

Supplement of

China's emission control strategies have suppressed unfavorable influences of climate on wintertime $PM_{2.5}$ concentrations in Beijing since 2002

Meng Gao et al.

Correspondence to: Meng Gao (mmgao2@hkbu.edu.hk), Zifa Wang (zifawang@mail.iap.ac.cn) and Michael B. McElroy (mbm@seas.harvard.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Fig. S1. Trends of wintertime emissions of air pollutants (SO₂, NO_x, NH₃, BC, OC, and other PM_{2.5}, unit: 10⁶ Mg) in Beijing-Tian-Hebei region from 2002 to 2016.

Fig. S2. Wintertime mean concentrations of $PM_{2.5}$ and number of haze days (defined with daily mean concentration above 75 μ g/m³) from the CTL and MET simulations.

Fig. S3. Modeled and observed number of haze days (defined with daily mean concentration above 75

 $\mu g/m^3$)

Fig. S4. Simulated and observed winter mean wind speeds in Beijing and the declining rates.