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Abstract. Ambient fine particulate matter (PM2.5) mitiga-
tion relies strongly on anthropogenic emission control mea-
sures, the actual effectiveness of which is challenging to pin-
point owing to the complex synergies between anthropogenic
emissions and meteorology. Here, observational constraints
on model simulations allow us to derive not only reliable
PM2.5 evolution but also accurate meteorological fields. On
this basis, we isolate meteorological factors to achieve re-
liable estimates of surface PM2.5 responses to both long-
term and emergency emission control measures from 2016
to 2019 over the Yangtze River Delta (YRD), China. The re-
sults show that long-term emission control strategies play a
crucial role in curbing PM2.5 levels, especially in the megac-
ities and other areas with abundant anthropogenic emis-
sions. The G20 summit hosted in Hangzhou in 2016 pro-
vides a unique and ideal opportunity involving the most strin-
gent, even unsustainable, emergency emission control mea-
sures. These emergency measures lead to the largest de-
crease (∼ 35 µg m−3, ∼ 59 %) in PM2.5 concentrations in
Hangzhou. The hotspots also emerge in megacities, espe-
cially in Shanghai (32 µg m−3, 51 %), Nanjing (27 µg m−3,
55 %), and Hefei (24 µg m−3, 44 %) because of the emer-

gency measures. Compared to the long-term policies from
2016 to 2019, the emergency emission control measures im-
plemented during the G20 Summit achieve more signifi-
cant decreases in PM2.5 concentrations (17 µg m−3 and 41 %)
over most of the whole domain, especially in Hangzhou
(24 µg m−3, 48 %) and Shanghai (21 µg m−3, 45 %). By ex-
trapolation, we derive insight into the magnitude and spatial
distribution of PM2.5 mitigation potential across the YRD,
revealing significantly additional room for curbing PM2.5
levels.

1 Introduction

Anthropogenically induced fine particulate matter (partic-
ulate matter with an aerodynamic diameter smaller than
2.5 µm, hereinafter denoted as PM2.5) is a principal object of
air pollution control in China (Huang et al., 2014; Zhang et
al., 2015). Moreover, the government has made major strides
in curbing anthropogenic emissions (e.g., SO2, NOx , and
CO) via both long-term and emergency measures during the
past decade (Yan et al., 2018; Yang et al., 2019; Zhang et al.,
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2012). However, owing to the complex synergy of chemistry
and meteorology (Seinfeld and Pandis, 2016), the extent to
which these measures have abated PM2.5 pollution, as well
as the attainable mitigation potential, remains unclear (An et
al., 2019).

The main challenge involves reliably representing substan-
tial and rapid changes in anthropogenic emissions resulting
from both long-term and emergency control measures (Chen
et al., 2019; Cheng et al., 2019; Yang et al., 2016; Zhai et
al., 2019; Zhang et al., 2019; Zhong et al., 2018). To gain
timely insight into variations in anthropogenic emissions,
considerable efforts went into establishing detailed bottom-
up emissions and derived valuable findings (Cheng et al.,
2019; Zhang et al., 2019). Yet bottom-up inventories were
built on the basis of activity data as well as emission fac-
tors. These input data can be absent or outdated, likely lead-
ing to misunderstandings of anthropogenic impacts, partic-
ularly in terms of the magnitude (Jiang et al., 2018). Re-
cent studies applied available observations to construct mul-
tilinear regression models (emission-based or meteorology-
related), thus allowing us to separate contributions from an-
thropogenic emissions and meteorology to some extent (Zhai
et al., 2019; Zhong et al., 2018). However, the uncertainties
in bottom-up inventories and meteorology remained. Here
we switched to observational constraints on a state-of-the-
art chemical model. This can be a potential way to tackle this
challenge.

Since 2013, the China National Environmental Monitor-
ing Center (CNEMC) has established 1415 ground-based
PM2.5 measurement sites across 367 key cities (Zhang and
Cao, 2015). In contrast to satellite observations with sparse
spatiotemporal coverage (Ma et al., 2014, 2015; Xue et al.,
2019), these ground sites can provide hourly PM2.5 concen-
trations at high spatial resolution in urban areas. Data assim-
ilation (DA) methods that have been widely used in meteo-
rology can be extended to integrate those continuous obser-
vational constraints with chemical transport models (CTMs)
(Bocquet et al., 2015; Chai et al., 2017; Gao et al., 2017; Jung
et al., 2019; Ma et al., 2019). It has been demonstrated that
the capability of several representative DA methods, such as
the optimal interpolation (OI) (Chai et al., 2017), 3D and
4D variational methods (Li et al., 2016), and the ensemble
Kalman filter algorithm (Chen et al., 2019), can bridge the es-
timation gaps between observed and simulated results. Thus,
observational constraints can be taken full advantage of to
identify the effects of anthropogenic emission controls.

From the perspective of policymaking, 2016 was a special
year for air pollution control in China. Since 2013, the Chi-
nese government instituted extensive policies, such as the Air
Pollution Prevention and Control Action Plan. These strate-
gies were initiated and implemented through generally shut-
ting down or relocating high-emission traditional industrial
enterprises (Sheehan et al., 2014; Shi et al., 2016; Xie et al.,
2015). Starting from 1 January 2016, the relevant law, as well
as the “Blue Sky Battle Plan”, came into full effect and pro-

foundly shifted how China prioritized air quality manage-
ment (Feng and Liao, 2016; K. Li et al., 2019). Hence, we
address the impact of long-term emission control strategies
on PM2.5 mitigation from 2016 onward.

The G20 summit hosted in Hangzhou in 2016 (hereinafter
termed the G20 summit) provides a unique and ideal oppor-
tunity to further explore the attainable PM2.5 mitigation po-
tential across the Yangtze River Delta (YRD) (P. Li et al.,
2017; Ma et al., 2019; Shu et al., 2020; Yang et al., 2019).
Prior to and during this period, the Chinese government en-
forced the historically strictest, even unsustainable, emer-
gency emission control measures, including significant con-
trol and even cessation of factory operations and restrictions
on vehicles in the region, thus achieving significant PM2.5
abatement at specific locations (e.g., Hangzhou) (Ji et al.,
2018; P. Li et al., 2017; Yang et al., 2019). Those measures
were conducted across the whole YRD (including Zhejiang
province, Shanghai municipality, Jiangsu province, and An-
hui province), particularly in Hangzhou, which served as the
host city (H. Li et al., 2019; P. Li et al., 2017; Ni et al., 2020;
Yu et al., 2018). Li et al. (2017) assumed that most of anthro-
pogenic emissions (e.g., those from industry, power plant,
residential, and on-road transportation sectors) were reduced
by around 50 %. The role of these emergency emission con-
trol measures, that is, the relatively localized PM2.5 mitiga-
tion potential, can thus be identified and further extended to
the entire YRD.

To quantify the effectiveness of the emission control
strategies, we constrained a state-of-the-art CTM by a reli-
able DA method with extensive chemical and meteorologi-
cal observations. This comprehensive technical design pro-
vides a crucial advance in isolating the influences of emis-
sion changes and meteorological perturbations over the YRD
from 2016 to 2019, thus deriving estimates of PM2.5 re-
sponses to both long-term and emergency emission control
measures, and establishing the first map of the PM2.5 mitiga-
tion potential across the YRD.

2 Materials and methods

2.1 The two-way coupled WRF-CMAQ model

The two-way coupled Weather Research and Forecasting
(WRF) and Community Multiscale Air Quality (CMAQ)
model (the WRF-CMAQ model), as the key core of the DA
system, was applied to investigate the ambient PM2.5 feed-
backs under different constraining circumstances (Byun and
Schere, 2006; Wong et al., 2012; Yu et al., 2014). We uti-
lized the CB05 and AERO6 modules for gas-phase chemistry
and aerosol evolution (Carlton et al., 2010; Yarwood et al.,
2005), respectively. Both secondary inorganic and organic
aerosol (i.e., SIA and SOA) were thus explicitly treated with
the AERO6 scheme in the WRF-CMAQ model. Together
with the ISORROPIA II thermodynamic equilibrium module
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(Fountoukis and Nenes, 2007), SIA in the Aitken and accu-
mulation modes (Binkowski and Roselle, 2003) was assumed
to be in thermodynamic equilibrium with the gas phase,
while that in the coarse mode was treated dynamically. SOA
was formed via gas-, aqueous-, and aerosol-phase oxidation
processes, such as in-cloud oxidation of glyoxal and methyl-
glyoxal, absorptive partitioning of condensable oxidation of
monoterpenes, long-chain alkanes, low-yield aromatic prod-
ucts (based on m-xylene data), high-yield aromatics, and
NOx-dependent yields from aromatic compounds (Carlton et
al., 2010). The subsequent reaction products can be divided
into two groups: non-volatile and semi-volatile. Such treat-
ments have been widely used and comprehensively validated.
Longwave and shortwave radiation were both treated using
the RRTMG radiation scheme (Clough et al., 2005). Related
land surface energy balance and planetary boundary layer
simulations were included in the Pleim–Xiu land surface
scheme (Xiu and Pleim, 2001) and the asymmetric convec-
tive model (Pleim, 2007b, a), respectively. The two-moment
Morrison cloud microphysics scheme (Morrison and Get-
telman, 2008) and the Kain–Fritsch cumulus cloud scheme
(Kain, 2004) were employed for simulating aerosol–cloud
interactions and precipitation. Default settings in the model
were used to prescribe chemical initial and boundary condi-
tions. A spin-up period of 7 d was carried out in advance to
eliminate artifacts associated with initial conditions. Meteo-
rological initial and boundary conditions were obtained from
the ECMWF reanalysis dataset with the spatial resolution of
1◦× 1◦ and temporal resolution of 6 h (https://www.ecmwf.
int/en/forecasts/datasets/browse-reanalysis-datasets, last ac-
cess: 7 March 2020). Biogenic and dust emissions were cal-
culated on-line using the Biogenic Emission Inventory Sys-
tem version 3.14 (BEISv3.14) (Carlton and Baker, 2011) and
a windblown dust scheme embedded in CMAQ (Choi and
Fernando, 2008), respectively.

The horizontal domain of the model covered mainland
China by a 395× 345 grid with a 12 km horizontal resolu-
tion following a Lambert conformal conic projection (Fig. 1).
In terms of the vertical configuration, 29σ -pressure lay-
ers ranged from the surface to the upper level pressure of
100 hPa, 20 layers of which are located below around 3 km
to derive finer meteorological and chemical characteristics
within the planetary boundary layer.

As a state-of-the-art CTM, the WRF-CMAQ model has
been widely used to simulate spatiotemporal PM2.5 distri-
butions at regional scales. However, model biases remain,
mainly due to imperfect representations of chemical and me-
teorological processes. Inaccurate anthropogenic emissions
will exacerbate these biases. Therefore, external constraints
on simulated results enforced by the DA method will be taken
into account in order to optimize spatiotemporal PM2.5 dis-
tributions (Bocquet et al., 2015).

2.2 Anthropogenic emissions

The anthropogenic emissions were obtained from the Multi-
resolution Emission Inventory for China version 1.2 (MEIC)
(M. Li et al., 2017), which contained primary species (e.g.,
primary PM2.5, SO2, NOx , CO, and NH4) from five anthro-
pogenic sectors (i.e., agriculture, power plant, industry, resi-
dential, and transportation). This inventory was initially de-
signed with the spatial resolution of 0.25◦× 0.25◦ and thus
needed to be reallocated to match the domain configuration
(i.e., 12 km× 12 km) in the study.

Recent findings show that MEIC generally provides rea-
sonable estimates of total anthropogenic emissions for sev-
eral typical regions in China, such as the Beijing–Tianjin–
Hebei region (BTH), the YRD, and the Pearl River Delta
region (M. Li et al., 2017). Nevertheless, large uncertain-
ties in spatial proxies (e.g., population density and road net-
works) still exist within these specific regions (Geng et al.,
2017). Moreover, MEIC was originally constructed for the
2016 base year. Hence, owing to the impact of the long-term
emission control measures, MEIC was considered to be in-
appropriate for this study period (i.e., 2019). Comparatively,
emergency control measures could give rise to much more
significant emission controls in the short term, thereby lead-
ing to further uncertainties.

2.3 Observational network

To track real-time air quality in China, the National Environ-
mental Monitoring Center (CNEMC, http://www.cnemc.cn/,
last access: 7 March 2020) has established 1415 sites across
367 cities since 2013 (Fig. 1). Among these, 244 monitor-
ing sites were densely distributed in 6660 grid cells across
the YRD providing hourly PM2.5 measurements, resulting in
potentially excellent roles in constraining simulated PM2.5
(Bocquet et al., 2015). In this study, we applied observed
PM2.5 concentrations to constrain and evaluate the model
performance. It is worth noting that the constraining capabil-
ity of those observations varies depending on specific con-
figurations (e.g., the nature of the utilized DA method, the
assimilation frequency, and the representative errors of ob-
servations) (Bocquet et al., 2015; Chai et al., 2017; Ma et
al., 2019; Rutherford, 1972). As shown in Fig. 1a, to con-
sider regional impacts outside the YRD, the ground-level ob-
servations in the fan-shaped quadrilateral were used to con-
strain the model performance. This was mainly due to the
fact that this fan-shaped geographical scope covered almost
all key regions that had potentially regional impacts on the
YRD, involving the Beijing–Tianjin–Hebei region, the Pearl
River Delta region, the Sichuan-Chongqing region, and the
Shaanxi-Gansu region (Zhang et al., 2019). On the other
hand, the ground monitoring sites within the fan-shaped
quadrilateral were significantly denser than those outside it,
thus leading to much more effective DA results in practice
(Bocquet et al., 2015; Chai et al., 2017). Collectively, assim-
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Figure 1. (a) The model domain. Red dots denote the ground-level PM2.5 measurements, which, within the fan-shaped quadrilateral, are
used to constrain the model predictions. (b) Black lines outline the boundaries of the Yangtze River Delta (YRD), as well as the four major
cities considered (i.e., SH: Shanghai; HZ: Hangzhou; NJ: Nanjing; HF: Hefei).

ilating the observations in the fan-shaped quadrilateral might
be a sensible way to balance the DA effectiveness and the
computing efficiency. A resultant evidence lies in the model
performance evaluation in Sect. 3.1, which would prove that
this DA configuration can enable reliable PM2.5 simulations.

2.4 Optimal interpolation

Optimal interpolation (OI) was chosen to assimilate hourly
observations into the WRF-CMAQ model, aiming to gener-
ate the accurate state of spatiotemporal PM2.5 distributions.
Compared to the solely model-dependent results, this con-
straining method relies on observations and thus makes it
possible to minimize model uncertainties in optimizing the
spatiotemporal PM2.5 changes resulting from emission con-
trols (Chai et al., 2017; Jung et al., 2019). The analyzed states
from the OI method were calculated based on the following
interpolation equation:

Xa
=Xb

+BHT(
HBHT

+O
)−1

(Y −HXb), (1)

whereXa andXb denote the analysis (constrained) and back-
ground (simulated) values, respectively. B and O are back-
ground and observation error-covariance matrices, respec-
tively, for which we assumed no correlation in this study. H
refers to a linearized observational operator, and Y represents
the observation vector. The OI method is described in detail
in Adhikary et al. (2008).

Once available measurements were assimilated, the states
of the simulated variables were adjusted from their back-
ground values to corresponding analysis states using the scal-
ing ratio Xa/Xb obtained following Eq. (1). As the mea-
surements were conducted at the surface, this ratio at each
grid cell was used to scale all aerosol components below
the boundary layer top. Such simplification compensated for
the lack of information to constrain speciated aerosol com-
ponents or their vertical distributions. When ground-level

PM2.5 measurements were assimilated, hourly observations
were put into Eq. (1) to construct the new analysis fields. All-
day state variables associated with aerosols in the model were
adjusted from their background (simulated) to their analysis
(constrained) states using the scaling factors (Xa/Xb). The
adjusted model state variables were then used to initiate the
model to predict the next background state (Xb) in Eq. (1).
Therefore, the background state (Xb) served as a prior model
prediction before it was combined with the newly available
observation (Y) to generate a new analysis state (Xa) using
Eq. (1).

Measurements within the background-error correlation
length scale were used to shape analysis states (Xa). The
background error covariance COVij between any two grid
cells i and j was simulated as

COVij = εiεj e−
1ij
L , (2)

where εi and εj referred to the standard deviations of the
background errors in two grid cells and 1ij denotes the
distance between the two grids. As a result, L was the
background-error correlation length scale, which can be mea-
sured using the Hollingsworth–Lönnberg method (Chai et
al., 2017; Hollingsworth and Lönnberg, 1986; Kumar et
al., 2012). Figure 2 shows the correlation coefficient, i.e.,
COVij/εiεj , as a function of the separation distance between
two grid cells, which was averaged over 10 km bins. The re-
sults identified that a correlation length scale of ∼ 180 km
could be treated as the threshold. It allowed the correlation
coefficients to fall within the range of e−1, defining the ef-
fective radius of each individual observation. Due to the in-
tensive monitoring sites in our study domain, this threshold
was applied uniformly for the YRD. In this study, observa-
tions beyond the background-error correlation length scale
would have no effect on Xa. Following Chai et al. (2017),
the standard deviation of the background errors was assigned
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Figure 2. Correlation coefficients (averaged over 10 km) as a func-
tion of the separation distances between two surface-level monitor-
ing stations using the Hollingsworth–Lönnberg method.

as 60 % of the background values, while the observational er-
rors were assumed to be ± 20 % of the measurement values.

2.5 Experiment design

Anthropogenic emission controls and meteorological pertur-
bations are both critical factors that dominate interannual and
daily variations in ambient PM2.5 (Zhang et al., 2019). Our
major objective is to isolate the impacts of emission-oriented
long-term and emergency measures and further explore the
attainable PM2.5 mitigation potential. We designed three sets
of experiments, which focused on three time periods, January
2016, January 2019, and the G20 period (from 26 August
2016 to 7 September 2016) (Table 1).

For all experiments, the anthropogenic emissions were
kept consistent (i.e., MEIC), while the ECMWF reanal-
ysis datasets accounted for the hourly observational con-
straints on spatiotemporal meteorological evolutions. The
ECMWF reanalysis datasets accounted for the hourly obser-
vational constraints on spatiotemporal meteorological evo-
lutions. Therein almost all necessary meteorological factors
(nine variables), involving temperature, U wind component,
V wind component, pressure, relative humidity, precipita-
tion, short-wave radiation, cloud cover, and planetary bound-
ary layer height (PBLH), were assimilated (https://apps.
ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/, last
access: 7 March 2020). These configurations unified both
chemical (i.e., emission inventories) and meteorological in-
put data for the WRF-CMAQ model. Hence, the extent to
which we introduce observational constraints on simulated
PM2.5 variations using the OI method is the key to isolating
the impacts of anthropogenic emission controls. Specifically,
the differences in the constrained PM2.5 concentrations be-
tween DA_2016 and DA_2019 reflected the net effects of
anthropogenic emission controls and meteorological pertur-
bations between 2016 and 2019, while meteorological im-
pacts therein were calculated as the discrepancies in simu-
lated PM2.5 concentrations between NO_2016 and NO_2019

(Chen et al., 2019). Hence, by subtracting meteorological im-
pacts from the net effects, we can isolate the effects of an-
thropogenic emission controls attributable to the long-term
strategies.

The G20 summit provided a unique opportunity to realize
the PM2.5 mitigation potential in specific regions (B. Li et al.,
2019; P. Li et al., 2017; Ma et al., 2019; Shu et al., 2020; Yang
et al., 2019). This is due to the fact that the Chinese govern-
ment implemented the most historically stringent, even un-
sustainable, strategies to curb anthropogenic emissions dur-
ing that period in Hangzhou and surrounding areas. To quan-
tify the projected PM2.5 abatement, we adopted the above-
mentioned method to constrain the unique PM2.5 variations
in the DA_G20 experiment and further compared the cor-
responding results with those of the sole model-dependent
analysis (i.e., NO_G20). However, the subsequent discrepan-
cies were related not only to the effects of emergency anthro-
pogenic emission strategies but also to the inherent biases
mainly due to the emission inventory (Zhang et al., 2019). In
theory, such biases would generally remain unchanged in the
short term when no emergency emission controls occurred.
Their consequent impacts could thus be stable under simi-
lar meteorological conditions. Therefore, to avoid additional
uncertainties, the adjacent periods of the G20 summit (i.e.,
pre- and post- periods, from 11 to 23 August 2016 and from
18 to 30 September 2016, respectively) are the optimal al-
ternative to eliminate the impacts of those inherent biases.
Figure S1 in the Supplement demonstrates the significantly
similar meteorological fields among these three periods. As
a result, the corresponding experiments (i.e., DA_CON_G20
and NO_CON_G20) (Table 1) were conducted. By subtract-
ing such differences, we could isolate the PM2.5 responses to
the solely emergency anthropogenic emission strategies and
finally achieve the PM2.5 mitigation potential for specific lo-
cations. Such localized PM2.5 mitigation potential should be
further expanded to the entire YRD based on the impacts of
both long-term and emergency strategies.

There is an essential prerequisite to the above analy-
sis. As the evaluation protocols, we need to verify that the
DA experiments (i.e., DA_2016, DA_2019, DA_G20, and
DA_CON_G20) can reproduce the spatiotemporal variations
in the PM2.5 and major meteorological fields (i.e., tempera-
ture, relative humidity, wind speed, and air pressure) (Chai
et al., 2017). While 244 monitoring stations reside in 6660
grid cells, 16 grid cells have 2 to 3 monitors in them. For
these grid cells, only one averaged measurement was used
for DA. However, all the observations were compared against
the constrained results. Although SIA and SOA are key com-
ponents of the ambient PM2.5, extensive measurements at the
regional scale of these components are generally lacking. It is
thus difficult to generate appropriate constraints on SIA and
SOA (Chai et al., 2017; Gao et al., 2017). Note that different
anthropogenic emissions might lead to inconsistent estima-
tion of meteorological effects on ambient PM2.5 (Chen et al.,
2019). To eliminate this doubt, we conducted sensitivity tests
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Table 1. The experiments to isolate the effects of anthropogenic emission controls due to the long-term and emergency emission control
strategies.

Experiments Time periods Priori Constrained Constrained Comparisons and purposes
anthropogenic meteorology observations
emissions

DA_2016 January 2016 Yes Yes The net effects of major driving factors (i.e.,
DA_2019 January 2019 MEICv1.2 Yes Yes anthropogenic emission controls and

meteorological variations) from 2016 to 2019.

NO_2016 January 2016
MEICv1.2

Yes No The effects of meteorological variations from
NO_2019 January 2019 Yes No 2016 to 2019.

DA_G20 From 26 August to

MEICv1.2

Yes Yes The net effects of major driving factors (i.e.,
NO_G20 7 September 2016 Yes No anthropogenic emission controls and the

uncertainties in the priori anthropogenic
emissions) during the G20 summit.

DA_CON_G20 From 11 to 23 August Yes Yes The effects of the uncertainties in the priori
NO_CON_G20 and from 18 to MEICv1.2 Yes No anthropogenic emissions.

30 September 2016

by reducing MEIC with three reasonable ratios (i.e., −5 %,
−25 %, and −40 %) over the YRD based on NO_2016 and
NO_2019.

3 Results

3.1 Data assimilation performance

Figure 3 shows spatial comparisons of hourly averaged con-
centrations of constrained and simulated PM2.5 (i.e., the
ones from the cases with and without DA, respectively)
with ground-level observations across the YRD for January
2016, January 2019, and the G20 summit. In the NO_2016,
NO_2019, and NO_G20 experiments, the simulated PM2.5
concentrations generally overestimated observed values by
16–57 µg m−3, especially those in Hangzhou and surround-
ing areas during the G20 summit (> 21 µg m−3). Such pre-
vailing overestimates were mainly a result of the anthro-
pogenic emission inventory (i.e., MEIC), as a bottom-up
product, which notably cannot capture interannual emission
changes since the base year 2012, as well as the large emis-
sion controls resulting from the emergency controls dur-
ing the G20 summit. By comparison, the constrained re-
sults significantly approach observations. Specifically, in the
DA_2016, DA_2019, and DA_G20 cases, the biases of the
assimilated PM2.5 were all constrained in an extremely nar-
row range (i.e., 10, 12, and 13 µg m−3, respectively), suggest-
ing that the DA method can reproduce the spatiotemporal dis-
tributions of surface PM2.5 at the regional scale.

To achieve more targeted evaluations, it is necessary to
further assess the ability of the DA method in reproducing
the city-level PM2.5 responses. With the analysis of time se-
ries over the same periods, Fig. 4 illustrates the comparisons
between hourly observed, simulated, and constrained PM2.5

Figure 3. Spatial comparisons of hourly-averaged concentrations of
simulated and constrained PM2.5 with surface observations across
the YRD for January 2016 (a, b), January 2019 (c, d), and the
G20 summit (e, f): (a) NO_2016; (b) DA_2016; (c) NO_2019;
(d) DA_2019; (e) NO_G20; (f) DA_G20. Circles denote ground
measurement sites.

concentrations over the whole domain and four representa-
tive cities (i.e., Shanghai, Hangzhou, Nanjing, and Hefei).
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Figure 4. Time series of the comparisons between hourly observed, simulated, and constrained PM2.5 concentrations for January 2016 (left
column), January 2019 (middle column), and the G20 summit (right column) over (a–c) the whole domain as well as in four representative
cities, which are as follows: (d–f) Shanghai, (g–i) Hangzhou, (j–l) Nanjing, and (m–o) Hefei. The black circles, black lines, and red lines
denote the hourly observed, simulated, and constrained PM2.5 concentrations, respectively.

Similar to the spatial comparisons, the constrained PM2.5
generally reproduces the temporal variations in observations,
while the model-dependent simulated results are prone to
overestimating those observations, in particular, the peaks by
85–257 µg m−3.

As expected, basic evaluation indicators (i.e., the normal-
ized mean bias, NMB, and R values) of assimilated PM2.5
exhibited significantly better behavior than those without
constraints (Fig. S2). Taking the simulated and assimilated
results for Hangzhou during January 2016 as an example, the
corresponding R values improved from 0.63 to 0.98, while
the NMB values were reduced from 17 % to 3 %. Similar
improvements, but with varying extent, were found in other
paired experiments.

Owing to the fact that the distinct PM2.5 levels might
also play a potential role in the DA performance, we thus
separated the entire range of the observed PM2.5 concen-
trations into four intervals (i.e., < 35, 35–75, 75–115, and
> 115 µg m−3), exactly corresponding to the continuously in-
creasing PM2.5 levels. Figure S3 demonstrates that, relative
to the sole model-dependent configurations, this constrain-
ing method could substantially strengthen the model perfor-

mance, especially for the relatively elevated concentration
intervals. Overall, the ranges of the NMB values and asso-
ciated standard deviations decreased from −24 %–86 % to
−9 %–25 % and 34–174 to 12–52 µg m−3, respectively. The-
oretically, more frequent DA should lead to more robust sim-
ulations. Hourly observational constraints on the PM2.5 con-
centrations were thus adopted to tackle this issue. This is the
reason why the corresponding NMB values in the constrain-
ing cases roughly maintain stability, fluctuating over a nar-
row range (i.e., ± 20 %) in the study periods (Fig. S4). In
addition, given that the assimilated ERA reanalysis dataset
has much wider spatial coverage than ground-based mea-
surements, we also reproduced the spatiotemporal variations
in the meteorological factors (e.g., temperature, relative hu-
midity, wind speed, and air pressure) (Figs. S5–S8). To-
gether with the comprehensive evaluation statistics as sum-
marized in Tables S1–S5, it has been demonstrated that the
DA method can enable one to derive not only reliable PM2.5
evolution but also accurate meteorological fields. Regional
transport of PM2.5 can thus be captured reasonably in this
way.
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Figure 5. The impacts of anthropogenic emission controls and me-
teorological variations on spatial PM2.5 concentrations in January
from 2016 to 2019. (a, d) Their net impacts. (b, e) Meteorologi-
cal impacts. (c, f) The impacts of anthropogenic emission controls.
Panels (a)–(c) and (d)–(f) refer to the changes in absolute values
and relative percentages, respectively.

3.2 Ambient PM2.5 responses to the long-term
strategies

The Chinese government has been implementing stringent
emission control strategies since 2016, especially in the YRD
(Feng and Liao, 2016; K. Li et al., 2019). To quantify sub-
sequent PM2.5 responses is thus the prerequisite to our final
objective, that is, to explore the associated PM2.5 mitigation
potential.

Interannual changes in spatiotemporal PM2.5 distributions
depended strongly on both anthropogenic emission controls
and meteorological variations from 2016 to 2019. Their com-
bined effects were reflected by the differences between the
constrained results from DA_2016 and DA_2019. As shown
in Fig. 5a, such net impacts led to prevailing PM2.5 abate-
ment in the domain, especially in megacities, such as Shang-
hai (13 µg m−3, 21 %), Hangzhou (13 µg m−3, 17 %), Nan-
jing (6 µg m−3, 8 %), and Hefei (2 µg m−3, 2 %). In addition,
noticeable PM2.5 controls also occurred in the western and
northern YRD, where abundant anthropogenic emissions are
concentrated (Fig. S9). Detailed differences are shown in Ta-
ble S6.

Figure 5b highlights that the sole meteorological interfer-
ences played an extensively positive role in increasing the
regional PM2.5 concentrations for most areas of the domain
(∼ 12 µg m−3, 15 %). This also indirectly implied the impor-
tance of assimilating meteorology, which, however, was gen-
erally neglected by previous studies (Chen et al., 2019). In
this study, we have eliminated this speculation. As shown

in Figs. 5 and S10, even with the largest adjustment (i.e.,
−40 %), such interferences could be well controlled within
the 5 % (< 3 µg m−3) scope, let alone other tests (i.e., < 3 %,
< 2 µg m−3). Moreover, these findings are consistent with
previous analyses (Chen et al., 2019; Zhang et al., 2019).
They generally reveal that reasonable changes in the bottom-
up emissions, together with the same meteorology input data,
would not remarkably alter the simulated results associated
with meteorological effects on surface PM2.5 (< 5 %). As a
result, some past studies even directly ignored such sensitiv-
ity tests without any discussion (Chen et al., 2019). There-
fore, by subtracting those meteorological influences from the
combined outcomes, we can finally derive the contributions
of anthropogenic emission controls to the PM2.5 mitigation at
the regional scale. Figure 5c illustrates that long-term emis-
sion control strategies from 2016 to 2019 produced substan-
tial (> 14 µg m−3, 19 %) decreases in regional PM2.5 concen-
trations, which are similar to those combined effects in terms
of the spatial distributions.

For the entire domain, as well as the four representative
cities, the synergy between anthropogenic emission controls
and meteorological interferences on the PM2.5 concentra-
tions were calculated at the city level (Fig. 6). We found
that their net effects resulted in uniformly positive mitiga-
tion as follows: −2 µg m−3 (−3 %), −13 µg m−3 (−21 %),
−12 µg m−3 (−17 %), −6 µg m−3 (−8 %), and −2 µg m−3

(−3 %) for the whole domain, Shanghai, Hangzhou, Nan-
jing, and Hefei, respectively, while the meteorological con-
ditions therein offset such effects to different extents (5–
18 µg m−3, 16 %–24 %). We recognized that the impacts of
anthropogenic drivers on PM2.5 concentrations in the south-
ern and eastern parts of Zhejiang were evidently weaker
than those in other regions in the YRD. This divergence can
mostly be explained by spatial distributions of anthropogenic
emissions. That is, anthropogenic emissions in the south-
ern and eastern of Zhejiang were also significantly lower
than those in other regions (Fig. S9), thus leading to sub-
stantially low PM2.5 concentrations (Fig. 3). As well as this,
meteorological fields in coastal regions, more conducive to
PM2.5 diffusion (Fig. 5), might be another cause. The above
findings confirmed that the PM2.5 mitigation was dominated
by anthropogenic emission controls, rather than meteorolog-
ical variations. Furthermore, the corresponding spatiotem-
poral patterns were highly correlated to those of the an-
thropogenic emissions (Fig. S9). This indicates that the im-
pacts of the long-term strategies are mainly driven by anthro-
pogenic emission mitigation.

3.3 Ambient PM2.5 mitigation potential

The G20 summit offered a unique and ideal opportunity
to clarify the effects of the most stringent emission con-
trol measures across the YRD from 2016 to 2019, which
could be regarded as the localized PM2.5 mitigation poten-
tial. Figure 7a shows the spatial differences between the con-
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Figure 6. The impacts of anthropogenic emission controls and me-
teorological variations on PM2.5 concentrations in January from
2016 to 2019 over the whole domain as well as in four represen-
tative cities (i.e., Shanghai, Hangzhou, Nanjing, and Hefei). Pan-
els (a) and (b) refer to the changes in absolute values and relative
percentages, respectively.

strained and simulated PM2.5 concentrations, which were ex-
tracted from DA_G20 and NO_G20, for the period of the
G20 summit. Inherent biases remained, primarily attributable
to the priori anthropogenic emissions. Their subsequent im-
pacts were then quantified by comparing the discrepancies
between the results from two additional experiments (i.e.,
DA_CON_G20 and NO_CON_G20) (Fig. 7b). Moreover,
such impacts were associated with relatively low standard
deviations (< 5 %), thus presenting a stably spatiotemporal
state (Fig. S11). This means that such estimations were also
suitable for the G20 summit. Therefore, by subtracting them,
the re-corrected differences would reflect the actual effects
of the most stringent emission control measures for the G20
summit (Fig. 7c). Such hotspots with extremely negative val-
ues reveal the dramatic PM2.5 mitigation for these specific
locations. The corresponding largest decreases in PM2.5 con-
centrations (35 µg m−3, 59 %) occurred in Hangzhou and its
surrounding areas, as expected. Following Hangzhou, other
hotspots with relatively prominent declines also emerged in
megacities, especially in Shanghai (32 µg m−3, 51 %), Nan-
jing (27 µg m−3, 55 %), and Hefei (24 µg m−3, 44 %). This
behavior could be explained by two inferences: (i) local
emission controls in Hangzhou were projected to be con-
ducted with the maximum execution efficiency compared to
those in surrounding regions; (ii) most of the emergency
measurements generally targeted the vehicle and industry
emissions that are clustered around the urban rather than ru-
ral areas.

Compared to the long-term policies from 2016 to 2019,
the emergency emission control measures implemented dur-
ing the G20 Summit achieved more significant decreases in
PM2.5 concentrations (17 µg m−3 and 41 %) over most of the
whole domain, especially in Hangzhou (24 µg m−3, 48 %)

Figure 7. The impacts of anthropogenic emission controls and in-
herent biases on spatial PM2.5 concentrations during the G20 sum-
mit. (a, d) Their net impacts. (b, e) The impacts of inherent biases.
(c, f) The impacts of anthropogenic emission controls. Panels (a)–
(c) and (d)–(f) refer to the changes in absolute values and relative
percentages, respectively. Inherent biases are mainly due to the prior
anthropogenic emissions.

Figure 8. The impacts of anthropogenic emission controls and
inherent biases on PM2.5 concentrations during the G20 summit
over the whole domain as well as in four representative cities (i.e.,
Shanghai, Hangzhou, Nanjing, and Hefei). Panels (a) and (b) refer
to the changes in absolute values and relative percentages, respec-
tively. Inherent biases are mainly due to the prior anthropogenic
emissions.

and Shanghai (21 µg m−3, 45 %) (Fig. 8). Detailed differ-
ences are summarized in Table S6.

To gain the regional PM2.5 mitigation potential, we did
the following. (i) We first pinpointed the main urban areas of
Hangzhou that covered 25 grid cells (Fig. S12), in which the
most substantial PM2.5 abatement; i.e., the localized PM2.5
mitigation potential (> 22 µg m−3 and > 59 %) was identi-
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Figure 9. (a) Spatial distributions of the PM2.5 mitigation poten-
tial across the YRD and (b) their differences with the impacts of
long-term emission control strategies from 2016 to 2019 (Fig. 5f).
Both spatial patterns of long-term emission control strategy impacts
(Fig. 5f) and the localized PM2.5 mitigation potential in the main
urban areas of Hangzhou (Fig. S10), with the proportion calculator,
result in panel (a).

fied. (ii) As in the above hypothesis, the spatial distributions
of the regional PM2.5 mitigation potential across the YRD
were then assumed to follow those of the long-term strat-
egy effects. (iii) Thus, by extrapolation in equal proportion
following such patterns and the localized PM2.5 mitigation
potential, we established the map of the PM2.5 mitigation
potential across the YRD (Fig. 9a). It should be noted that,
as long as three premises, including typical weather back-
grounds, stable structures of anthropogenic emissions, and
analogous emission control measures, remain unchanged,
Fig. 9a is a reliably quantitative reference to characterize the
attainable PM2.5 abatement for the YRD in future.

4 Discussion

The actual effectiveness of anthropogenic emission control
measures, especially those directed at PM2.5 mitigation, has
long been excluded from evaluation of air pollution policies
in China, in part due to the complex synergy between an-
thropogenic emissions and meteorology. Here, we provide
a novel approach to explore the PM2.5 responses to anthro-
pogenic emission control measures and their mitigation po-
tential from 2016 to 2019 across the YRD, China. With the
data assimilation method, these estimates are projected to be
highly reliable due to the sufficient observational constraints.
The results demonstrate that long-term anthropogenic emis-
sion control strategies from 2016 to 2019 have led to exten-
sive impacts on PM2.5 abatement across the YRD, especially
in the megacities, Shanghai, Hangzhou, Nanjing, and Hefei.
In the context of the G20 summit, the emergency strategies
could achieve significant PM2.5 abatement (> 50 %) at spe-
cific locations, (i.e., urban Hangzhou), representing the lo-

calized mitigation potential. By extrapolation based on the
above results, we have established the first map of the PM2.5
mitigation potential for the YRD.

Numerous analyses have focused on Hangzhou during
the G20 summit to detect impacts of emergency emission
controls (H. Li et al., 2019; P. Li et al., 2017; Yu et al.,
2018). However, previous analyses generally found more ef-
fective predictions (> 50 %) at the city level. This discrep-
ancy might be related to the fact that such results were gen-
erally based on sole model-dependent predictions, which are
normally driven by uncertain bottom-up estimates of anthro-
pogenic emissions. In addition, this study addresses the YRD
after 2016. As well as this, similar opportunities also oc-
curred at other spatiotemporal scales, such as the “APEC
Blue” in 2014 and “Parade Blue” in 2015 over the BTH
(Liu et al., 2016; Sun et al., 2016; Zhang et al., 2016).
More aggressive achievements (> 55 %) were generally at-
tributed to emergency anthropogenic emission control mea-
sures (Sun et al., 2016). This might be related to the fact
that, compared to the YRD, the BTH is associated with more
abundant primary emissions (Zhang et al., 2019). The im-
pacts of natural sources (e.g., biogenic emissions, wildfires,
and natural dust) are not considered in this study. This is
mainly because of two reasons. First, it has been widely
demonstrated that biogenic emission changes are dominated
by meteorological variations over a period of a few years
(Wang et al., 2019). Moreover, the former is generally of
minor significance for interannual PM2.5 variations for the
YRD (Mu and Liao, 2014; Tai et al., 2012). Second, satel-
lite products, including MOD14 and AIRIBQAP_NRT.005
(https://worldview.earthdata.nasa.gov/, last access: 7 March
2020), show that there were no noticeable wildfires and nat-
ural dust storms during this study period, thus allowing us to
ignore the corresponding interferences.

This study takes advantage of observational constraints
to gain the regional PM2.5 mitigation potential. It could be
further optimized by more extensive observations. As well
as this, extending the PM2.5 mitigation potential in urban
Hangzhou during the study period to the entire YRD in other
time periods may introduce some uncertainties due to vary-
ing meteorology. As mentioned above, impacts of the ex-
treme emergency emission controls are spatially inconsistent
across the YRD. To explore regional PM2.5 mitigation po-
tential, it is thus unavoidable to extrapolate from local to re-
gional scale. The consequent uncertainty mainly relates to
the hypothesis that the spatial patterns of the PM2.5 miti-
gation potential across the YRD should follow those of the
impacts of the long-term emission control strategies. In ad-
dition, there are distinct DA methods (Bocquet et al., 2015).
It is thus believed that replacing the OI with another DA al-
gorithm would lead to slightly different results. Note that, as
previous studies have demonstrated (Cheng et al., 2019; Zhai
et al., 2019; Zhong et al., 2018), model uncertainties remain,
although we have verified the constrained results. We have
supplemented the additional discussions in Sect. 4 for further
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explanation. For instance, model simulations of aerosol com-
ponents (e.g., sulfate and nitrate) are still poorly constrained.
Moreover, they have not been evaluated due to lack of avail-
able observations. Previous studies find that the model tends
to underestimate sulfate production during high relative hu-
midity (as pointed by the reviewer) as well as SOA (G. Li
et al., 2017; Wang et al., 2014; Zhong et al., 2018). As a re-
sult, these uncertainties can be propagated into the estima-
tions of meteorological effects. As well as this, like other
atmospheric chemical transport models, the WRF-CMAQ
model cannot provide model uncertainty information, while
Monte Carlo simulations for complex CTMs would be unre-
alistic due to extremely high computation loadings (Zhong et
al., 2018). Looking forward, continued advances in observa-
tional techniques, better understanding of chemical and me-
teorological processes, and their improved representations in
CTMs are all factors that are critical to optimizing the esti-
mates of the PM2.5 mitigation potential.
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