patterns of non-nitrate isoprene oxidation products: (a) C5H10O, (b) C5H10O2, (c) C5H10O3, 

(d) C5H10O4, and (e) C5H10O5. 

 

  



 

Figure S8. Diurnal patterns of non-nitrate monoterpene oxidation products: (a) C8H12O, (b) C8H12O2, (c) 

C8H12O3, (d) C8H12O4, (e) C8H12O5, and (f) C8H12O6. 

 

  



 

Figure S9. Diurnal patterns of non-nitrate monoterpene oxidation products: (a) C8H14O, (b) C8H14O2, (c) 

C8H14O3, (d) C8H14O4, and (e) C8H14O5. 

 

  



 

Figure S10. Diurnal patterns of non-nitrate monoterpene oxidation products: (a) C9H14O, (b) C9H14O2, (c) 

C9H14O3, (d) C9H14O4, (e) C9H14O5, and (f) C9H14O6. 

 

  



 

Figure S11. Diurnal patterns of non-nitrate monoterpene oxidation products: (a) C10H14O, (b) C10H14O2, (c) 

C10H14O3, (d) C10H14O4, (e) C10H14O5, and (f) C10H14O6. 

 

  



 

Figure S12. Diurnal patterns of non-nitrate monoterpene oxidation products: (a) C10H18O, (b) C10H18O2, (c) 

C10H18O3, (d) C10H18O4, (e) C10H18O5, and (f) C10H18O6. 

 

  



 

Figure S13. Diurnal patterns of non-nitrate sesquiterpene oxidation products: (a) C14H22O, (b) C14H22O2, (c) 

C14H22O3, (d) C14H22O4, and (e) C14H22O5. 

 

  



 

Figure S14. Diurnal patterns of non-nitrate sesquiterpene oxidation products: (a) C15H22O, (b) C15H22O2, (c) 

C15H22O3, (d) C15H22O4, and (e) C15H22O5. 

 

 

  



 

Figure S15. Diurnal patterns of isoprene-derived organic nitrates: (a) C4H7NO3, (b) C4H7NO4, and (c) 

C4H7NO6. 

 

  



 

Figure S16. Diurnal patterns of isoprene-derived organic nitrates: (a) C5H9NO3, (b) C5H9NO4, (c) C5H9NO6, 

and (d) C5H9NO7. 

 

 

  



 

Figure S17. Diurnal patterns of monoterpene-derived organic nitrates: (a) C10H13NO4, (b) C10H13NO5, (c) 

C10H13NO6, (d) C10H13NO7, and (e) C10H13NO8.  

 

 

  



 

Figure S18. Diurnal patterns of monoterpene-derived organic nitrates: (a) C10H17NO3, (b) C10H17NO4, (c) 

C10H17NO5, (d) C10H17NO6, and (e) C10H17NO7. 

  



 

Figure S19. Time series of the identified C4H9
+.  
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