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Technical information: Object detection details

This technical information summary supplements the main article with a more detailed elabo-
ration on the developed and utilized automated image processing software. As the analysis of the
images obtained from holographic measurements is described in sufficient detail in the main article
and the references therein, this summary focuses on the techniques used for analysis of the obtained
microscope images. With each of the particle mass experiments yielding around 20 image pairs,
each containing up to several dozens of crystals and drops, measuring crystal size and drop diame-
ter manually for every single object is unfeasible. To benefit from the large amount of image data
generated through this setup, automated image analysis software was developed to automatically
find and measure objects within the image. The methods used for this software are described in
Sections S1 to S4, and an evaluation and comparison of accuracy follows in Section S5.

S1 Global thresholding

Initially, a global grayscale threshold value was selected for binarizing the 2048 × 2048 pixel wide
8-bit grayscale images into object pixel components and background. As objects on the glass slide
prevent light from the LED below from reaching the camera above through refraction, they usually
have a darker shade in the image than the background. Therefore, pixels with grayscale values
below the threshold are considered object pixels, while pixels with values higher than the threshold
are considered part of the background (see Fig. 1).

The determination of a suitable global threshold has been performed using two different ap-
proaches. For the first one, the threshold Tmean was determined relative to the distribution of
grayscale values throughout the image following

Tmean = I + 0.5σI , (1)

where I and σI are mean and standard deviation of the grayscale intensity in the image. Alterna-
tively, an unsupervised method developed by Otsu (1979) has been used to automatically determine
a suitable threshold for grayscale image segmentation from the image’s grayscale histogram. Their
algorithm calculates a threshold value that maximizes the separability of the two classes generated,
which objectively optimizes the value selection for separating background from signal. This ap-
proach has been used for every fall streak image individually rather than determining a value that
fits the varying circumstances in all different images, as lighting conditions can still vary moderately
from image to image.

1



Figure 1: Histogram of grayscale values in the enclosed sample microscope image. The vertical red
line shows the threshold value Tmean determined for a sample image using Eq. (1).

S2 Adaptive thresholding

As ice is transparent for visible light, only the crystals’ edges create darker shades in the microscopic
images, whereas flat surfaces are almost indistinguishable from the background without context
information of the edge pixels around them. While global thresholding proved successful for many
images, particularly those of crystals with a high degree of irregularity, the segmentation turned out
notably worse for some more pristine crystal types. The edges of columns are straight and drawn-
out, which often made them keep a lighter shade than the edges with more complex shapes that
are common for irregular crystals. Dendritic crystals showed even less contrast to the surrounding
background pixels, making them harder to detect. The contrast between ice crystals and background
often became so narrow that it did not exceed the brightness variations within the images themselves
by a sufficient margin to ensure proper segmentation. This difficulty prompted the addition of more
binarization approaches to improve the detection and sizing of the crystals.

A natural improvement to the global thresholding approach was the utilization of a threshold
that is dependent on the location of the investigated pixels in space. Through this, the effect that
different lighting conditions in different areas of the image had on segmentation quality is decreased.
A pixel was classified into object pixel or background pixel based on the following decision:

c(p) =

{
0 I(p) > T (p)

1 I(p) ≤ T (p),
(2)
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with c(p) symbolizing the classification, I(p) the pixel’s grayscale intensity and T (P ) the local
(adaptive) threshold determined for p. In this case, to determine the threshold value T (x0, y0) for
a pixel p, a 2D Gaussian window with a window size k was created and a cross correlation with the
k× k neighborhood of p was calculated. The threshold value is then the weighted sum of this cross
correlation, with the weights

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (3)

where x and y are the distances of a pixel to (x0, y0) in both horizontal directions (in pixel index
coordinates) and σ is the Gaussian window’s standard deviation. The window size k (in pixels) had
to be chosen appropriately: the larger k is, the closer the results converged with a global thresholding
approach and the advantage of adaptive thresholding fades. However, if the window was chosen
too small, the segmentation of crystals often remained incomplete, as the brighter regions in their
center or at edges with low gradients had grayscale values higher than the locally limited threshold.
Optimal results were observed for values of 600 < k < 1200, depending on lighting conditions and
crystal habit present in the image.

S3 Canny edge detection

As edges of objects were very pronounced in the microscopic ice crystal images in this work due to
the crystals’ faces being transparent for light with visible wavelength, we looked for a segmentation
technique that is based on topological context instead of just trying to separate pixel values into
classes or clusters based on their own intensity alone. Edge detection algorithms attempt to find
regions in images where the intensity has spatial discontinuities, for example in the form of sharp
steps from lower to higher values. The use of spatial intensity gradients is a central tool for this
analysis approach, as these steps appear as extrema in such fields. Canny (1986) proposed an
approach to edge detection that supplements the use of gradients with other effective tools in a
sequential combination. Similarly to the thresholding methods described above, a Gaussian filter
is applied first to remove noise from the image. Afterwards, the intensity gradient C(p) and its
direction Φ(p) are determined for each pixel p by applying Sobel operators S in each direction,

Cx = Sx ∗ I =

1 0 −1
2 0 −2
1 0 −1

 ∗ I,

Cy = Sy ∗ I =

 1 2 1
0 0 0
−1 −2 −1

 ∗ I, (4)

C(p) =
√

C2
x + C2

y, (5)

Φ = tan−1

(
Cy

Cx

)
. (6)

The gradient direction is then discretized by rounding to one of four values, resulting in either a
horizontal, vertical or one of the diagonal directions. A non-maximum suppression is applied to the
gradient image C to more precisely emphasize the edges that become visible in the gradient image.
For this step, the neighborhood of each pixel p along the gradient direction Φ(p) is compared to
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the pixel itself in the gradient image C. If the gradient is at a local maximum at p, the gradient
value is retained. If one of the neighbor pixels’ gradient values is larger than C(p), the pixel p
is suppressed and C(p) thus set to zero. This results in an image Creduced containing thin lines
representing the locally strongest gradients. In the final step of the edge detection algorithm, all
edge pixels in Creduced are subjected to a double thresholding using two values tmin and tmax. All
pixels with gradient values lower than tmin are discarded and set to zero. All values greater than
tmax are classified as definitive edge pixels. Pixels with values tmin < C(p) < tmax are classified
as edge pixels if they are directly connected with a definitive edge pixel (or a previously classified
connected edge pixel), and discarded otherwise. To obtain a segmented image from the contours
created by the Canny edge detection algorithm in the application to ice crystal images, a suitable
filling method had to be used. Alternatively, the segmentation step could be skipped and the ice
crystal’s size and shape could be derived directly from the contour information. As the Canny
algorithm detected all the inner structures of individual crystals as their own contour in the images
at hand, the actual crystal outlines had to be filtered out, which was non-trivial especially for
images containing many crystals.

S4 k-means clustering

Another approach to object detection was a segmentation based on the application of clustering
algorithms. Clustering is an unsupervised machine learning type where image pixels are separated
into an arbitrary number of different classes, usually while trying to maximize both inner-class
similarity and the contrast between different clusters. A wide variety of methods exists, includ-
ing different implementations such as mean-shift clustering, expected maximization clustering, or
k-means clustering (e.g. Dhanachandra et al., 2015). For the segmentation of the ice crystal
microscope images at hand, the k-means clustering method has been selected as it is a versatile
and efficient method that can easily be adapted for different problems. The k-means approach is
centroid-based, which means each of the clusters has a data point that is considered its center,
and all other data points are evaluated based on their similarity to the centroids which has to be
quantified by an appropriate metric. The cluster centroids have been automatically initialized by
the algorithm in this application and were shifted if required, for example, if the observed result-
ing segmentation was inaccurate. The implementation used here is based on the scikit-learn

toolbox, a machine learning toolbox written in Python (see Pedregosa et al., 2011).
Applying k-means clustering to the grayscale images themselves, without any additional channel,

is equivalent to a thresholding approach, as the calculation of a pixel’s similarity to the centroids
is only based on the grayscale intensity. The possibility of including more dimensions or channels
to the clustering allows taking the spatial context of the pixels into account, such as a grayscale
gradient or an image obtained from applying a convolution filter. That way, a 2048 × 2048 × n
representation of the image could be constructed and used as the foundation of an automatic
segmentation of the initial grayscale image. For this segmentation, a secondary image channel
D(x, y) has been calculated using a convolution of the image with a Sobel operator similar to the
approach taken for Canny edge detection. The value of this secondary channel at each pixel was
thus calculated from

Dx = Sx ∗ I =

1 0 −1
2 0 −2
1 0 −1

 ∗ I,
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Figure 2: Example image for crystal sizing using different segmentation methods with optimized
parameters. Crystal contours marked by operator in black, different thresholds in colors. Blue
arrows show examples of oversizing through noise contour merging through dilation, red arrows
show examples of area underestimation through incomplete patches.

Dy = Sy ∗ I =

 1 2 1
0 0 0
−1 −2 −1

 ∗ I,

D(x, y) =
√

C2
x + C2

y, (7)

with I representing the grayscale intensity of the initial image. This image filter combines a spatial
grayscale gradient of the initial image I with a Gaussian smoothing, thus emphasizing the impact of
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a pixel’s spatial context on its cluster membership instead of relying solely on the pixels’ grayscale
intensities.

S5 Segmentation method comparison and evaluation

To allow for a quantitative comparison and thus an assessment of performance of the algorithms
relative to each other, several images were labeled by an operator tracing the edges of crystals
by hand. While this approach was subjective to a certain degree and can contain errors from
inaccuracy introduced by the person tracing the contours, it was considered as the ”ground truth”
in this attempt to evaluate contour quality. Fig. 2 shows contours detected in the image by the
different methods described above in direct comparison, with the ground truth contour displayed
in black. For most crystals, the colored contours are almost indistinguishable from each other and
from the ground truth. However, in several cases brighter parts of the crystals have been missed
by the detection algorithms. For the crystals labeled with number 5 (center left of the image) and
9 (central region of the image’s top edge), only the Canny edge detection method was able to trace
the contour around the brighter regions (red arrows). The other methods drew the crystals’ contour
in a way that left holes in their shapes. Those missed regions can lead to an underestimation of
particle size from the smallest enclosing circle Dsec depending on the severity and location of the
holes, and always leads to an underestimation of the area equivalent diameter Dae.

A different source of error that caused oversizing can be seen for crystals 2, 4 and particularly
crystal number 11 (blue arrows in Fig. 2). Even though a Gaussian blur filter was applied before
object detection was started, small dirt spots in the microscope optics or on the glass slide are
visible as dark spots in the image, and were thus also detected by the binarization. The small
spots themselves were then filtered by a criterion disregarding all components that span less than a
certain area Amin, but a step in the processing procedure which involves a dilation of the contours
by a few pixels may have led to them being combined with one of the larger components that were
later considered crystals. This created artifacts such as the small thorn protruding from the right
side of crystal number 11, which led to an oversizing of the crystal. Crystal 7 exhibits both error
sources.

In Table 1, the total numbers of incorrectly labeled pixels in Fig. 2 are listed and compared
between the different methods. The values show pixels falsely considered object or background
pixels as a fraction of the total number of object pixels in the entire image. In this example,
the k-means approach yields the best results with the lowest sum of errors, followed by binary
thresholding with a threshold value of T = Ī − 0.5σI , with the mean intensity Ī over the whole
image and the intensity standard deviation σI . The intensity value determined as a threshold this
way was higher than the threshold determined by Otsu’s method (Tmean = 168 vs. Totsu = 156)
and thus constituted a less strict criterion, as pixels darker than the threshold are considered object
pixels. This is consistent with the observation from Table 1 that the binary method misses fewer
object pixels while simultaneously falsely labeling more pixels as part of an object.

Taking a pixelwise approach when evaluating segmentation methods quantifies the impact of
mislabeled pixels on determining the area equivalent diameterDae. On the other hand, the impact of
missed pixels in the regions marked by red arrows in Fig. 2 on the diameter of the smallest enclosing
circle Dsec is often very minor. By directly comparing the crystal sizes Dsec and Dae determined
from different methods in Fig. 2 to the size of the objects in the labeled image, the effect of the
segmentation errors on crystal sizing can be evaluated in a more direct way. Fig. 3 shows the size
error for each individual crystal in the image when compared to the operator-drawn contours for
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Figure 3: Sizing errors in Dsec and Dae introduced by the detected contours shown in Fig. 2. Mean
absolute error as horizontal lines.
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Binarization method
False positive

pixels
False negative

pixels
Sum of
errors

Global Thr. - Mean 2.6% 4.2% 6.8%
Global Thr. - Otsu 0.9% 8.8% 9.7%
Adaptive Threshold 4.0% 4.6% 8.6%
k-means Clustering 4.5% 2.1% 6.6%

Canny Edge Detection 1.6% 7.3% 8.9%

Table 1: Error in pixel coverage detected by different binarization algorithms over the entire image
(Fig. 2, total pixel number 2048 × 2048 = 4194304, total number of object pixels in label image
306796). ”False positive” refers to pixels predicted as object pixels that are not part of the label
objects, ”False negative” refers to label object pixels missed by the automated binarization method.

Binarization method
Mean sizing error

∆Dsec

Mean sizing error
∆Dae

absolute relative absolute relative

Global Threshold - Mean 1.4 µm 3.4% 1.2 µm 2.9%
Global Threshold - Otsu 2.3 µm 3.6% 2.7 µm 5.0%

Adaptive Threshold 1.2 µm 3.6% 1.7 µm 4.0%
k-means clustering 1.1 µm 3.4% 1.1 µm 2.9%

Canny Edge Detection 1.5 µm 4.3% 2.0 µm 3.3%

Table 2: Mean error of ice crystal sizing relative to operator-labeled images in Fig. 2 for different
binarization methods.

each binarization method. The effects of the errors can be seen in the positive or negative size
deviations of the respective crystals. Table 2 lists the mean sizing errors over all crystals. The
adaptive thresholding method performs better than global thresholding for determining Dsec, but
worse for Dae. This implies that a local threshold is more capable of correctly finding object edges
for the example at hand, but inconsistently labels the inner object regions, which agrees well with the
larger error in pixel count. Overall, the smallest error in both sizing and area estimation is generated
by the machine learning approach utilizing k-means clustering. Its capability of including context
information around the objects in their segmentation provides a clear advantage compared to the
thresholding approaches. However, as the cluster centroids are initialized from randomized locations
the algorithm does not always converge to a similar solution. Therefore, manual adjustment of the
accepted cluster indices or a clustering repetition using a different initial centroid seed is occasionally
necessary to receive the optimal binarization result.
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S6 Sample images for velocity measurement methods

The following images are visualizations of several aspects of the fall velocity determination methods
applied in the main article.

Fig. 4 shows an example of a particle fall streak recording, in which the bright lines are created
by ice crystals falling through the camera’s field of view. Light which incides into the sample volume
from a direction perpendicular to the optical axis is scattered by the falling particles, creating a
streak effect in the image.

The temporal evolution of the properties determined for a falling crystal using the holographic
particle tracking method is shown in Fig.5. The falling crystal shown here is detected six times
during its fall through the sample volume with an almost constant velocity of 50 µm s−1. The fall
track is mostly vertical with a slight tilt (lower panel in Fig. 5).
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Figure 4: Sample image of fall streaks created by ice crystals sedimenting in the cloud chamber.
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Figure 5: Top: Sequence of a sample object’s images, position (blue) and fall velocity (green) in the
same fall track. Sizing uncertainty is estimated as ∆Dmaj = 4.5 µm. Velocity calculation error is
estimated as ∆w = 5.5 mm s−1 due to turbulence and position uncertainty. Bottom: Evolution of
the sample objects’ spatial position in three dimensions. The spatial particle position is marked as
red circles for each hologram. Grey shades on the origin planes are projections of the fall tracks to
illustrate the particle’s motion more clearly. Position uncertainty is estimated as 2 pixels (4.5 µm)
in x and y direction and 2dz = 200 µm in z direction.
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