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Abstract. The measurement of elements in PM10 was per-
formed with 1 h time resolution at a rural freeway site during
summer 2015 in Switzerland using the Xact1 625 Ambient
Metals Monitor. On average the Xact elements (without ac-
counting for oxygen and other associated elements) make
up about 20 % of the total PM10 mass (14.6 µgm−3). We
conducted source apportionment by positive matrix factori-
sation (PMF) of the elemental mass measurable by the Xact
(i.e. major elements heavier than Al), defined here as PM10el.
Eight different sources were identified in PM10el (elemental
PM10) mass driven by the sum of 14 elements (notable ele-
ments in brackets): Fireworks-I (K, S, Ba and Cl), Fireworks-
II (K), sea salt (Cl), secondary sulfate (S), background dust
(Si, Ti), road dust (Ca), non-exhaust traffic-related elements
(Fe) and industrial elements (Zn and Pb). The major compo-
nents were secondary sulfate and non-exhaust traffic-related
elements followed by background dust and road dust factors,
explaining 21 %, 20 %, 18 % and 16 % of the analysed PM10
elemental mass, respectively, with the factor mass not cor-
rected for oxygen content. Further, there were minor con-
tributions (on the order of a few percent) of sea salt and
industrial sources. The regionally influenced secondary sul-
fate factor showed negligible resuspension, and concentra-
tions were similar throughout the day. The significant loads
of the non-exhaust traffic-related and road dust factors with
strong diurnal variations highlight the continuing importance
of vehicle-related air pollutants at this site. Enhanced control

1Xact is a registered trademark of Cooper Environmental Ser-
vices, LLC.

of PMF implemented via the SourceFinder software (SoFi
Pro version 6.2, PSI, Switzerland) allowed for a successful
apportionment of transient sources such as the two firework
factors and sea salt, which remained mixed when analysed
by unconstrained PMF.

1 Introduction

Ambient particulate matter (PM) plays a major role in affect-
ing human health and air quality. Trace elements represent a
minor fraction of the atmospheric aerosol on a mass basis, but
they can act as specific markers for several emission sources.
The short- or long-term exposure of ambient particulate mat-
ter (PM) has significant negative effects on human health
(Dao et al., 2012; Ancelet et al., 2012; Zhao and Hopke,
2004; Pope III and Dockery, 2006; Dockery et al., 1993;
Zhou et al., 2018). Cakmak et al. (2014) found significant
association of acute changes in cardiovascular and respira-
tory physiology with PM2.5 metals in Ontario, Canada. In
Stockholm, Meister et al. (2012) estimated a 1.7 % increase
in the daily mortality per 10 µgm−3 increase in the coarse
fraction of PM. Metallic components of PM, especially the
fine fraction of elements such as Fe, Ni, Cu, V, Pb and Zn,
appear to be a significant cause of both pulmonary and car-
diovascular diseases (Kelly and Fussell, 2012). Airborne par-
ticles and associated (trace) elements originate from various
emission sources, such as motor vehicles, power plants and
construction activities, in a broad size range. Among them,
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traffic-related emissions are of particular interest (Brauer et
al., 2002). Traffic-derived PM has a high risk of respiratory
illness, asthma and cardiovascular diseases, resulting in an
increased rate in mortality (Kelly and Fussell, 2011). Traffic-
related PM is emitted mainly as exhaust emissions (tailpipe
exhaust from gasoline and diesel engines) and non-exhaust
emissions (resuspension of road dust and brake and tire wear
emissions; Lawrence et al., 2013; Lin et al., 2015; Thorpe
and Harrison, 2008; Zhou et al., 2018; Grigoratos and Mar-
tini, 2015; Amato et al., 2014b; Bukowiecki et al., 2010).
Exhaust emissions are predominantly in the fine fraction of
PM, whereas non-exhaust emissions contribute mostly to the
coarse fraction (Amato et al., 2011; Thorpe and Harrison,
2008). Exhaust emission-related elements are comprised of
Pb, Zn, Ni and V (Lin et al., 2015; Minguillón et al., 2012),
while the non-exhaust emissions are dominated by Fe, Cu,
Ba, Ca, Sb, Sn, Cr and Zn from brake lining and tire wear.
The presence of Fe in brake lining can reach up to 60 % by
weight (Chan and Stachowiak, 2004; Schauer et al., 2006).
Brake pads are usually filled with BaSO4, while Sb, Sn and
Mo sulfides are often added as lubricants, and Cu, Cr and
Zn are major additives to lubricating oils and normally used
to improve friction (Thorpe and Harrison, 2008; Amato et
al., 2014a). Sb has been identified as a major tracer of brake
wear, due to a significant (1 %–5 %) percentage of Sb in
brake linings in the form of stibnite (Sb2S3; Grigoratos and
Martini, 2015; Bukowiecki et al., 2009). It has been reported
that asphalt pavement-induced particles were characterised
mainly by high concentrations of Cu, Cr, Ni, As and Pb (Yu,
et al., 2013) as well as Ca, Si, Mg, Al, Fe, P, S, Cl, K, V,
Mn and Na (Fullova et al., 2017). Therefore, it is impor-
tant to monitor traffic emissions for health risk assessment,
the study of which relies heavily on the source apportion-
ment (SA) of PM using chemically speciated data (Zhou et
al., 2018).

Source quantification and characterisation is an important
step in understanding the relationship between source emis-
sions, ambient concentrations, and health and environmen-
tal effects. SA by receptor models has been widely used
in recent years to identify and apportion the contributions
of various sources to the airborne PM concentrations. Pos-
itive matrix factorisation (PMF) is one of the most widely
used receptor models for SA of trace elements (Rahman et
al., 2011; Ancelet et al., 2012; Cesari et al., 2014; Ducret-
Stich et al., 2013; Kim et al., 2003; Rai et al., 2016; Zhang
et al., 2013; Harrison et al., 2011; Hedberg et al., 2005).
However, a limited number of studies are available for trace-
element emission sources with high time resolution (hourly
or sub-hourly; Visser et al., 2015; Crilley et al., 2016;
Bukowiecki et al., 2010; Richard et al., 2011; Dall’Osto et
al., 2013; Manousakas et al., 2015; Jeong et al., 2019; Wang
et al., 2018, among others). Hourly elements data can be
used to explore the diurnal patterns of emissions from traf-
fic, biomass burning and industrial sources, thereby yielding
more accurate and exposure-relevant SA results. Currently,

there are very few offline instruments available for field sam-
pling of elements with high time resolution, such as the ro-
tating drum impactor (RDI; Bukowiecki et al., 2008), the
streaker sampler (PIXE International Corporation; Lucarelli
et al., 2011) and the semi-continuous elements in aerosol
sampler (SEAS; Kidwell and Ondov, 2001). The large quan-
tity of samples generated by these samplers requires a labour-
intensive and time-consuming offline analysis. These of-
fline analyses require high-precision and low-detection-limit
techniques such as synchrotron-radiation-induced X-ray flu-
orescence spectrometry (SR-XRF) of aerosol samples col-
lected with a RDI, particle-induced X-ray emission (PIXE)
with the streaker sampler and graphite furnace atomic ab-
sorption spectrometry (GFAAS) with the SEAS. In practice,
the offline samplers lead to undesirable trade-offs between
time resolution and data coverage even for short duration
field campaigns, whereas highly time-resolved long-term
measurements are impractical. A recently introduced online
high-time-resolution instrument can collect samples and per-
form analysis for elements simultaneously in a near-real-
time scenario for long-term measurements without waiting
for laboratory analysis. The XRF-based Xact 620, Xact 625
and the newer Xact 625i Ambient Metals monitors (Cooper
Environmental Services, Tigard, Oregon, USA) have been
developed in recent years and have been used in several
field studies (Fang et al., 2015; Cooper et al., 2010; Furger
et al., 2017; Park et al., 2014; Phillips-Smith et al., 2017;
Tremper et al., 2018; Chang et al., 2018; Liu et al., 2019).
However, only 10 studies included SA on Xact data (Park
et al., 2014; Fang et al., 2015; Phillips-Smith et al., 2017;
Chang et al., 2018; Liu et al., 2019; Ji et al., 2018; Sofowote
et al., 2018; Jeong et al., 2019; Belis et al., 2019b; Cui et
al., 2019).

The main focus of this work is the exploration of the
use of the Xact for source apportionment in Europe, where
the concentrations are considerably lower than in polluted
areas in Asia. In the present study, we conducted SA us-
ing PMF to characterise the source contributions of highly
time-resolved metals during a 3-week campaign at a traffic-
influenced site in Härkingen, Switzerland. PMF was im-
plemented through the multilinear engine-2 (ME-2) solver
and controlled via SoFi, which allows for a comprehensive
and systematic exploration of the solution space (Bozzetti
et al., 2016; Canonaco et al., 2013). The rotational control
available in ME-2 provides a means for treating extreme
events such as fireworks within a PMF analysis. Such events
are often excluded from the PMF input matrix to avoid mod-
elling errors due to the pulling of a solution by outliers
(Ducret-Stich et al., 2013; Norris et al., 2014). Although a
few studies have already been carried out in the past at this
location (Lanz et al., 2010; Hueglin et al., 2006; Furger et
al., 2017), none of them have reported SA on elements.
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2 Experimental setup and data analysis

2.1 Sampling location

PM10 sampling was performed from 23 July to 13 August
2015 in Härkingen, Switzerland, a permanent station of the
Swiss National Air Pollution Monitoring Network (NABEL;
Fig. 1). Extreme firework episodes were captured during the
Swiss National Day celebration (1 August). The site is situ-
ated next to the A1 freeway, which is the main traffic route
between eastern (Zurich) and western (Bern) Switzerland.
The measurement site is bordered by agricultural areas to
the west and north, while there are villages in the south-
ern and eastern direction. There is a metal processing com-
pany to the south-east, across the freeway, which manufac-
tures wheels for passenger cars and commercial vehicles, and
some small-scale industrial buildings to the north-west. The
emissions reaching the measurement site depend on wind di-
rection. The site is strongly influenced by local road traffic
emissions when winds come from the southern sector, while
the northern wind sector represents the air constituents from
a rural area. A detailed description of the sampling site can
be found in previous studies (Furger et al., 2017; Hueglin et
al., 2006).

2.2 Sampling and analysis

Sampling and analysis was conducted with an Xact 625 Am-
bient Metals Monitor equipped with a PM10 inlet. The in-
strument was set up to quantify 24 elements (Si, S, Cl, K,
Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sn,
Sb, Ba, Pt, Hg, Pb and Bi) with 1 h time resolution. In ad-
dition, 24 h PM10 samples were collected by a HiVol sam-
pler (Digitel DA-80H, DIGITEL Hegnau, Switzerland) with
quartz-fibre filters (Pallflex XP56 Tissuquartz 2500QAT-UP,
Pall AG, Switzerland). Ten of these 24 h PM10 samples
were analysed by inductively coupled plasma optical emis-
sion spectrometry (ICP-OES) for the concentrations of Na,
Mg, Al, P, S, K, Ca, Ti and Fe. Moreover, the station was
equipped with other instruments such as a tapered element
oscillating microbalance–filter dynamics measurement sys-
tem (TEOM FDMS 8500, Thermo Fisher Scientific, MA,
USA) for 10 min PM10 mass concentration measurements,
a multi-angle absorption photometer (MAAP, Thermo 5012,
Thermo Fisher Scientific, MA, USA) for black carbon (BC)
measurements in PM2.5 and standard meteorological sen-
sors (temperature, wind speed and direction, and precipita-
tion). The trace gases were measured with conventional in-
struments by NABEL (Empa, 2018). NOx was measured by
chemiluminescence spectroscopy (Horiba APNA-370). The
time resolution of all these instruments was 10 min. The sta-
tion also provided hourly traffic counts for the freeway in the
form of the total number of vehicles, number of heavy-duty
vehicles (HDVs) and number of light-duty vehicles (LDVs).
Specifically for the campaign, a quadrupole aerosol chem-

ical speciation monitor (Q–ACSM 140-145, Aerodyne Inc,
Billerica, MA, USA) with vacuum aerodynamic diameters
smaller than 1 µm (non-refractory PM1) was deployed (Ng
et al., 2011; Crenn et al., 2015), and the data were used for
comparison of the factors during the SA analysis. The time
resolution of the ACSM was set to 30 min.

2.3 PMF using ME-2

Positive matrix factorisation is one of the most common re-
ceptor models based on a weighted least-squares fit (Paatero
and Tapper, 1994). It is used to describe the variability in a
multivariate dataset as the linear combination of a set of con-
stant factor profiles and their corresponding time series as
shown in Eq. (1) in cell notation:

xij =
∑p

k=1
gikfkj + eij , (1)

where xij , gik , fkj and eij represent the elements of the data
matrix, factor time series, factor profiles and residual matri-
ces, respectively, while i, j and k indices denote time, el-
ement and factor number. The index p represents the total
number of factors in the PMF solution. The PMF model iter-
atively solves Eq. (1) by minimising the object function (Q),
defined as

Q=
∑

i

∑
j

(
eij

sij

)2

. (2)

Here, sij corresponds to the measurement uncertainty (error
matrix) for the input point ij .

The PMF algorithm was solved using ME-2 (Paatero,
1999), which enables an efficient exploration of the solution
space by introducing a priori information to gik and/or fkj
into the PMF model. Using the constraining technique of the
a value, one or more factor profiles or factor time series can
be confined by the scalar a (0≤ a ≤ 1), which can be applied
to the entire profile or time series or to individual variables
and data points of the profile and time series. The scalar a
defines how much the resolved factors are allowed to deviate
from the input profile or time series, according to

f ′kj = fkj ± a× fkj , (3)
g′ik = gik ± a× gik , (4)

where the subscript j varies between 0 and the number of
variables and i varies between 0 and the number of measured
data points in time. fkj and gik are the starting value used
as a priori knowledge from the base case solution in this SA
study, and f ′kj and g′ik are the resulting values in the solu-
tion. Normalisation in Eqs. (3) and (4) can lead to the result-
ing values slightly outside the specified a-value boundaries.
This method reduces the available solution space and di-
rects the solution towards an optimised and environmentally
meaningful solution. The SoFi Pro (Canonaco et al., 2013),
which is coded in the Igor Pro software environment (Wave-
metrics, Inc., Portland, OR, USA), was used for the PMF
configuration and analysis.
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Figure 1. Map of the sampling location (NABEL site in Härkingen). The site is marked with the red Google pin. Map reproduced by
permission of swisstopo (JA100119).

2.4 Conditional bivariate probability function (CBPF)
plots

The conditional bivariate probability function (CBPF) is a
data analysis tool to identify the direction of source contribu-
tions and was applied to the PMF source factors. Polar plots
are used to present the CBPF analyses, where the number of
events with a concentration greater than the ith percentile (0
to 100) is plotted as a function of both wind speed and direc-
tion, as shown in Eq. (5):

CBPF=
mθ, r

nθ, r
, (5)

where mθ, r is the number of samples in wind sector θ and
wind speed sector r with a concentration greater than the ith
percentile and nθ, r is the total number of samples with the
same wind direction and speed (Carslaw and Beevers, 2013).
The resultant CBPF polar plots present the probability that
high concentrations of a pollutant correspond to a particular
wind direction and speed and can give insight into the con-
tributions from local and regional sources.

3 SA method and solution selection

3.1 PMF input preparation

In our study, the PMF input consists of a data matrix and
an error matrix of hourly element measurements, where the
rows represent the time series (456 points with 1 h steps) and
the columns contain the elements (14 variables). The input
preparation of PMF was done by excluding some specific el-
ements for better source apportionment results. A common
approach for the choice of species to include in the PMF in-
put depends on (1) the percentage of data below the detec-
tion limit (Polissar et al., 1998) and (2) Xact data compari-
son with offline 24 h PM10 filters (Pearson coefficient of de-
termination r2). The minimum detection limits (MDLs), r2

and data points below the MDL of Xact elements are listed
in Furger et al. (2017). The MDLs were given by the man-
ufacturer and were calculated by using the sensitivity of the
element and counts in the region of interest of a blank section
of the tape from where 1σ interference-free detection limits
are reported. Elements (% of data points below the MDL; r2

value) which had more than 50 % of data points below the
MDL and a low r2 (< 0.5) between Xact and offline data
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were not included in the PMF input; these include the fol-
lowing: V (98 %; 0.57), Co (100 %; 0.05), Ni (32 %; 0.22),
As (96 %; 0.5), Se (62 %; 0.3), Cd (87 %; 0.18), Sn (15 %;
0.27), Sb (6 %; 0.42), Hg (13 %; 0.12) and Pt (98 %; not mea-
sured on the filters). The element Bi (93 % data points be-
low the MDL) was an exception to include in the PMF input
due to an excellent correlation between Xact and offline data
(r2
= 0.98) during firework peaks. The detailed description

of the Xact data quality is given in the previous study (Furger
et al., 2017). Missing data points in time (e.g,. a power fail-
ure during sampling or a filter tape change) were removed
from the data and error matrices. In the present work, if the
element concentration was less than or equal to the MDL
provided, the error matrix element sij was calculated using
the Eq. (6), and if the concentration was greater than the
MDL provided, the error matrix element sij was calculated
using Eq. (7) (Reff et al., 2007; Tian et al., 2016; Polissar et
al., 1998):

sij =
5
6
×MDLj , (6)

sij =

√
(pj × xij )2+ (MDLj )2 , (7)

where xij indicates the elements of the data matrix, while
subscripts i and j are indices for time and elements. In this
study, an estimated analytical uncertainty (pj ) of 10 % was
used to derive the error matrix dataset (Kim et al., 2005;
Kim and Hopke, 2007; Tian et al., 2016; Ji et al., 2018),
which did not change the PMF solution. The metal-specific
analytical uncertainty was also considered from the previ-
ous studies (Jeong et al., 2016; Phillips-Smith et al., 2017),
where it was calculated on the basis of high- or medium-
concentration metal standard laboratory experiments and the
additional 5 %–10 % flow rate accuracy, which yielded sim-
ilar PMF solutions compared to an overall 10 % analytical
uncertainty.

3.2 PMF setup

An important step in the PMF analysis is the selection of
the number of factors by the user, as mathematical diagnos-
tics alone are insufficient for choosing the correct number of
factors (Ulbrich et al., 2009; Canonaco et al., 2013). The se-
lection of factors is often based on an analysis of total Q or
Q/Qexp, scaled residuals (eij/sij ), comparison of time series
of the factor with external tracers, as well as diurnal patterns,
and the evaluation of the residual time series as a function of
the number of resolved factors.

In a first step, we examined a range of solutions with 3–
10 factors at 10 seeds (number of PMF repeats) from un-
constrained runs. The unconstrained PMF solution resulted
in mixed factors, such as sea salt mixed with fireworks, in
all factor solutions. We show an example of a mixed nine-
factor solution in Fig. S1 in the Supplement. This is likely
because of the very high concentration and variation in com-
position of firework emissions during the firework period.

Because the signal-to-noise ratio is very high, imperfections
in the model description exert a strong influence on Q, and
the model therefore tries to compensate by assigning fire-
work mass to other factors. This was particularly evident for
the sea salt and secondary sulfate factors, where constraints
on factor profiles and/or time series were necessary to obtain
clean separation. Here we discuss the method for achieving
this separation.

The input dataset was divided into two parts: firework days
(FDs; 31 July–4 August) and non-firework days (NFDs; all
days except 31 July–4 August). To obtain a specific firework
profile, we further selected only firework hours (FHs; 31 July
21:00 LT–1 August 07:00 LT (local time is coordinated uni-
versal time +2 h) as input data. The PMF analysis was per-
formed on the NFDs, FDs, FHs and the complete datasets
separately for 3–10 factors, with each of these solutions in-
vestigated with different seeds (each seed represents a differ-
ent random initialisation).

The unconstrained NFD PMF analysis resolved seven fac-
tors at all seeds, such as sea salt, secondary sulfate, a non-
exhaust traffic-related factor, road dust, background dust, an
industrial factor and a K-rich factor. The sea salt factor pro-
file shows excellent correlation (r2

= 0.99) between the Cl
and the identified sea salt factor time series. Solutions with
fewer than seven factors showed significant scaled residu-
als for elements and time series, while solutions with more
than seven factors revealed a split of the non-exhaust traffic-
related factor and industrial and background dust factors. The
NFD analysis therefore provides a sea salt profile that can be
used as a constraint in the complete dataset.

The unconstrained PMF analysis of the complete dataset
identified a secondary sulfate factor (most of the S is ap-
portioned in this factor, with 91 % of the factor mass) in the
nine-factor solution (Fig. S1). The identified secondary sul-
fate factor time series correlated very well with ACSM sul-
fate (r2

= 0.91; Fig. S1) at 24 seeds out of 100 seeds, while
r2 was ≤ 0.88 for the remaining 76 seeds. Although these
r2 are quite similar at all 100 seeds, the solution characteris-
tics are notably different at 24 seeds (r2

= 0.91) and 76 seeds
(r2
≤ 0.88). For the nine-factor solution shown in Fig. S1, the

secondary sulfate factor was slightly enhanced, which is in
agreement with the ACSM sulfate, during the firework peaks
(see details in Sect. 4.2: “Secondary sulfate”), while the sea
salt factor was strongly enhanced during the firework peaks.
In contrast, for the solutions at 76 seeds, visible contamina-
tion (i.e. concentration spikes) during the firework plumes
were observed in the secondary sulfate factor, suggesting
mathematical mixing. S is one of the major components of
firework emissions, the composition of which is highly vari-
able. Because of their high sensitivity (and thus high signal-
to-uncertainty ratio), imperfections in the model description
of the firework composition yield high-signal residuals which
strongly influence Q. The model responds by apportioning
firework residuals to the other factors during the firework
days. A similar issue also occurred for the sea salt factor due
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to the significant amount of Cl in the firework factor profile.
Therefore, such events are often excluded from traditional
PMF analyses (i.e. time periods removed from the input ma-
trix) to avoid modelling errors due to the pulling of a solution
by outliers. Here we take a different approach, exploiting the
rotational control available in ME-2 to isolate environmen-
tally reasonable, unmixed solutions. The Q/Qexp values for
all 100 seeds were in the range of 0.41–0.45 (Fig. S2). The
scaled residual (over the time series) of S in this solution
(Fig. S1) was within the range of ±3, with very small val-
ues, as shown in Fig. S3. The strong influence of fireworks in
this solution yielded small values of the scaled residual for S
which are consistent also with lower-than-expected Q/Qexp
(0.4) values, suggesting an overestimation of uncertainties by
the generic error model used herein (see Eqs. 6 and 7).

We then performed the constrained PMF analysis on the
FD and FH datasets. Here we constrained the secondary sul-
fate factor profile (a value 0.1) and the time series (a value
0.01) using the results of the nine-factor unconstrained PMF
analysis of the complete dataset. We tested several ap-
proaches for the secondary sulfate constraint: (a) constrain-
ing the factor profile only, (b) constraining the factor time
series during firework days only, (c) constraining both the
factor profile and the entire factor time series, and (d) con-
straining the factor profile and the factor time series during
firework days only. Of the above methods, only (c) and (d)
yielded secondary sulfate factors without visible mixing
from the firework period. Approach (d) was used for PMF
analysis, as it provides maximum freedom to the algorithm.

In the FD and FH PMF analyses, the sea salt factor pro-
file (a value 0.1) was also constrained from the NFD uncon-
strained seven-factor PMF analysis. To resolve the unmixed
sea salt factor time series from the fireworks, the background
Cl concentration was calculated for the firework data points
(K> 220 ng m−3) only. A Cl concentration< 30 ng m−3 was
considered to be a background Cl concentration, and the fire-
work data points were replaced with the linear interpolation
between the background Cl concentrations adjacent to the
firework peaks. In this way 42 % of the data points were inter-
polated during the firework days. The calculated background
Cl during the FDs was constrained (with an a value of 0.01)
in the sea salt factor time series. After applying all the four
constraints, the FH PMF analysis identified a firework factor
profile on the basis of the K/S elemental concentration ra-
tio (∼ 2.76) in black powder (Dutcher et al., 1999) and the
concentration peak of 42 µgm−3, which is close to the to-
tal elemental concentration peak of 48.4 µgm−3 on 1 August
at 23:00 LT in the factor time series. The FD PMF analy-
sis also identified a firework factor, but the highest peak was
30 µgm−3 on 1 August 23:00 LT in the factor time series and
the K/S elemental concentration ratio was 2.55 in the factor
profile. Therefore, the firework factor profile from FH PMF
analysis was considered for the final complete dataset PMF
analysis. The FD and FH PMF analyses resolved a five-factor
solution, with secondary sulfate, sea salt, fireworks, back-

ground dust and a K-rich factor with firework-related ele-
ments. In the K-rich factor, the K/S ratio was slightly higher
(3.56) than the black powder ratio. The unconstrained FH
PMF analysis was also performed for two to five factors with
different seeds. As shown in Fig. S4, the constrained five-
factor Q/Qexp is 1.5, which is ∼ 3 times higher than the
unconstrained five-factor Q/Qexp but the same as the un-
constrained 3-factor Q/Qexp (1.52). The increase in Q for
the constrained five-factor FH PMF (unexplained variation
– UEV – for each variable is between 2 % and 16 % with
an average ∼ 10 %) is significant when compared to the un-
constrained five-factor FH PMF (UEV for each variable is
between 1.5 % to 15 % with an average ∼ 5 %), as shown
in Fig. S5. The three-factor unconstrained FH PMF anal-
ysis validates the five-factor constrained FH PMF analysis,
which suggests that both methods are working fine and gives
us more confidence to identify the firework factor profile.

Note that the number of time points contained in the input
matrices for the data subsets (as opposed to the full dataset)
are in some cases smaller than typical recommendations for
ambient PMF (Belis et al., 2019a). This is most extreme
in the case of the FH dataset, where only 11 time points
are used. However, there are two important differences be-
tween PMF analyses of these sub-datasets and typical am-
bient PMF: (1) the sub-datasets are constructed to maximise
the variability in a factor or set of factors, and (2) we are
concerned only with accurately characterising the profile(s)
of these selected major factors. These two points work to-
gether to greatly reduce the number of time points required
for the analysis (Fig. S6). A similar approach has been suc-
cessfully applied by Fröhlich et al. (2015), in which short-
duration spikes in organic aerosol concentration were com-
bined into a sub-dataset to determine an anchor profile re-
lated to local cigarette smoke, and by Visser et al. (2015), in
which a subset of a trace-element dataset with high residu-
als was analysed separately to retrieve a factor profile related
to industrial emissions. In the final complete dataset PMF
analysis, the factor profiles of fireworks, secondary sulfate
and sea salt were constrained (a value 0.1), while the time
series of secondary sulfate and the calculated background
Cl concentration interpolation were constrained during the
firework period only (a value 0.01). The solution that best
represented the input data was an eight-factor solution, con-
sisting of factors interpreted as sea salt, secondary sulfate,
a non-exhaust traffic-related factor, an industrial factor, and
two dust-related and two firework-related factors.

Residual analysis (Q contribution over time series) of the
PMF runs showed significant structure in the residuals (Q
maximum value was 15 during firework period as shown in
Fig. S8) for solutions having up to seven factors. Increas-
ing the number of factors to eight gave evidence of structure
removal, with mostly random errors remaining, by another
Fireworks-II factor which was explained by K, S, Ba, Ti, Cu
and Bi (see details in Figs. S8 and S9), while a further in-
crease led to a new mixed factor of the non-exhaust traffic-
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related factor and background dust, which, however, showed
a noisy diurnal pattern. All the variables showed approxi-
mately unimodal scaled residuals between−3 and 3 (Paatero
and Hopke, 2003; Fig. S10).

3.3 Uncertainty estimate of PMF results

The statistical and rotational uncertainties were explored by
the bootstrap (BS) resampling strategy (Efron, 1979) and the
exploration of the a value space of the constrained infor-
mation as well as random initialisation of the unconstrained
information. Briefly, the bootstrap algorithm generates new
input matrices by randomly resampling variables from the
original input matrix. Each newly generated PMF input ma-
trix had a total number of samples equal to the original ma-
trix (456 samples); although some of the original 456 sam-
ples were represented several times, others were not repre-
sented at all. A systematic investigation of the a-value space
in combination with each individual BS run is computation-
ally impractical and was therefore replaced by random ini-
tialisation of the a value of the secondary sulfate, sea salt
and Fireworks-I factor profiles between 0 and 0.5 with an
increment of 0.1 for 1000 BS runs. Moreover, to avoid re-
jection of many solutions due to mixing of the sea salt fac-
tor time series and the secondary sulfate time series with the
firework factor peaks, both the sea salt and secondary fac-
tor time series (for the firework period only) were also con-
strained with an a value 0.01. The small a value (0.01) for
the sea salt and the secondary sulfate factor time series (for
the firework period only) were estimated based on sensitivity
analyses on the a value from 0 to 0.1 with an increment of
0.01. The time series of both factors showed firework peaks
during the firework period for a values greater than 0.01. So-
lutions were selected and retained based on the correlation
(Pearson correlation coefficient r) of the time series between
the factors of the base case and the factors of the BS runs.
Solutions with low correlation and some solutions with high
correlation have a factor of a completely different type, i.e.
a mixed, split or otherwise-altered factor profile and time se-
ries based on visual inspection. These kinds of solutions were
rejected. This approach was used only for uncertainty assess-
ment rather than uncertainty exploration to find the environ-
mentally reasonable solution.

We also performed separate random bootstrap analyses for
1000 times on the correlation (r) between the time series of
a base case factor and the respective external marker, e.g.
the secondary sulfate factor vs. ACSM sulfate, and the non-
exhaust traffic-related factor vs. NOx to assess the accept-
able uncertainty of the r value. The resulting correlation co-
efficients were represented in probability density functions
(PDFs) over 1000 bootstrap runs for both bootstrap analysis
methods. In total 86 % of the bootstrap runs were classified
as environmentally good solutions. The average a value re-
tained by the selected bootstrap runs was 0.233, 0.255 and
0.241 for the Fireworks-I, sea salt and secondary sulfate fac-

tor profiles, respectively. The spread of the a value for these
three factors is presented as the mean, median and interquar-
tile in Fig. S11. The selected solutions’ factor profiles are
represented as a box–whisker plot in the sequence of p10
(10th percentile), p25 (25th percentile), p50 or median (50th
percentile), p75 (75th percentile), and p90 (90th percentile)
in Fig. 2.

During the non-firework period, uncertainties in the source
apportionment results are assessed by a bootstrap analysis as
described above. However, this approach cannot be used to
assess uncertainties in the sea salt and secondary sulfate fac-
tors during the firework period, as during this period these
factor time series are constrained with an artificially low
a value selected to optimise deconvolution. For these two
factors, uncertainties during the firework period are deter-
mined by our ability to accurately predict the factor time
series. The secondary sulfate and sea salt factors’ cases are
discussed separately below.

Secondary sulfate concentrations during the firework pe-
riod were estimated from the linear fit of the secondary sul-
fate factor to ACSM sulfate during the entire non-firework
period. Uncertainties of ±5 % were calculated as the stan-
dard deviation of the actual secondary sulfate concentrations
to the predicted values and included for the firework period
only in Figs. 3a and S12.

As described above, the sea salt factor time series dur-
ing the 4 d firework period was investigated to determine
measurements that were affected or not affected by fire-
works, where the measurements determined to be affected
were replaced with a linear interpolation between the near-
est good points. To determine the uncertainties of this ap-
proach, we applied this calculation to random segments of
the non-firework data. Specifically, the 4 d long sequence of
affected or non-affected time points determined during the
firework period was applied to a randomly chosen segment
of data, and the standard deviation of measurement data to
the estimated values calculated by interpolation was deter-
mined. This analysis was repeated for 38 randomly selected
locations through the non-firework data, and a mean standard
deviation of±42 % was determined. This value is used as the
uncertainty of the sea salt factor time series (during the fire-
work period only) in Figs. 3a and S12.

4 Results and discussion

4.1 Overview of retrieved factors

The solution that best represented the input data was the
eight-factor solution. The eight factors from the PMF results
are as follows:

1. two firework factors with prominent relative contribu-
tions of Bi, Ba, K, S, Ti, Cu and Cl, which are important
components of fireworks (Kong et al., 2015; Vecchi et
al., 2008);
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Figure 2. Source profiles of the finally retained eight-factor PMF results. The data and their corresponding uncertainty are given as box–
whisker plot (bottom to top: p10–p25–p50–p75–p90) of good solutions from bootstrap runs. The left y axis represents the fractional com-
position of the factor profile row-wise (presented in coloured box–whisker plot) for each factor (in ng ng−1); the right y axis represents the
relative contribution of each factor to each variable (indicated in black box–whisker plot).

Figure 3. (a) Time series of the PM10el sources and relative contributions of the different sources over time. Shaded areas indicate the
uncertainties (interquartiles) of selected bootstrap runs; grey background colour represents the firework period. The estimated uncertainties
of the secondary sulfate (±5 %) and the sea salt factors (±42 %) during the firework period are added as error bars (magnified version is
shown in Fig. S12). (b) Mean relative contributions of PM10el sources. The average concentration represents the mean value of apportioned
sources in PM10el, which is the sum of 14 elements.
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2. a sea salt factor explaining a large fraction of Cl in the
PM10el fraction;

3. a secondary sulfate factor mostly dominated by S and
highly correlated with ACSM sulfate (Fig. S1);

4. two dust factors, one dominated by Ca and showing traf-
fic rush hours peaks and the other dominated by Si with-
out a clear diurnal pattern;

5. a non-exhaust traffic-related factor characterised by Fe,
Cr, Cu, Mn, Zn and Ba;

6. an industrial factor showing relatively high contribu-
tions of Pb and Zn.

4.2 Detailed factor description

In this section, the results of the PM10el mass driven
by the sum of 14 elements are presented and vali-
dated. Figure 2 represents the fractional composition of
the factor profile (fkj/

∑
j fkj ; left y axis; coloured box–

whisker plots for each factor) and relative contribution
(
∑
i gik fkj/

∑
k

∑
i gik fkj ) of each factor to each variable

(right y axis; black box–whisker plots). Figure 3a shows the
time series of the factor contributions (in ng m−3; bottom
panels) and of the relative contributions (top panel) of the
retrieved PM10el factors. The variability in these time series
across all good solutions was relatively low. Figure 3b reports
the averaged total PM10el mass and relative contributions of
the PM10el sources. The reported variabilities or uncertainties
(which correspond to the interquartile range among selected
bootstrap runs) are an indication of the high stability of the
solution. The diurnal variations of the absolute concentra-
tions of the identified factors and some of their correspond-
ing external tracers are presented in Fig. 4. CBPF analysis
was performed at the 90th percentile (Fig. 5) as well as at
different percentile ranges (Fig. S13) to validate some of the
identified sources and their characterisation.

Fireworks. The firework factor profiles and time series are
shown in Figs. 2 and 3a respectively. The firework factors
are mostly dominated by K, S, Cl, Ti, Cu, Ba and Bi, which
are the chemical elemental species of fireworks (Moreno et
al., 2007; Wang et al., 2007; Vecchi et al., 2008; Perrino et
al., 2011; Tian et al., 2014; Kong et al., 2015; Lin, 2016;
Pongpiachan et al., 2018). Ba and Cu compounds are used
to produce green and blue fireworks. The presence of Cl in
Fireworks-I suggests that the chloride salt might be the main
chemical form in the fireworks, such as barium chloride. K
is one of the major components of fireworks, which con-
tains 74 % of KNO3 in black powder as the oxidising agent
for the burning process (Drewnick et al., 2006). The ACSM
inorganic concentrations during the firework episodes indi-
cate that neither particulate nitrate nor ammonium is gener-
ated in the fireworks in significant amounts (Fig. S14). Con-
sistent with previous measurements of submicron firework
aerosol (Drewnick et al., 2006; Vecchi et al., 2008; Jiang et

al., 2015), nitrate was not enhanced during the firework pe-
riod, suggesting conversion of KNO3 to other forms of ni-
trogen. The NO2/K mass ratio (1.66) in the main firework
hour (1 August at 23:00 LT; see Fig. S14) is close to the
molecular/atomic ratio of NO2/K (1.17). This measured ra-
tio is also in agreement with the NO2/K+ (2.03) ratio ob-
served during the Chinese Spring Festival in Shanghai (Yao
et al., 2019). However, the NO2 and NOx variation was not
significant during the firework peaks in the present study
(Fig. S14), which is in agreement with the former studies
(Vecchi et al., 2008; Retama et al., 2019; Yao et al., 2019).
The K/S ratio of 2.72 in the Fireworks-I factor profile is in
good agreement with the K/S elemental concentration ra-
tio (∼ 2.76) in black powder (Dutcher et al., 1999). Other
K compounds in black powder can be in the form of per-
chlorate or chlorate (Wang et al., 2007). Bi is used in crack-
ling stars (dragon’s eggs) in the form of bismuth trioxide or
subcarbonate as a non-toxic substitute for toxic lead com-
pounds (Perrino et al., 2011). The Ba/K ratio of 0.031–0.054
for Fireworks-I and Fireworks-II is close to the value 0.057
reported in Pongpiachan et al. (2018). Firework particles are
usually present in large amounts in the fine fraction, stay-
ing longer in the atmosphere (Richard et al., 2011; Moreno
et al., 2007). A pronounced increase in both firework fac-
tor time series is observed when the fireworks traditionally
begin. The diurnal patterns of the firework-related elements
exhibit a peak at 23:00 LT during the firework period (Furger
et al., 2017) in accordance with the Fireworks-I diurnal varia-
tion (Fig. 4c). Both firework factors contain two sharp peaks.
The Fireworks-I factor concentration started to increase on
31 July 2015 at 22:00 LT and formed the extreme peak within
1 h at 23:00 LT (∼ 5 µgm−3). After that it decayed quickly
(10 times lower concentration than maximum firework con-
centration) within 1 h and remained more or less constant un-
til 1 August 2015 at 21:00 LT. It again started to increase at
22:00 LT and formed a second sharp peak on 1 August 2015
at 23:00 LT, followed by a gradual decay over the next 6 to
10 h. Fireworks-II presents a slightly different pattern in its
time series. It started to increase on 31 July 2015 at 22:00 LT
and depicted its highest peak at 00:00 LT (∼ 3.6 µgm−3),
with quite a slow decay until 1 August 2015 at 06:00 LT.
The concentration remained slightly higher than Fireworks-I
over daytime. It then started to increase again from 1 August
2015 at 17:00 LT and yielded the highest peak on 2 August
04:00 LT, with 6.7 µgm−3. It remained higher until 2 August
2015 at 08:00 LT and slowly decayed until the afternoon, fol-
lowed by further prominent peaks at 23:00 LT on 2 and 3 Au-
gust. Chemical reactions of KCl with H2SO4 will result in a
release of gaseous HCl and may explain the absence of par-
ticulate Cl in the Fireworks-II factor profile. The time series
variations in both fireworks suggest that Fireworks-I might
be related to the main firework celebration, while Fireworks-
II might result from burning of leftover crackers after the
main firework day as well as the influence of other sources
such as bonfires, which are a common activity during Swiss
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Figure 4. Mean diurnal patterns of the factors and of some corresponding external tracers with error bars (1 standard deviation).

Figure 5. CBPF analysis (at 90th percentile) of factors in terms of wind speed (m s−1) and wind direction. The colour code represents the
probability of the factor contribution.
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National Day celebrations. Another possibility could be the
advection of firework clouds from nearby cities, where grand
firework displays and bonfires are carried out at a large scale
to celebrate the Swiss National Day. The average relative
contributions of Fireworks-I and Fireworks-II to the analysed
mass were 7.4 % and 11 % respectively (Fig. 3b). Figure S15
represents an estimate of overall firework composition and
temporal variability, complementing the PMF results. A K
concentration> 220 ng m−3 was used as the criterion to sep-
arate firework data points (65 data points) from the whole
dataset. The detailed description is mentioned in the Supple-
ment. Most of the elements are well captured by two firework
factors, such as S, K, Fe, Cu, Ba, etc., since they lie within
the firework data distribution. In contrast, there are some el-
ements that do not contribute to fireworks, e.g. Ca and Cr,
while some elements are explained by only one firework, e.g.
Si, Cl and Pb. This indicates that a single firework factor is
not enough to represent the firework data variability.

Sea salt. The sea salt factor was mainly composed of Cl
(81 % of the factor mass) as shown in the factor profile
(Fig. 2), with no diurnal pattern (Fig. 4e). The average rel-
ative contribution of the sea salt factor to the analysed mass
was 3.7 % (Fig. 3b). Sea salt also includes Na and Mg, which
were not measured by the Xact but analysed by ICP-OES
for 24 h offline filters. Based on the high correlation of Na
and Cl in a previous study, Cl alone can be used as a marker
for sea salt particles (Vallius, 2005). The existence of sea
salt particles was confirmed by a low Mg/Na ratio in the
filter data, equalling 0.13 and 0.16 for 28 and 30 July, re-
spectively, in line with a ratio of 0.132 to 0.185 for marine
aerosol (Chesselet et al., 1972). For the remaining eight fil-
ter samples, Mg/Na was higher than 0.18, probably due to
absence of sea salt (Fig. S16). A comparison with ACSM
data revealed that Cl was mainly present in the fine fraction
(PM1) during firework days, while during the rest of the cam-
paign it was in PM10 (Fig. S17). The measured Cl/Ca ratio
(0.33) from Xact does not lie in the range of de-icing salt
composition (5.27) measured in northern Germany (Pernig-
otti et al., 2016), which validates our interpretation as a sea
salt factor. In addition, the highest Cl concentrations were
observed only in the last week of July, with westerly winds
at higher wind speeds (5–8 m s−1; Figs. S17 and S18). This
result is in agreement with the CBPF plot, where the high
concentration of the sea salt factor dominates for westerly
winds with high wind speeds (Figs. 5 and S13) and confirms
previous studies (Visser et al., 2015; Twigg et al., 2015).

Dust. The PMF analysis resolved two dust-related factors,
i.e. a road dust (Ca-rich) and a background dust (Si-rich) fac-
tor, with average relative contributions to the analysed mass
of 18 % and 16 %, respectively (Fig. 3b). The road dust fac-
tor was mainly composed of Ca (68 % of the factor mass)
followed by Si (26 %), with relative contributions of 89 % to
Ca, 19 % to Si and 12 % to Mn, while the background dust
factor highly contributed to Ti, Si, Mn, Fe and Ca, with 65 %,
58 %, 22 %, 16 % and 6 %, respectively. The two dust factors

together explain 95 % of Ca, while the remaining factors ex-
plain only 5 % of Ca. The solution with two dust factors re-
sulted in reduced scaled residuals for Si and Ca compared
to a solution with one dust factor (Fig. S19). The scatter
plot of the absolute concentrations of Si and Ca also indi-
cates the presence of two different sources (Fig. S20). The
high relative contribution of Ca in road dust has also been
found in other source apportionment studies (Ducret-Stich et
al., 2013; Bukowiecki et al., 2010). In general, Ca and Si are
commonly associated with mineral dust, construction activi-
ties, vehicular emissions, and iron and steel plants (Lee and
Pacyna, 1999; Vega et al., 2001; Bukowiecki et al., 2010;
Crilley et al., 2016; Maenhaut, 2017). Iron and steel plants
produce furnace slacks, a glass-like by-product which con-
sists of Ca, Si, Mg and Al oxides. The higher fraction of
crustal elements such as Ca and Si in road dust might be a
consequence of the widespread use of asphalt and concrete
to make roads (Fullova et al., 2017; Li et al., 2004). The sam-
pling site is located close to the freeway and must be influ-
enced by wear and tear of the asphalt and concrete roads be-
cause of heavy traffic. Ca has been associated with construc-
tion activities in previous studies (Bernardoni et al., 2011;
Crilley et al., 2016), which have been found to peak during
the day and decrease to almost zero outside of normal work-
ing times (08:00 until 17:00 LT). This evidence is not sup-
ported by the road or background dust factor diurnal pattern
in this study. Further evidence of non-construction activity
is found in the Xact elemental ratio of Ca/S (0.62), which
is not in agreement with the pure gypsum Ca/S ratio (1.25)
used for construction work (Hassan et al., 2014), where the
two elements are the main constituents. Road dust profiles
are often difficult to identify due to resuspension of materials
deposited on the road surface such as mineral dust, vehicle
wear and tear, and/or road surface wear and tear. However,
the road dust factor profile is distinct from the non-exhaust
traffic-related factor profile. It is possible that the road dust
factor is related to resuspension of mineral dust and road
wear and tear particles. The high contribution of Ca alone
(> 80 %) has been seen in previous studies (Ducret-Stich et
al., 2013; Bukowiecki et al., 2010; Hueglin et al., 2005),
where it was named “road dust”. Another study at a rural
site in Switzerland also found the Ca-rich factor in the coarse
fraction, where it was linked to soil resuspension (Minguil-
lón et al., 2012). The background dust factor profile exhibits
elements associated with mineral dust, such as Ti, Si and Fe.
These and other terrestrial elements are commonly present
in soil as oxides (Rudnick and Gao, 2003). The background
dust factor also contains a significant fraction of the mea-
sured Mn, which is one of the most abundant compounds in
the earth’s crust, where it occurs in the form of MnO2 (Taylor
and McLennan, 1995). Since the sampling site is adjacent to
agricultural fields in the northern and western directions, the
contribution of these elements to this factor can be expected.
A similar background factor with high contributions of Si, Ti
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and Ca was found by Richard et al. (2011) at an urban site in
Switzerland.

The separation of two dust factors is in line with Amato
et al. (2009), where ME-2 yielded a road dust factor dis-
tinct from a mineral dust factor. The CBPF plot shows that
higher concentrations of the road dust factor are associated
with the southern wind sector, while the background dust
factor is influenced by the south-western and north-eastern
wind sectors (Figs. 5, S12). The diurnal pattern of the road
dust factor shows morning rush hour traffic peaks similar to
the NOx , BC and HDV count and non-exhaust traffic-related
factor (Figs. 4a and b), indicating that the resuspension of
road dust is due to the vehicle fleet. A similar relationship
between road dust and the non-exhaust traffic-related source
was observed in a previous study (Amato et al., 2009). Re-
suspension of road dust in the early morning traffic is not
triggered by wind speed (Fig. S21) but by the traffic fleet,
whereas in the afternoon, an increase in wind speed leads
to resuspension of dust deposited on the road as well as re-
suspension of agricultural soil dust near the sampling site.
Therefore, meteorology plays a vital role for the contribution
of the background dust factor.

Non-exhaust traffic-related. The non-exhaust traffic-
related factor profile was mostly dominated by Fe (73 % of
the factor mass) and contributed strongly to Cr (96 %), Fe
(76 %), Cu (71 %), Mn (50 %), Zn (31 %), Ba (26 %) and
Si (12 %). Its average relative contribution to the analysed
mass was 20 % (Fig. 3b). Coarse particles from brake or disc
wear could appear as flakes and mainly consist of iron ox-
ides (Wahlström et al., 2010). The higher fraction of Fe in
the non-exhaust traffic-related source has been found in sev-
eral previous studies (Visser et al., 2015; Amato et al., 2014a;
Bukowiecki et al., 2010; Dall’Osto et al., 2013; Crilley et
al., 2016). However, the ratio of Fe to other elements is vari-
able between studies. Fe, Cr, Cu, Zn, Mn and Ba are the most
abundant trace elements in brake pads and brake lining and
thus attributed to tire or brake wear (Thorpe and Harrison,
2008; Grigoratos and Martini, 2015; Gianini et al., 2012) and
engine wear. Si is one of the brake lining components used as
an abrasive to increase friction and as fillers to reduce man-
ufacturing costs (Thorpe and Harrison, 2008; Grigoratos and
Martini, 2015). This factor is characterised by a strong diur-
nal peak coinciding with the morning rush hour at 08:00 LT,
similar to NOx and BC (Fig. 4b). The LDV and HDV counts
start to increase at 05:00 LT (Fig. 4a), unlike the primary traf-
fic emission NOx and BC. The similar diurnal pattern of this
factor might be due to the high braking load for vehicles dur-
ing peak traffic hours, resulting in increased emissions of ve-
hicle wear particles.

Secondary sulfate. This source is characterised by sulfur
(S) and is most likely due to the regional background con-
tribution of secondary sulfate due to conversion of SO2 to
SO2−

4 , consistent with the results of many previous source
apportionment studies (Dall’Osto et al., 2013; Richard et
al., 2011). It explains the highest fraction of S (91 % of the

factor mass) with relative contributions to S (73 %) and Pb
(30 %; Fig. 2). The average relative contribution of this factor
to the analysed mass is 21 % (Fig. 3b). Similar factor profiles
were found in previous studies (Visser et al., 2015; Dall’Osto
et al., 2013). This factor correlates well with ACSM SO2−

4
measurements (r2

= 0.91), suggesting a dominant contribu-
tion from the submicron fraction and thus a slow rate of dry
deposition. Combined with SO2 oxidation processes occur-
ring on timescales of hours to days, it is thus reasonable that
the secondary sulfate factor does not exhibit a clear diur-
nal variation (Fig. 4f) and is consistent with regional rather
than local sources. The time series of secondary sulfate ex-
hibits peaks during the firework event (Fig. 3a), in agreement
with the ACSM SO2−

4 time series (Fig. S22). Inorganic gases
(SO2, NOx , etc.) emitted during the firework events may
be oxidised to secondary organic and inorganic components
that may condense to the particle phase (Sarkar et al., 2010)
within a very short span of time, as observed in previous stud-
ies (Wang et al., 2007; Yang et al., 2014). We monitored two
parameters to explain the influence of fireworks in the sec-
ondary sulfate time series: (1) mass balance for ACSM PM1
data and (2) secondary sulfate peaks during the main firework
hours (1 August from 23:00 LT to midnight). The equivalent
concentration of ammonium (NH4eq) balances the sum of
NH4eq and SO4eq during non-firework periods, while during
firework peaks, the balance shifts towards the sum of NH4eq
and SO4eq (Fig. S23). This indicates that sulfate related to
fireworks adds up to an acidic budget of particles. The ex-
cess sulfate observed from this analysis is approximately in
quantitative agreement (within 20 %) with the enhancement
of the secondary sulfate during the firework period. The peak
in the secondary sulfate observed at 23:00 LT on 1 August is
slightly offset from the main firework peak because the sec-
ondary sulfate formed maximum peaks 1 h later (00:00 LT on
2 August). Taking these two together suggests that we may
have some downstream production of sulfuric acid and con-
version to ammonium sulfate, which makes the secondary
sulfate factor time series slightly delayed relative to the main
firework plume. Because this delay is consistent with chem-
ical processing, we consider inclusion of this temporal fea-
ture in the secondary sulfate factor to be reasonable, although
we cannot completely rule out some degree of mathematical
mixing with the direct firework emissions. The time series
of ACSM SO2−

4 and ACSM NH+4 show significant correla-
tion (Fig. S22), indicating the formation of ammonium sul-
fate particles except for the main firework peaks.

Industrial. This factor is characterised by high relative
contributions to Zn (50 %) and Pb (63 %), with a low con-
tribution to the analysed mass (on the order of 3 %; Fig. 3b).
The profile is shown in Fig. 2 and the time series in Fig. 3a.
The time series contains a few spikes after 4 August, when
the wind was predominantly from the southern and south-
eastern sector, suggesting an industrial emission. A similar
factor profile was observed in previous source apportionment
studies (Crilley et al., 2016; Richard et al., 2011) from local
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point source emissions without any link to specific industrial
activities. Industrial emissions play a minor role in this study
area, as it is surrounded by only a few small-scale industrial
buildings (logistics businesses approximately 500 m to the
north-west and a wheel manufacturing company to the south-
east, across the freeway). The CBPF plot confirms the dom-
inance of high concentrations in the south-eastern direction
(Fig. 5). The diurnal cycle shows a clear peak at 10:00 LT
(Fig. 4g) which is related to a few peaks.

5 Conclusion

A source apportionment study of 14 elements in PM10 mea-
sured at a traffic-influenced site in Härkingen, Switzerland,
during the summer of 2015 was conducted using the ME-2
implementation of PMF. The PMF model was able to resolve
and evaluate the contributions and compositions of eight
sources: two firework factors, sea salt, secondary sulfate,
background dust, road dust, a non-exhaust traffic-related fac-
tor and an industrial source. The use of ME-2 allowed the use
of constraints via the a-value approach, which improved the
factor resolution relative to conventional PMF. We show that
the rotational control available in ME-2 provides a means for
treating extreme events such as fireworks within a PMF anal-
ysis. This was only achievable when controlling problematic
factors, i.e. factors that tend to mix within the constraining
technique. Two dust factors with different time profiles and
two firework factors were identified by the PMF model, re-
sulting in better representation of the data variability. A S-
rich (secondary sulfate) factor, which can typically be at-
tributed to regional background and transported secondary
sulfate, was correlated with fine-mode non-refractory sulfate
measured by an ACSM. The non-exhaust traffic-related fac-
tor followed the diurnal pattern of traffic rush hours similar to
NOx and BC, with concentrations up to 4 times higher dur-
ing daytime relative to night-time. The outcome of this study
emphasises the significant influence of regional background
secondary sulfate and local background dust apart from non-
exhaust traffic emissions at the sampling location. The small
contribution of the industrial factor confirms the low influ-
ence of local daily activities from the surroundings.

The source apportionment model performance could pos-
sibly be additionally improved by the inclusion of Na and
Sr to better resolve the sea salt and firework factors, re-
spectively. It was shown that high-time-resolution element
datasets enable a fully resolved SA, with considerable im-
provements compared to 24 h filter analysis, where the at-
tribution to specific sources is possible only on a larger
timescale and is mostly based on seasonal variations.
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