

Supplement of

Nationwide increase of polycyclic aromatic hydrocarbons in ultrafine particles during winter over China revealed by size-segregated measurements

Qingqing Yu et al.

Correspondence to: Xinming Wang (wangxm@gig.ac.cn), and Xiang Ding (xiangd@gig.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

1 Text S1 Theoretical relationship between meteorological parameters and PAHs.

PAHs are semi-volatile compounds (SVOCs) and can partition between the gas and
particle phases. The gas-particle (G/P) partitioning behavior of atmospheric PAHs can be
described as equations (1) and (2) (Pankow, 1994).

(2)

6

$$K_{p,OM} = \frac{RT}{10^6 \overline{MW_{OM}} \zeta_{OM} P_L^o} \tag{1}$$

$$P_L^o = P_L^{o,*} \exp\left[\frac{\Delta H_{vap}^*}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right]$$

where $K_{p, OM}$ represents the absorptive G/P partitioning coefficient of individual PAH, R (m³ Pa/ 7 K/mol) is the ideal gas constant, T (K) is the ambient temperature. $\overline{MW_{OM}}$ (g/mol) is the mean 8 9 molecular weight of organic matter (OM) and is assumed to be 200 g/mol (Xie et al., 2014), 10 ζ_{OM} is the scale activity coefficient of each compound in the absorbing phase and is usually assumed to be unity. ${P_L}^{o,*}$ is the vapor pressure of each PAH at 298.15K and $\Delta {H_{vap}}^*$ is 11 12 vaporization enthalpy of the liquid at 298.15K. Thus, for a specific PAH in a single OM phase at a fixed relative humidity, the G/P partitioning should be driven by ambient temperature only. 13 As Figure 1 showed, the decrease of ambient temperature can cause the increase of $K_{p, OM}$. This 14 15 means that the decrease of ambient temperature would result in the increase of individual PAH 16 in the particulate phase assuming a constant total concentration in the air.

Figure 1 The $K_{p, OM}$ (m³ ug⁻¹) under different temperature.

19 In the atmosphere, PAHs removal by OH can be described as:

20
$$\frac{\mathrm{d}C_{PAH}}{\mathrm{d}t} = -k * [OH] * C_{PAH} \tag{3}$$

where k is the rate constant for the reaction of a PAH with OH radical, C_{PAH} is the concentration
of individual PAH in the air. Solar radiation (SR) directly affects photochemistry in the air. As
Figure 2 showed, solar radiation values during our campaign positively correlated with the
concentrations of hydroxyl radical [OH] which were estimated based on the empirical equation
(4) (Ehhalt and Rohrer, 2000). Thus, the decrease of SR can indeed lower [OH] and accumulate
PAHs in the air, resulting in the increase of PAHs concentrations.

27
$$[OH] = a(JO^{1}D)^{\alpha}(JNO_{2}^{\beta})\frac{bNO_{2}+1}{cNO_{2}^{2}+dNO_{2}+1}$$
(4)

Sampling sites	Туре	Region	Latitude (N)	Longitude (E)	Sampling duration	
Hailun (HL)	Suburban	Northeast China	47.45	126.92	biweekly 48-hr	
Tongyu (TYU)	remote	Northeast China	44.42	122.87	biweekly 48-hr	
Beijing (BJ)	Urban	North China	40.01	116.34	biweekly 48-hr	
Taiyuan (TY)	Urban	North China	37.87	112.55	biweekly 48-hr	
Dunhuang (DH)	Urban	Northwest China	40.13	94.71	biweekly 48-hr	
Shapotou (SPT)	remote	Northwest China	37.45	104.95	biweekly 48-hr	
Hefei (HX)	Urban	East China	31.86	117.27	biweekly 48-hr	
Wuxi (WX)	Suburban	East China	31.40	120.22	biweekly 48-hr	
Qianyanzhou (QYZ)	remote	East China	26.75	115.07	biweekly 48-hr	
Kunming (KM)	Urban	Southwest China	25.04	102.73	biweekly 48-hr	
Xishuangbanna (BN)	remote	Southwest China	21.92	101.25	biweekly 48-hr	
Sanya (SY)	Suburban	South China	18.23	109.48	biweekly 48-hr	

39 Table S1 Detail information of the sampling sites in China.

NO.	Target compounds	Abbreviations
1	Phenanthrene	Phe
2	Anthracene	Ant
3	Fluoranthene	Flu
4	Acephenanthrylene	Acep
5	Pyrene	Pyr
6	Retene	Ret
7	Benzo(ghi)fluoranthene	BghiF
8	Cyclopenta(cd)pyrene	CcdP
9	Benz(a)anthracene	BaA
10	Chrysene	Chr
11	Benzo(b)fluoranthene	BbF
12	Benzo(k)fluoranthene	BkF
13	Benzo(j)fluoranthene	BjF
14	Benzo(e)pyrene	BeP
15	Benzo(a)pyrene	BaP
16	Perylene	Per
17	Indeno(cd)fluoranthene	IcdF
18	Indeno(cd)pyrene	IcdP
19	Dibenzo[a,h]anthracene	DahA
20	Dibenz(a,c)anthracene	DacA
21	Benzo(b)chrysene	BbC
22	Picene	Pic
23	Benzo(ghi)perylene	BghiP
24	Coronene	Cor

Table S2 The target compounds and their abbreviations.

_

42

	HI	Ĺ	TY	U	B	I	TY	7
	Mean±95%CI	Range	Mean ±95%CI	Range	Mean ±95% CI	Range	Mean±95%CI	Range
Phe	15.63±13.49	0.72-163.73	2.86±0.79	0.69-7.48	4.96±1.94	1.00-19.99	12.76±7.95	2.54-80.52
Ant	2.82±1.91	0.15-22.78	0.57±0.22	0.03-2.73	0.41±0.14	0.13-1.28	3.51±1.20	0.26-13.04
Flu	17.09±11.63	0.43-120.43	3.37±1.69	0.27-18.19	6.3±4.09	0.55-39.53	22.99±12.25	1.38-113.95
Acep	3.06±1.90	nd-16.80	0.39±0.23	nd-2.51	0.62±0.34	nd-3.05	2.98±1.92	0.10-18.25
Pyr	13.01±8.86	0.26-89.77	2.40±1.26	0.23-13.94	4.44±2.96	0.41-29.65	16.06±8.7	1.02-83.88
Ret	1.68±0.85	0.08-6.42	1.01 ±0.72	0.04-5.65	1.14±0.62	nd-5.26	1.47 ±0.83	0.05-8.19
BghiF	3.52±2.20	0.08-21.79	0.71±0.45	0.02-4.88	1.69±1.05	0.10-8.95	3.97 ±2.06	0.19-17.91
CcdP	1.88±1.31	0.04-12.04	0.25±0.12	0.01-1.09	1.01±0.68	nd-5.68	2.41 ±1.23	0.17-9.36
BaA	6.21±3.74	0.38-35.54	1.31±0.62	0.37-6.91	3.07±1.85	0.17-16.46	12.13±6.91	0.66-59.7
Chr	7.07 ±4.20	0.33-42.61	1.88±1.01	0.15-10.91	4.85±2.74	0.46-23.73	18.29±9.03	1.24-74.45
BbF	7.85±4.26	0.28-42.32	1.73±0.72	0.10-7.41	7.11±3.7	0.91-32.17	23.32±9.17	3.08-76.12
BkF	4.37±2.33	0.10-26.41	0.98±0.58	0.02-6.01	2.39±1.12	0.24-8.99	9.78±4.55	0.73-36.44
BjF	1.82±0.99	nd-8.17	0.32±0.18	nd-1.60	0.68±0.41	nd-3.49	2.77 ±1.47	0.11-11.79
BeP	4.11±1.99	0.17-18.86	1.11±0.45	0.10-4.95	3.68±1.74	0.57-14.42	18.11±7.34	2.13-59.76
BaP	4.55±2.44	0.07-22.95	0.81±0.46	0.02-4.85	2.54±1.51	0.19-12.57	10.99±5.27	0.72-42.03
Per	0.59±0.31	0.02-3.57	0.29±0.09	nd-0.82	0.63±0.29	nd-2.46	1.75±0.74	0.24-6.05
IcdF	1.77 ± 1.04	0.02-10.23	0.33±0.2	nd-2.23	1.14±0.62	0.05-5.13	3.46±1.51	0.35-12.16
IcdP	4.89±2.86	0.05-28.36	0.79±0.45	0.04-4.89	3.4±1.83	0.38-15.25	11.88±5.22	1.16-43.9
DahA	0.96±0.53	nd-4.65	0.24 ±0.12	nd-1.01	0.58±0.34	nd-2.99	3.32±1.65	0.21-13.64
DacA	0.57±0.24	nd-1.69	0.21 ±0.07	nd-0.37	0.38±0.16	nd-1.22	1.05 ±0.61	nd-5.11
BbC	0.92±0.45	nd-3.45	0.31±0.13	nd-0.75	0.55±0.24	nd-1.98	1.74 ± 1.00	0.05-8.38
Pic	0.8±0.40	nd-3.25	0.35±0.16	nd-1.02	0.47±0.25	nd-2.17	2.3±1.24	0.11-10.44
BghiP	3.52±1.89	0.06-18.62	0.66±0.33	0.05-3.71	2.99±1.53	nd-12.85	13.23±5.62	1.26-42.06
Cor	1.50±0.97	nd-9.89	0.50±0.19	nd-1.51	1.09±0.61	nd-5.87	4.32±1.92	0.32-15.39
Σ PAHs	108.34±67.74	3.99-717.96	21.92±9.83	3.15-110.8	55.23±29.63	7.53-256.75	204.57±94.07	23.75-819.9
BaP _{eq}	8.28±4.52	0.20-42.68	1.55±0.84	0.09-9.09	5.12±2.88	0.51-23.21	22.24±10.33	1.76-82.89

44 Table S3 Annual average concentrations of individual PAHs (ng m⁻³) in China.

	Continued										
	DI	Н	SP	Т	W	X	HF	7			
	Mean±95%CI	Range	Mean±95%CI	Range	Mean±95%CI	Range	Mean ±95%CI	Range			
Phe	5.36±1.81	1.35-23.7	4.28±0.99	1.04-10.66	3.20±0.52	0.86-5.37	2.87±0.53	0.86-4.87			
Ant	1.82±0.49	0.37-4.64	0.52±0.14	0.09-1.66	0.59±0.09	0.20-1.25	0.70±0.20	0.07-2.18			
Flu	10.44±5.29	1.4-62.21	3.70±1.28	0.61-13.54	2.83±0.86	0.67-9.86	2.96±0.75	1.09-8.09			
Acep	1.24±0.87	nd-9.76	0.24 ±0.07	nd-0.68	0.35±0.09	0.08-1.08	0.33±0.08	0.04-0.93			
Pyr	7.80±4.85	0.73-55.13	1.99±0.76	0.23-7.85	1.74±0.48	0.42-5.49	1.78±0.42	0.49-4.65			
Ret	2.01±1.2	0.05-12.05	0.27 ±0.08	0.02-0.89	0.23±0.07	0.02-0.63	0.52±0.63	0.01-7.10			
BghiF	3.54±1.88	0.13-15.96	0.45 ±0.24	nd-2.63	0.7±0.28	0.08-2.81	0.55±0.22	0.13-2.09			
CcdP	2.34±1.54	0.04-14.65	0.26±0.15	nd-1.54	0.23±0.08	0.03-0.69	0.19±0.07	0.03-0.70			
BaA	8.46±4.65	0.41-37.88	1.35±0.71	0.37-8.35	1.00±0.31	0.38-3.42	1.02±0.29	0.39-2.59			
Chr	8.88±4.63	0.41-37.07	2.03±1.13	0.15-11.93	2.09±0.75	0.32-6.87	1.72±0.64	0.34-5.77			
BbF	14.65±7.2	0.64-54.53	2.91 ±1.98	0.05-22.47	3.70±1.24	0.38-12.28	2.59±0.89	0.28-7.78			
BkF	5.18±2.78	0.19-26.27	0.94±0.53	nd-5.80	1.46±0.74	0.08-8.65	1.29±0.55	0.06-4.42			
BjF	1.93±1.06	0.02-7.44	0.27±0.13	nd-1.37	0.32±0.17	nd-1.94	0.25±0.10	nd-0.74			
BeP	7.88±3.78	0.41-27.5	1.76±1.16	0.04-13.12	2.27 ±0.77	0.25-8.61	1.75±0.58	0.2-4.61			
BaP	5.93±3.14	0.08-23.09	0.90±0.60	nd-6.65	1.18±0.52	0.08-5.42	0.88±0.38	0.05-3.27			
Per	1.02±0.68	0.03-5.34	0.24 ±0.10	nd-0.96	0.27 ±0.09	0.03-0.89	0.28±0.07	nd-0.59			
IcdF	2.64±1.23	nd-9.09	0.45±0.31	nd-3.21	0.74±0.28	0.06-2.85	0.51 ±0.21	0.04-1.76			
IcdP	7.60±3.8	0.18-28.03	1.27 ±0.89	nd-9.56	2.04 ±0.74	0.14-6.26	1.41 ±0.63	0.08-5.45			
DahA	1.86±0.83	nd-6.04	0.37 ±0.25	nd-2.26	0.31±0.12	nd-1.11	0.31±0.12	nd-0.95			
DacA	1.12±0.41	nd-3.07	0.13 ±0.07	nd-0.58	0.09±0.03	nd-0.22	0.11±0.03	nd-0.22			
BbC	1.45 ±0.62	nd-4.47	0.23±0.14	nd-1.03	0.19±0.07	nd-0.61	0.21±0.07	nd-0.49			
Pic	1.23±0.56	nd-4.59	0.35±0.20	nd-1.54	0.23±0.07	nd-0.6	0.29±0.10	nd-0.74			
BghiP	5.58±2.67	0.21-21.62	1.16±0.79	nd-8.45	2.02±0.68	0.18-6.43	1.28±0.54	0.1-5.01			
Cor	1.94±0.81	nd-6.31	0.47 ±0.33	nd-3.15	0.87±0.25	nd-2.20	0.46±0.25	nd-2.40			
Σ PAHs	109.56±52.18	11.09-460.04	24.51±11.11	3.79-132.57	28.09±8.53	5.76-92.96	23.64±6.72	7.35-58.48			
BaP _{eq}	11.92±6.19	0.31-44.98	1.79±1.29	0.07-15.08	2.54±1.02	0.21-10.62	1.91 ±0.77	0.17-6.54			

				Continue	ed			
	QY	Z	KN	М	BN	1	SY	,
	Mean±95%CI	Range	Mean ±95%CI	Range	Mean ±95% CI	Range	Mean ±95% CI	Range
Phe	2.19±0.34	0.83-4.49	2.37±0.42	0.70-4.35	1.82±0.27	1.12-3.41	2.04±0.50	0.73-5.76
Ant	0.82±0.22	0.12-1.88	0.51±0.12	0.12-1.21	0.91±0.15	0.21-1.81	0.97±0.16	0.38-1.76
Flu	2.01±0.41	0.51-5.74	2.16±0.6	0.64-6.17	2.48±0.27	1.53-3.81	1.42±0.28	0.35-2.78
Acep	0.24±0.04	nd-0.47	0.19±0.04	nd-0.43	0.27 ±0.04	0.08-0.45	0.14 ±0.02	nd-0.24
Pyr	1.11±0.22	0.28-2.84	1.35±0.35	0.32-3.47	1.68±0.16	1.09-2.44	0.88±0.16	0.24-1.86
Ret	0.25±0.06	0.02-0.51	0.21 ±0.05	0.08-0.54	0.83±0.43	0.03-3.16	0.16±0.05	nd-0.42
BghiF	0.25±0.09	0.02-0.77	0.39±0.13	0.04-1.11	0.19±0.02	0.06-0.31	0.08±0.02	0.01-0.17
CcdP	0.08±0.03	0.01-0.29	0.17±0.06	nd-0.69	0.09±0.02	nd-0.19	0.03±0.01	nd-0.07
BaA	0.58±0.09	0.36-1.2	0.90±0.18	0.32-2.01	0.52±0.07	nd-0.85	0.44 ±0.03	0.34-0.58
Chr	0.82±0.26	0.21-2.41	1.41 ±0.45	0.19-4.83	0.75±0.11	0.25-1.43	0.34±0.04	0.13-0.59
BbF	1.03±0.37	0.09-3.14	2.80±1.06	0.15-11.94	0.63±0.13	0.22-1.56	0.27±0.08	0.07-0.82
BkF	0.64±0.3	nd-2.74	1.22±0.44	0.04-3.77	0.28±0.06	0.12-0.68	0.17±0.06	nd-0.54
BjF	0.17±0.06	nd-0.53	0.21±0.08	nd-0.72	0.06±0.01	nd-0.16	0.05±0.01	nd-0.10
BeP	0.72±0.26	0.04-2.30	2.04±0.73	0.12-8.34	0.44 ±0.09	0.15-0.99	0.21 ±0.07	0.04-0.61
BaP	0.44±0.18	nd-1.47	0.9±0.36	0.03-3.59	0.28±0.06	0.11-0.74	0.09±0.04	nd-0.31
Per	0.18±0.06	nd-0.52	0.28±0.09	nd-1.12	0.11±0.04	nd-0.39	0.19±0.07	nd-0.46
IcdF	0.27±0.11	nd-0.96	0.36±0.10	nd-1.14	0.15±0.04	nd-0.44	0.09±0.02	nd-0.22
IcdP	0.67±0.26	0.03-2.23	1.27±0.36	nd-3.75	0.38±0.10	0.12-1.08	0.17±0.05	nd-0.52
DahA	0.14±0.04	nd-0.35	0.23±0.07	nd-0.76	0.08±0.02	nd-0.2	nd	nd
DacA	0.05±0.01	nd-0.10	0.07 ±0.02	nd-0.16	0.10±0.03	nd-0.15	nd	nd
BbC	0.08±0.02	nd-0.12	0.09±0.03	nd-0.26	0.04±0.01	nd-0.04	nd	nd
Pic	0.09±0.03	nd-0.23	0.15 ± 0.05	nd-0.41	0.05±0.01	nd-0.08	nd	nd
BghiP	0.58±0.22	nd-1.89	1.39±0.44	nd-4.02	0.4±0.09	nd-1.02	0.17±0.05	0.03-0.44
Cor	0.19±0.06	nd-0.53	0.44 ±0.13	nd-1.34	0.20±0.040	nd-0.37	0.09±0.01	0.08-0.11
∑ PAHs	13.1±3.11	nd-31.9	20.66±5.66	4.12-61.94	12.29±1.29	7.49-19	7.56±0.94	4.35-13.13
BaP _{eq}	0.87±0.34	nd-3.00	1.95±0.71	0.11-7.44	0.56±0.10	0.24-1.3	0.21±0.06	0.07-0.57

Region	Sites	Temperature	Solar radiation	Boundary layer height
	HL	1.4	736.3	474.2
	TYU	3.7	734.9	571.0
Northarn China	BJ	12.4	651.2	425.1
Northern China	TY	11.1	719.9	518.2
	DH	10.9	786.8	453.8
	SPT	10.3	754.0	669.5
	WX	17.3	729.6	486.6
	HF	17.0	736.3	501.1
Southarn China	QYZ	20.0	788.7	571.0
Southern China	KM	16.6	970.3	658.1
	BN	23.0	988.0	506.6
	SY	23.1	1051.5	520.5

Table S4 The annual level of atmospheric temperature, solar radiation and boundary layer

54 height in the northern and the southern China.

55

53

	Northern China							Southern China					
	HL	TYU	BJ	ΤY	DH	SPT	HF	WX	QYZ	KM	BN	SY	
October	14.0	5.8	14.0	10.6	9.4	9.4	17.8	18.2	20.9	16.9	23.7	23.4	
November	3.5	-6.5	3.5	1.5	-1.7	0.0	8.0	8.8	12.0	13.4	21.9	22.9	
December	-6.5	-19.7	-6.5	-6.8	-6.4	-5.7	2.1	2.2	5.5	9.8	18.6	19.3	
January	-4.5	-20.7	-4.5	-5.3	-10.0	-6.5	1.9	3.6	6.2	9.9	18.9	18.7	
February	-2.1	-14.8	-2.1	-1.5	-3.7	-2.7	3.9	5.1	13.7	13.5	20.4	21.3	
March	7.3	-5.4	7.3	9.0	8.7	9.1	13.4	13.4	14.3	14.6	21.7	20.3	
April	15.2	5.0	15.2	15.5	18.3	15.4	19.8	18.4	21.7	18.3	23.9	24.0	
May	21.4	17.9	21.4	21.4	20.2	19.4	24.6	24.7	28.2	21.9	26.2	26.3	
June	22.1	20.3	22.1	19.9	24.6	20.9	23.0	23.0	26.0	19.6	24.4	25.9	
July	25.8	24.4	25.8	22.3	24.4	21.3	30.0	32.5	31.4	20.5	25.3	24.3	
August	27.9	22.8	27.9	25.3	25.1	23.7	31.3	31.8	32.0	20.4	25.6	25.5	
September	21.9	14.0	21.9	19.4	19.3	18.0	26.5	25.1	27.4	19.4	25.3	25.2	

57 Table S5 The monthly average temperature (\mathcal{C}) in each sampling site in the northern and the

58 southern China.

Table S6 The monthly average solar radiation (w/m²) in each sampling site in the northern and

61 the southern China.

		N	orther	n Chin	a	Southern China						
	HL	TYU	BJ	ΤY	DH	SPT	HF	WX	QYZ	KM	BN	SY
October	540.2	538.7	606.2	583.2	713.0	667.7	535.7	636.5	691.7	847.7	1099.0	1098.0
November	310.5	476.0	493.5	525.5	536.3	562.3	611.3	655.3	877.0	899.0	922.8	1076.8
December	298.8	426.0	389.5	370.8	491.3	424.5	497.5	569.3	406.8	765.0	857.0	939.3
January	412.8	408.0	424.3	374.5	536.0	505.3	249.5	257.8	416.8	777.8	780.5	922.8
February	585.0	603.0	559.8	560.0	649.5	601.5	287.8	309.3	624.5	949.8	857.5	1067.5
March	824.5	886.0	683.8	849.5	788.0	847.3	729.3	766.5	893.0	982.0	952.5	807.3
April	903.5	925.2	894.5	997.7	904.8	939.8	928.8	953.2	666.8	1203.0	914.8	1177.3
May	1088.3	1001.5	772.5	1036.0	953.0	994.0	952.0	994.0	1122.0	1181.8	1159.8	1187.3
June	946.5	852.0	769.0	1116.8	1077.0	1098.5	747.3	499.3	835.0	990.8	741.8	1082.8
July	944.5	727.8	650.3	492.5	952.5	833.5	1078.3	958.3	1153.5	980.3	1032.0	895.5
August	1071.8	932.5	846.3	950.8	953.8	780.5	1104.5	1158.0	1032.0	1200.3	1213.3	1213.5
September	924.0	915.5	625.3	711.8	864.3	744.0	1117.2	932.5	854.5	811.7	1306.7	1064.5

		N	lorther	n Chin	a	Southern China						
	HL	TYU	BJ	ΤY	DH	SPT	HF	WX	QYZ	KM	BN	SY
October	438.2	392.5	447.2	499.4	298.3	601.7	520.7	514.4	392.5	448.5	440.1	608.0
November	398.4	555.1	478.9	688.4	132.9	375.5	301.8	459.7	555.1	671.3	347.2	538.2
December	198.5	235.2	155.3	145.4	96.5	140.9	372.4	448.4	235.2	553.4	438.3	635.3
January	108.2	128.4	169.2	232.9	106.6	181.4	322.4	423.4	128.4	704.0	565.0	443.5
February	187.6	256.9	378.5	406.9	133.4	314.9	586.7	577.3	256.9	792.5	612.5	369.0
March	267.1	769.3	481.8	690.4	356.1	743.8	303.7	343.5	769.3	839.3	725.6	527.6
April	663.9	841.7	772.6	813.9	541.7	931.0	661.4	431.4	841.7	980.3	818.3	420.0
May	746.0	1000.3	520.4	590.4	843.3	1095.1	608.6	619.6	1000.3	846.9	611.5	399.2
June	848.0	721.8	486.4	846.1	938.4	1216.6	367.0	355.6	721.8	587.2	342.2	519.6
July	692.0	622.3	314.2	341.1	793.0	784.9	611.5	499.4	622.3	520.6	242.0	666.4
August	476.0	764.3	382.6	471.5	728.9	798.3	650.3	564.1	764.3	523.4	451.5	660.5
September	589.3	517.8	328.8	353.0	510.0	753.5	616.5	616.1	517.8	374.2	362.6	464.7

64 Table S7 The monthly average boundary layer height (m) in each sampling site in the northern

and the southern China.

66

Figure S1 Sampling sites in China, including five urban sites: Beijing (BJ), Taiyuan (TY), Hefei
(HF), Kunming (KM), and Dunhuang (DH), three suburban sites: Hailun (HL), Wuxi (WX),
and Sanya (SY), four remote sites: Tongyu (TYU), Shapotou (SPT), Qianyanzhou (QYZ) and
Xishuangbanna (BN).

Figure S2 Concentration of \sum_{24} PAHs at urban, suburban and remote sites.

Figure S3 Annual averages of ILCR at 12 sites over China.

Figure S4 Concentration of $BaP_{\mbox{\scriptsize eq}}$ at urban, suburban and remote sites.

Figure S5 ILCR at urban, suburban and remote sites.

97 Figure S9 Monthly variations in size distribution of ∑₂₄PAHs (a), 3-rings PAHs (b), 4-rings
98 PAHs (c), 5-rings PAHs (d), 6-rings PAHs (e) and 7-rings (f) PAHs over China.

100

101 Figure S10 Correlation coefficient (r) of PAHs with T (a), SR (b) and BHL (c) at 12 sites in

102 cold and warm season.

103 *: p<0.05

#: the ambient temperature at BN and SY are all exceed 13.9 °C, there are no cold season in
these two sampling sites.

108 Figure S11 Source profiles (% of the species) resolved by PMF.

111 Figure S12 Correlations of the predicted PAHs by PMF with the observed PAHs.

- 114 Figure S13 Atmospheric emissions of polycyclic aromatic hydrocarbons in China in 2013.
- 115 (http://inventory.pku.edu.cn).

129 Figure S17 Ratios of PAHs_{winter}/PAH_{summer} versus T_{winter}/T_{summer} in north and south China.

131 Figure S18 Monthly variations of source contribution from PMF (con) and emission inventory

Figure S19 Seasonal variations of ILCR source contributions in China.