Supplement of Atmos. Chem. Phys., 20, 1483–1495, 2020 https://doi.org/10.5194/acp-20-1483-2020-supplement © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Effect of changing \mathbf{NO}_x lifetime on the seasonality and long-term trends of satellite-observed tropospheric \mathbf{NO}_2 columns over China

Viral Shah et al.

Correspondence to: Viral Shah (vshah@seas.harvard.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

$\operatorname{MEIC}\,\operatorname{NO}_{\scriptscriptstyle X}$ emissions trends over China

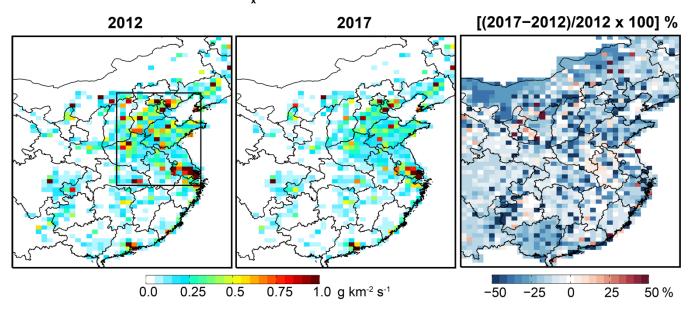


Figure S1: Trends in anthropogenic NO_x emissions over China. Left panels show the MEIC NO_x emissions for 2012 and 2017 and the right panels show their percentage change. The rectangle in the left panel delineates central-eastern China as defined here.

NO_x lifetimes and loss pathways (tropopsheric column) 2012 2017 τ =6.1 h τ =5.9 h 30% 24% 48% 50% 16% NO₂+OH $N_2O_5+H_2O$ NO/NO2+RO2 τ =27 h τ =21 h Other 22% 23% 52% 51% 10% 12% 13% 17%

Figure S2: NO_x lifetime (τ) and loss pathways for the tropospheric column over central-eastern China. The lifetimes are the GEOS-Chem averages for the tropospheric column weighted by the OMI averaging kernel over the domain delineated in Figure 1, and the pie charts show the relative contributions of the different NO_x sinks. For the lifetime calculation we define NO_x as $NO+NO_2+NO_3+2N_2O_5+HONO+HNO_4+ClNO_2$. Values are given for summer (JJA) and winter (DJF) of 2012 and 2017. The sink from NO/NO_2+RO_2 is the net flux, accounting for partial recycling of the organic nitrates, and includes the contributions from peroxyacyl nitrates (PANs). The 'Other' sinks include NO_3+VOC reactions, NO_2 and NO_3 hydrolysis in aerosols, and NO_x deposition.

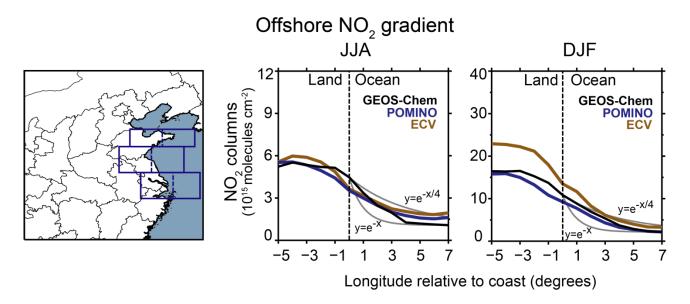


Figure S3: Offshore gradient of NO₂. The right panels show the seasonal-mean longitudinal gradient of OMI and GEOS-Chem columns across China's eastern coast averaged over the latitudinal sections marked in the left panel. The dashed lines indicate approximate land-ocean boundaries. The decay curves corresponding to e-folding lengths of 1° and 4° longitude are also shown.

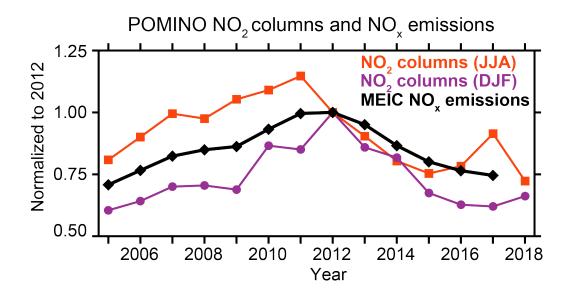


Figure S4: Trends in POMINO NO_2 columns over central-eastern China. The figure shows the trends in the POMINO tropospheric NO_2 columns (Liu et al., 2019) and the MEIC NO_x emissions (Zheng et al., 2018) over central-eastern China (region delimited in Fig. S1). Values are 3-month means for June, July, and August (JJA) and December, January, and February (DJF) normalized to 2012 (JJA) and 2011/12 (DJF).