
Atmos. Chem. Phys., 20, 14547–14579, 2020
https://doi.org/10.5194/acp-20-14547-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Historical and future changes in air pollutants from CMIP6 models
Steven T. Turnock1, Robert J. Allen2, Martin Andrews1, Susanne E. Bauer3,4, Makoto Deushi5, Louisa Emmons6,
Peter Good1, Larry Horowitz7, Jasmin G. John7, Martine Michou8, Pierre Nabat8, Vaishali Naik7, David Neubauer9,
Fiona M. O’Connor1, Dirk Olivié10, Naga Oshima5, Michael Schulz10, Alistair Sellar1, Sungbo Shim11,
Toshihiko Takemura12, Simone Tilmes6, Kostas Tsigaridis3,4, Tongwen Wu13, and Jie Zhang13

1Met Office Hadley Centre, Exeter, UK
2Department of Earth and Planetary Sciences, University of California Riverside, Riverside, CA, USA
3Center for Climate Systems Research, Columbia University, New York, NY, USA
4NASA Goddard Institute for Space Studies, New York, NY, USA
5Meteorological Research Institute, Tsukuba, Japan
6Atmospheric Chemistry Observations and Modelling Lab, National Center for Atmospheric Research, Boulder, CO, USA
7NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
8Centre National de Recherches Météorologiques (CNRM), Université de Toulouse, Météo-France, CNRS, Toulouse, France
9Institute of Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
10Division for Climate Modelling and Air Pollution, Norwegian Meteorological Institute, Oslo, Norway
11National Institute of Meteorological Sciences, Seogwipo-si, Jeju-do, Korea
12Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan
13Beijing Climate Center, China Meteorological Administration, Beijing, China

Correspondence: Steven T. Turnock (steven.turnock@metoffice.gov.uk)

Received: 30 December 2019 – Discussion started: 21 January 2020
Revised: 1 October 2020 – Accepted: 9 October 2020 – Published: 30 November 2020

Abstract. Poor air quality is currently responsible for large
impacts on human health across the world. In addition, the
air pollutants ozone (O3) and particulate matter less than
2.5 µm in diameter (PM2.5) are also radiatively active in the
atmosphere and can influence Earth’s climate. It is impor-
tant to understand the effect of air quality and climate mit-
igation measures over the historical period and in different
future scenarios to ascertain any impacts from air pollutants
on both climate and human health. The Coupled Model In-
tercomparison Project Phase 6 (CMIP6) presents an opportu-
nity to analyse the change in air pollutants simulated by the
current generation of climate and Earth system models that
include a representation of chemistry and aerosols (partic-
ulate matter). The shared socio-economic pathways (SSPs)
used within CMIP6 encompass a wide range of trajectories in
precursor emissions and climate change, allowing for an im-
proved analysis of future changes to air pollutants. Firstly, we
conduct an evaluation of the available CMIP6 models against
surface observations of O3 and PM2.5. CMIP6 models con-
sistently overestimate observed surface O3 concentrations

across most regions and in most seasons by up to 16 ppb,
with a large diversity in simulated values over Northern
Hemisphere continental regions. Conversely, observed sur-
face PM2.5 concentrations are consistently underestimated
in CMIP6 models by up to 10 µgm−3, particularly for the
Northern Hemisphere winter months, with the largest model
diversity near natural emission source regions. The biases in
CMIP6 models when compared to observations of O3 and
PM2.5 are similar to those found in previous studies. Over the
historical period (1850–2014) large increases in both surface
O3 and PM2.5 are simulated by the CMIP6 models across
all regions, particularly over the mid to late 20th century,
when anthropogenic emissions increase markedly. Large re-
gional historical changes are simulated for both pollutants
across East and South Asia with an annual mean increase of
up to 40 ppb for O3 and 12 µgm−3 for PM2.5. In future sce-
narios containing strong air quality and climate mitigation
measures (ssp126), annual mean concentrations of air pol-
lutants are substantially reduced across all regions by up to
15 ppb for O3 and 12 µgm−3 for PM2.5. However, for sce-
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narios that encompass weak action on mitigating climate and
reducing air pollutant emissions (ssp370), annual mean in-
creases in both surface O3 (up 10 ppb) and PM2.5 (up to
8 µgm−3) are simulated across most regions, although, for
regions like North America and Europe small reductions in
PM2.5 are simulated due to the regional reduction in precur-
sor emissions in this scenario. A comparison of simulated
regional changes in both surface O3 and PM2.5 from individ-
ual CMIP6 models highlights important regional differences
due to the simulated interaction of aerosols, chemistry, cli-
mate and natural emission sources within models. The pro-
jection of regional air pollutant concentrations from the latest
climate and Earth system models used within CMIP6 shows
that the particular future trajectory of climate and air qual-
ity mitigation measures could have important consequences
for regional air quality, human health and near-term climate.
Differences between individual models emphasise the impor-
tance of understanding how future Earth system feedbacks
influence natural emission sources, e.g. response of biogenic
emissions under climate change.
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1 Introduction

Air pollutants are important atmospheric constituents as they
have large impacts on human health (Lelieveld et al., 2015),
damage ecosystems (Fowler et al., 2009) and can also influ-
ence climate through changes in the Earth’s radiative balance
(Boucher et al., 2013; Myhre et al., 2013). Two major com-
ponents of air pollution at the surface are ozone (O3) and
particulate matter less than 2.5 µm in diameter (PM2.5). Ex-
posure to present-day ambient concentrations of these two
air pollutants was estimated to cause up to 4 million prema-
ture deaths per year (Apte et al., 2015; Malley et al., 2017).
Over recent decades, the impact on human health from expo-
sure to air pollutants has been increasing (Butt et al., 2017;
Cohen et al., 2017). Additionally, elevated levels of air pol-
lutants over recent decades have also been responsible for
ecosystem damage to crops and vegetation, although there
have been recent improvements in environmental health (de
Wit et al., 2015).

In terms of climate impact, tropospheric O3 has a positive
radiative forcing on climate over the industrial period and is
the third-most important greenhouse gas in terms of radiative
forcing (Myhre et al., 2013). However, depletion of O3 in the
stratosphere has resulted in a net negative top-of-atmosphere
radiative forcing over recent decades (Checa-Garcia et al.,
2018). Particulate matter (PM), also referred to as aerosols,
has an overall negative radiative forcing on climate, both di-
rectly and indirectly, through the modification of cloud prop-
erties (Boucher et al., 2013). Both O3 and PM are relatively
short lived in the troposphere, with a typical lifetime of less
than 2 weeks in the lower atmosphere, and are commonly
referred to as short-lived climate forcers (SLCFs). Future
air pollutant concentrations and distributions are driven by
changes to both precursor emissions and climate. Emission
control measures on both a national and international level
can influence future changes to air pollutants, with global in-
creases in CH4 abundance potentially offsetting benefits to
surface O3 from local emission reductions (Fiore et al., 2002;
Shindell et al., 2012; Wild et al., 2012). For PM2.5, changes
in concentrations are dependent on both emission rates and
levels of atmospheric oxidants, although changes in specific
aerosol components can be more directly related to emis-
sions, e.g. black carbon. In a warming world, background O3
concentrations over remote locations are likely to decrease
(Johnson et al., 1999; Isaksen et al., 2009; Fiore et al., 2012;
Doherty et al., 2013), whereas over anthropogenic source re-
gions, which have higher average surface O3 concentrations,
an increase is anticipated (Rasmussen et al., 2013; Colette et
al., 2015). The climate impact on PM2.5 is much more un-
certain and variable across regions, with both increases and
decreases predicted due to the uncertainty of future meteoro-
logical effects (Jacob and Winner, 2009; Allen et al., 2016;
Shen et al., 2017). However, any such climate change im-
pacts on PM2.5 are considered to be smaller than the effect
from implementing emission mitigation measures (Wester-
velt et al., 2016).

Experiments conducted as part of the Coupled Model In-
tercomparison Project Phase 5 (CMIP5; Taylor et al., 2012)
and the Atmospheric Chemistry and Climate Model Inter-
comparison Project (ACCMIP; Lamarque et al., 2013) con-
tributed to a multi-model assessment of future trends in air
pollutants. Global annual mean surface O3 concentrations
were predicted to increase by up to 5 ppb in 2100 using
RCP8.5 (Representative Concentration Pathway with an an-
thropogenic radiative forcing of 8.5 Wm−2 in 2100), the
RCP with the largest increases in methane (CH4) abundances
and the largest climate change signal used in CMIP5 (Kirt-
man et al., 2013). The other RCPs used in CMIP5 had a
lower climate forcing and smaller changes in CH4 abun-
dance, with models predicting global annual mean surface
O3 concentrations that showed little change in the short term
(up to 2050) but decreased by around 5 ppb in 2100. The
scenario differences in the global mean response for sur-
face O3 were generally reflected across other regions, al-
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though with a larger magnitude of change over the North-
ern Hemisphere continental regions. The predicted range of
future surface O3 concentrations was previously found to be
dominated by changes in precursor emissions (Fiore et al.,
2012). However, in regions remote from pollution sources
(low-NOx), future climate change was shown to result in a
small reduction in surface O3 concentrations. For PM2.5, re-
sults from the CMIP5 and ACCMIP models showed annual
mean concentrations declining in most regions and across all
scenarios due to the reduction in aerosol emissions. Glob-
ally, PM2.5 concentrations reduced by ∼ 1 µgm−3 by 2100,
whereas larger regional reductions of up to 6 µgm−3 were
predicted by 2100. Exceptions to this occurred over South
and East Asia, where PM2.5 concentrations increased by up
to 3 µgm−3 in the near-term (up to 2050), after which con-
centrations reduced by 2100. The largest difference in the re-
sponse of PM2.5 across the scenarios was also shown across
East and South Asia due to differences in the carbonaceous
and sulphur dioxide (SO2) emission trajectories (Fiore et al.,
2012). Future PM2.5 concentrations over Africa and the Mid-
dle East were shown to be quite noisy due to the large meteo-
rological variability that influences dust emissions over these
regions.

The current set of experiments conducted for the Coupled
Model Intercomparison Project Phase 6 (CMIP6; Eyring et
al., 2016) represent an opportunity to update the assessment
of current and future levels of air pollutants using the latest
generation of Earth system and climate models. A new set of
future scenarios have been generated for CMIP6: the shared
socio-economic pathways (SSPs), which combine different
trends in social, economic and environmental developments
(O’Neill et al., 2014). Varying amounts of emission mitiga-
tion to SLCFs are applied on top of the baseline social and
economic developments to meet predefined climate and air
quality targets in the future, allowing for a wider range of
future air pollutant trajectories to be assessed than what oc-
curred in CMIP5 (Rao et al., 2017; Riahi et al., 2017). Ini-
tial assessments have been made of future changes to air
pollutants in the SSPs using simplified models (Reis et al.,
2018; Turnock et al., 2018, 2019). The sustainability path-
way (SSP1) leads to improvements in both air quality and
climate, whereas SSP3 (regional rivalry) is not compatible
with achieving air quality and climate goals, and the con-
ventional fuels (SSP5) pathway improves air quality at the
expense of climate (Reis et al., 2018). Strong climate and air
pollutant mitigation measures in SSP1 were shown to reduce
global annual mean surface O3 concentrations by more than
3.5 ppb, whereas for SSP3 O3 concentrations over Asia were
predicted to increase by 6 ppb (Turnock et al., 2019). These
studies highlighted the potential large regional variability in
the response of air pollutants to the different assumptions in
the future pathways and also the need for a full model as-
sessment using the current generation of Earth system mod-
els (ESMs) that take into account both changes in emissions
and climate.

In this study, we use results from experiments conducted
as part of CMIP6 to make a first assessment of historical and
future changes in air pollutants. First, we assess the perfor-
mance of CMIP6 models in simulating present-day air pollu-
tants by conducting an evaluation against observations of O3
and PM2.5. Regional changes in surface O3 and PM2.5 are
computed over the historical period (1850–2014) to provide
context with future changes. We are then able to show fu-
ture projections of air pollutants over different world regions
under different shared socio-economic pathways used in the
CMIP6 experiments. Finally, a comparison is made of indi-
vidual CMIP6 models for a single future scenario (ssp370)
to identify potential reasons for model discrepancies.

2 Methods

2.1 Air pollutant emissions

A new set of historical and future anthropogenic air pollutant
emissions have been developed and used as part of CMIP6.
The historical anthropogenic emissions are from the Com-
munity Emissions Data System (CEDS), and a new dataset
was developed for biomass-burning emissions, both of which
provide information on emissions from 1750 to 2014 (van
Marle et al., 2017; Hoesly et al., 2018). The SSPs used in fu-
ture CMIP6 experiments represent an update from the RCPs
used in CMIP5 as they combine pathways of socio-economic
development with targets to achieve a certain level of climate
mitigation (O’Neill et al., 2014; van Vuuren et al., 2014; Ri-
ahi et al., 2017). The SSPs are divided into the following five
different pathways depending on their social, economic and
environmental development: SSP1 – sustainability, SSP2 –
middle of the road, SSP3 – regional rivalry, SSP4 – inequal-
ity, SSP5 – fossil fuel development. An assumption about the
degree of air pollution control (strong, medium or weak) is
included on top of the baseline pathway, with stricter air pol-
lution controls assumed to be tied to economic development
(Rao et al., 2016). Weak air pollution controls occur in SSP3
and SSP4, with medium controls in SSP2 and strong air pol-
lution controls in SSP1 and SSP5 (Gidden et al., 2019). A
particular climate mitigation target, in terms of an anthro-
pogenic radiative forcing by 2100, and the range of emis-
sion mitigation measures associated with achieving it are in-
cluded in addition to the existing policy measures within each
baseline SSP scenario. Climate mitigation targets vary from
a weak-mitigation scenario with an anthropogenic radiative
forcing of 8.5 Wm−2 by 2100, comparable with a 5 ◦C tem-
perature change (Riahi et al., 2017), to a strong-mitigation
scenario with a radiative forcing of 1.9 Wm−2 by 2100, in
accordance with the Paris Agreement for keeping tempera-
tures below 2 ◦C (United Nations, 2016). Some climate miti-
gation targets are comparable with those of the RCPs used
in CMIP5 (2.6, 4.5 and 6.0), whilst others are new; e.g.
ssp534-over is included as a delayed mitigation scenario. A
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scenario specific to the Aerosol and Chemistry Model In-
tercomparison Project (AerChemMIP), ssp370-lowNTCF, is
also included to study the impact of mitigation measures to
specifically control SLCFs on top of ssp370. Future biomass-
burning emissions vary in each scenario, depending on the
particular land-use assumptions (Rao et al., 2017). Whilst fu-
ture anthropogenic and biomass-burning emissions are pre-
scribed in each CMIP6 model from the same dataset, other
natural emissions, e.g. dust, biogenic volatile organic com-
pounds (BVOCs) etc., will be different and depend on the
individual model configuration.

Figure 1 shows the future changes in global total (anthro-
pogenic and biomass) emissions of the major air pollutant
precursors across all of the CMIP6 scenarios, provided as
input to the CMIP6 models. The overlying feature is that
global air pollutant emissions are predicted to reduce across
the majority of scenarios by 2100. The exception to this
is that global and regional emissions increase or remain at
present-day levels for ssp370 (Figs. 1 and 2). Some air pol-
lutant emissions increase in the near term in other scenarios,
e.g. nitrogen oxides (NOx) in ssp585 (by up to 15 %), but
by 2100 these have been reduced. Future CH4 abundances
show the largest diversity amongst the SSPs. Large increases
in global CH4 abundances of more than 50 % are predicted
for the fossil-fuel-dominated pathways of ssp370 and ssp585,
whereas large reductions of ∼ 50 % are predicted to occur in
the strong-mitigation scenarios of SSP1.

For SO2 large reductions of more than 50 % are shown
for most scenarios and across most regions (Fig. 2), apart
from Africa and Asia in ssp370. Near-term (2050) increases
in SO2 occur over South Asia and other developing regions,
which are then reduced in the latter half of the 21st cen-
tury. Over Europe and North America, consistent decreases
are predicted across all scenarios. The other major aerosol
emissions, OC and BC, show similar reductions to SO2
across all scenarios and regions. For all aerosol and aerosol
precursors, a reduction of 80 %–100 % (relative to 2015)
in regional emissions is predicted by 2100 in the strong-
mitigation scenarios. Changes in the emissions of the O3 pre-
cursors – NOx , CO and non-methane volatile organic com-
pounds (NMVOCs) – show a similar increase across most
regions for ssp370 but a general decrease in other scenarios.
The change in these emissions is particularly diverse across
all the scenarios in South Asia, with large relative increases
in ssp370 (of up to 50 %) in contrast to the large decreases
in ssp126 (up to 40 %). Across East Asia there is a 20 % in-
crease in NOx emissions for ssp370 in 2050 but a long-term
reduction across all scenarios.

2.2 CMIP6 simulations

Surface concentrations of O3 and PM2.5 have been obtained
from all the CMIP6 models that made appropriate data avail-
able to the Earth System Grid Federation (ESGF) at the time
of writing. To study changes in surface air pollutants over the

industrial period, data have been obtained from the coupled
historical simulations (Eyring et al., 2016) over the period
1850 to 2014 from all of the available ensemble members
of each available CMIP6 model. For each model, a mean
is taken using all available ensemble members prior to the
calculation of the multi-model mean. For model evaluation
purposes, 10 years of data from historical simulations have
been used over the period that is relevant to the particular
observational dataset (2000–2010 for ground-based PM2.5,
2004–2014 for PM2.5 reanalysis product and 2005–2014 for
ground-based O3). To investigate future changes in air pol-
lutants, all available data have been obtained over the pe-
riod 2015 to 2100 for each of the different future coupled
atmosphere–ocean model experiments, conducted as part of
ScenarioMIP (O’Neill et al., 2016). CMIP6 model data have
also been obtained for the AerChemMIP specific ssp370-
lowNTCF scenario, which was only required to be conducted
over the period 2015–2055 (Collins et al., 2017).

Concentrations of both pollutants at the surface have been
obtained by extracting the lowest vertical level of the full 3D
field output on the horizontal and vertical grid of each model
(the “AERmon” CMIP6 table ID). For O3, this is supplied
as a separate diagnostic which can be used directly. How-
ever, models contributing to CMIP6 will not all directly out-
put PM2.5, and the calculation of PM2.5 will not be consis-
tent across individual models due to the different treatment
of aerosols and their components. For example only a few
CMIP6 models include the simulation of ammonium nitrate
in their aerosol scheme (currently, only GISS-E2-1-G and
GFDL-ESM4 have provided nitrate mass mixing ratios on
the ESGF database). Therefore, to use a consistent defini-
tion across all models, we calculated PM2.5 offline. In this
study, surface PM2.5 is defined as the sum of the individual
dry aerosol mass mixing ratios of black carbon (BC), total
organic aerosol (OA – both primary and secondary sources),
sulphate (SO4), sea salt (SS) and dust (DU) from the lowest
model level extracted from the full 3D model fields. All BC,
OA and SO4 aerosol mass is assumed to be present in the
fine size fraction (< 2.5µm), whereas a factor of 0.25 for SS
and 0.1 for DU has been used to calculate the approximate
contribution from these components to the fine aerosol size
fraction (Eq. 1).

PM2.5 = BC+OA+SO4+ (0.25 ×SS)+ (0.1×DU) (1)

The factors used to calculate the contribution of SS and DU
concentrations to the PM2.5 size fraction are likely to depend
on the individual aerosol scheme and the simulated aerosol
size distribution within a particular model. The calculation of
an approximate PM2.5 concentration using Eq. (1) is there-
fore likely to introduce some errors, but it does provide an
estimate that is consistent across models and also with that
previously used in CMIP5 and ACCMIP (Fiore et al., 2012;
Silva et al., 2013, 2017). For the CNRM-ESM2-1 model,
anomalously large concentrations were obtained from the sea
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Figure 1. Changes in annual total (anthropogenic and biomass) global air pollutant emissions (relative to 2015) of sulphur dioxide (SO2),
organic carbon (OC), black carbon (BC), non-methane volatile organic compounds (NMVOCs), nitrogen oxides (NOx ), carbon monoxide
(CO) and global methane (CH4) abundances in the future CMIP6 scenarios used as input to CMIP6 models. The dashed black line represents
the 2015 value. Global CH4 abundances are not reduced in the AerChemMIP ssp370-lowNTCF simulations used here.

salt mass mixing ratios. Sensitivity tests with this model sug-
gested that a much smaller factor of 0.01 was more appropri-
ate to use for SS, which takes into account the non-dry nature
of the sea salt aerosols and the large possible size range, up
to 20 µm in diameter, of sea salt particles within the CNRM-
ESM2-1 model (Pierre Nabat, personal communication, 27
November 2019).

Details of the data used in this study from different CMIP6
models, in both the historical and future scenarios, are pre-
sented in Table 1. For the historical period, data were avail-
able from 6 different CMIP6 models for O3 and 11 mod-
els for PM2.5. The future scenario with the most data avail-
able was ssp370, with 6 models supplying data for O3 and
10 models for PM2.5. For the other Tier 1 CMIP6 scenar-
ios (ssp126, ssp245 and ssp585), data were only available
for four models for O3 and seven for PM2.5 (all compo-
nents). It was decided to focus the analysis on ssp370 and
other Tier 1 scenarios due to the limited availability of model
data for Tier 2 scenarios (ssp119, ssp434, ssp460 and ssp534-
over). The results from an O3 parameterisation (Turnock et
al., 2018, 2019), referred to in this study as HTAP_param,
have also been included in the analysis of surface O3 from
CMIP6 models for both the historical and future scenarios.

The HTAP_param was previously developed based upon the
source–receptor relationships of O3 derived from perturba-
tion experiments of regional precursor emissions and global
CH4 abundances (Wild et al., 2012; Turnock et al., 2018).
The HTAP_param applies the fractional change in global
CH4 abundance and regional-emission precursors (NOx , CO
and NMVOCs) for a particular scenario to the ozone re-
sponse from each individual model used in the parameteri-
sation. The total O3 response is obtained by summing up the
response from each of the individual models to all precursor
changes across all source regions. The surface O3 response
previously calculated from the HTAP_param in both the his-
torical and future CMIP6 scenarios is compared to that from
the CMIP6 models (Turnock et al., 2019). The O3 parame-
terisation does not take into account the effects of climate
change on surface O3 concentrations and therefore provides
an estimate of the emission-only-driven changes to surface
O3, which we compare to the climate and Earth system mod-
els.

2.3 Surface observations

Present-day surface O3 and PM2.5 simulated by all of the
CMIP6 models are evaluated against surface observations to
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Figure 2. Percentage change in 2050 (circles) and 2100 (squares), relative to 2015, for annual mean total (anthropogenic and biomass) air
pollutant emissions of (a) SO2, (b) OC, (c) BC, (d) NMVOCs, (e) NOx and (f) CO across different world regions in the four Tier 1 future
CMIP6 scenarios and the ssp370-lowNTCF scenario (identified as lowNTCF). Regions are defined in Fig. S1 in the Supplement.

ascertain model biases and inter-model discrepancies. Sur-
face O3 observations are obtained from the database of the
Tropospheric Ozone Assessment Report (TOAR; Schultz et
al., 2017). The TOAR database provides a gridded product
of surface O3 observations over the period 1970 to 2015. The
majority of measurement sites are located in North America
and Europe, with a smaller number of other sites in East Asia,
Australia, New Zealand, South America, Southern Africa,
Antarctica and remote ocean locations. Here we compile a
monthly mean climatology of all available O3 observations
over the period 2005–2014 from measurement locations that
are classified as rural in the TOAR database (Schultz et al.,
2017). The rural locations were selected to be representa-
tive of background (i.e. non-urban) O3 concentrations and
are considered to be more appropriate in evaluating the sim-
ulated values obtained at the relatively coarse horizontal res-
olution of the global ESMs. Simulated surface O3 concentra-
tions from the CMIP6 models are re-gridded onto the same
resolution of the observational product (2◦× 2◦) for evalua-
tion purposes.

Surface PM2.5 observations have been obtained from all of
the locations compiled in the database of the Global Aerosol

Synthesis and Science Project (GASSP; http://gassp.org.uk/
data/, last access: 2 July 2020, Reddington et al., 2017) to
evaluate CMIP6 models. Background, non-urban PM2.5 data
are compiled in the GASSP database from three major net-
works: the Interagency Monitoring of Protected Visual En-
vironments (IMPROVE) network in North America, the Eu-
ropean Monitoring and Evaluation Programme (EMEP), and
Asia-Pacific Aerosol Database (A-PAD). Again, like for O3,
the networks and observations for PM2.5 were selected to be
representative of non-urban environments, which are more
appropriate for the evaluation of global ESMs. With the ex-
ception of the IMPROVE network, most measurements of
PM2.5 began after the year 2000. Like for O3, we compile a
monthly mean climatology of PM2.5 but now over the period
of 2000 to 2010, selected because the GASSP database con-
tained the most observations within this period. Simulated
surface PM2.5 was computed from CMIP6 models over the
same time period as the observations and linearly interpo-
lated to each measurement location. Whilst the surface ob-
servations measure total PM2.5 mass, the computed PM2.5
from CMIP6 models uses Eq. (1) and does not include all
observable PM2.5 aerosol components (e.g. nitrate aerosol).
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Table 1. Number of ensemble members used for the historical- and future-scenario experiments from each model in the analysis of surface
O3 and PM2.5 in this study.

Model Pollutant Histo-
rical

ssp126 ssp245 ssp370 ssp370-
lowNTCF

ssp585 Model references Data citation

BCC-ESM1 O3, PM2.5 3 3 3 Wu et al. (2019, 2020) Zhang et al. (2018, 2019)

CESM2-WACCM O3, PM2.5 3 1 1 Gettelman et al. (2019),
Tilmes et al. (2019), Emmons
et al. (2020)

Danabasoglu (2019a–c)

CNRM-ESM2-1 PM2.5 3 3 3 Michou et al. (2019), Séférian
et al. (2019)

Seferian (2018, 2019), Voldoire
(2019)

GFDL-ESM4 O3, PM2.5 1 1 1 1 1 1 Horowitz et al. (2020), Dunne
et al. (2020)

Horowitz et al. (2018), John et al.
(2018), Krasting et al. (2018)

HadGEM3-GC31-LL PM2.5 4 1 1 1 Kuhlbrodt et al. (2018) Ridley et al. (2018); Good (2019)

MIROC6-ES2L PM2.5 3 1 1 1 1 Takemura (2012), Hajima et
al. (2020)

Hajima and Kawamiya (2019),
Tachiiri and Kawamiya (2019)

MPI-ESM1.2-HAM PM2.5 1 1 1 Tegen et al. (2019) Neubauer et al. (2019)

MRI-ESM2-0 O3,
PM2.5

5
5

1
1

1
1

3
3

1
1

1
1

Yukimoto et al. (2019d), Os-
hima et al. (2020)

Yukimoto et al. (2019a–c)

GISS-E2-1-G O3,
PM2.5

5
4

1
1

5
5

1
1

1
1

Bauer et al. (2020) NASA Goddard Institute For
Space Studies (NASA/GISS;
2018)

NorESM2-LM PM2.5 1 3 3 3 3 3 Karset et al. (2018), Kirkevåg
et al. (2018)

Norwegian Climate Center
(NCC; 2018)

UKESM1-0-LL O3, PM2.5 5 5 5 5 3 5 Sellar et al. (2019) Good et al. (2019); Tang et al.
(2019)

Total number of models O3 6 4 4 6 5 4
PM2.5 11 7 7 10 8 7

Therefore, it is anticipated that the CMIP6 models will un-
derrepresent the PM2.5 observations in this comparison.

To address the anticipated disparity between the ob-
served ground-based PM2.5 and the approximate PM2.5 from
CMIP6 models, a further comparison has been made between
the CMIP6 models and the Modern-Era Retrospective Anal-
ysis for Research and Applications, version 2 (MERRA-2),
aerosol reanalysis product (Buchard et al., 2017; Randles et
al., 2017). The MERRA-2 aerosol product assimilates obser-
vations of aerosol optical depth (AOD) from ground-based
and satellite remote-sensing platforms into model simula-
tions that use the GEOS-5 atmospheric model coupled to
the GOCART aerosol module. The data assimilation used in
MERRA-2 generally improves comparisons of PM2.5 with
observations, but there are still overestimations due to dust
and sea salt and underestimations over East Asia (Buchard
et al., 2017; Provençal et al., 2017). Separate mass mixing
ratios for BC, OA, SO4, SS and DU aerosol components
are provided from MERRA-2, which are then combined us-
ing the formula in Eq. (1) to make an approximate PM2.5.
Monthly mean approximate PM2.5 concentrations are then
computed over the period 2005–2014 from the MERRA-2
reanalysis product to provide a more direct comparison and
enhanced spatial coverage against the approximate PM2.5
concentrations calculated from the CMIP6 models calculated
over the same time period.

3 Present-day model evaluation of air pollutants

3.1 Surface ozone

The six CMIP6 models with data available for the historical
experiments are evaluated against surface O3 observations
from the TOAR database over the period 2005–2014. A long-
term evaluation of surface O3 concentrations from CMIP6
models using observations compiled over the 20th century is
presented separately in Griffiths et al. (2020). Figure 3 shows
the annual and seasonal multi-model mean in surface O3 over
the period 2005–2014 and the SD across the six CMIP6 mod-
els. The annual and seasonal mean surface O3 concentrations
and evaluation against observations for individual CMIP6
models are shown in Figs. S2–S7. Higher surface O3 concen-
trations are simulated in the Northern Hemisphere summer
(June, July, August – JJA) when O3 formation is enhanced by
increased photolytic activity and levels of oxidants as well as
larger biogenic emissions. The hemispheric difference in sur-
face O3 is smaller in December, January and February (DJF)
when O3 production is less in the Northern Hemisphere but
higher in the Southern Hemisphere. However, model diver-
sity is larger in DJF (Fig. 3e) due to individual models simu-
lating different seasonal cycles of O3, particularly UKESM1-
0-LL which has the most pronounced seasonal cycle of all 6
models (Fig. S2).

The multi-model mean of CMIP6 models overestimates
surface O3 concentrations by up to 16 ppb annually and in
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both seasons when compared to observations from the TOAR
database, although they do capture the broad hemispheric
gradient in O3 concentrations (Fig. 3c, f and i). The model
observational comparison of CMIP6 models to the TOAR
observations is consistent across all models and with the pre-
vious evaluation of ACCMIP models (Young et al., 2018).
This indicates a common source of error within models,
for example uncertainties in emission inventories, deposi-
tion processes or vertical mixing (Wild et al., 2020). In ad-
dition, the coarse resolution of the ESMs could lead to an
overproduction of O3 across polluted regions, with finer res-
olutions exhibiting improvements in the simulation of sur-
face O3 (Wild and Prather, 2006; Neal et al., 2017). Smaller
model biases exist in DJF (< 5 ppb) than in JJA (5–15 ppb),
mostly attributed to the strong seasonal cycle simulated by
UKESM1-0-LL. In contrast to other models (Figs. S2–S7),
UKESM1-0-LL underpredicts surface O3 in DJF over most
continental Northern Hemisphere locations, potentially indi-
cating there is excessive NOx titration of O3 in this model,
which is also shown by the large sensitivity of O3 formation
to NOx concentrations over the historical period (Fig. S17).

The observed annual cycle in surface O3 averaged across
measurement locations within different regions is compared
to that simulated by CMIP6 models (Fig. 4). Across most
regions, the mean annual cycle from CMIP6 models com-
pares relatively well to that observed. The overprediction of
surface O3 values in JJA is evident across most regions, as
are the large concentrations in BCC-ESM1 and GISS-E2-1-
G and the strong seasonal cycle in UKESM1-0-LL across
Northern Hemisphere continental regions. Additionally, the
timing of peak O3 over continental Northern Hemisphere lo-
cations occurs earlier in the observations (springtime) than
in the CMIP6 models (spring and summer), which is consis-
tent with that from ACCMIP models (Young et al., 2018). At
oceanic observation locations, surface O3 is overestimated in
CMIP6 models by up to 20 ppb across all seasons, indicat-
ing that the O3 deposition rate could be underestimated here
(Clifton et al., 2020). There is also a large overestimation
(∼ 20 ppb) in all models at the one observation location in
South East Asia, potentially due to difficulty in simulating
O3 in the maritime continental boundary layer using lower-
resolution global ESMs. In contrast to this, CMIP6 models,
particularly UKESM1-0-LL and GISS-E2-1-G, tend to un-
derpredict the observed surface O3 concentrations at loca-
tions in the South Pole region in JJA by ∼ 5 ppb. This could
be due to lack of long-range transport of O3 to these sites,
inaccuracies in Southern Hemisphere precursor emissions or
because of the difficulty in simulating O3 concentrations at
the appropriate elevation of measurement sites located on the
Antarctic Ice Sheet.

3.2 Surface PM2.5

3.2.1 Ground-based observations

A similar comparison is made for annual and seasonal mean
surface PM2.5 concentrations from CMIP6 models against
ground-based surface observations (Fig. 5). The annual and
seasonal multi-model mean from CMIP6 models shows that
elevated PM2.5 concentrations (> 50 µgm−3) occur close to
the large dust emission source regions of the Sahara and Mid-
dle East in both DJF and JJA over 2000–2010. These nat-
ural source regions are also one of the largest areas of di-
versity in PM2.5 concentrations (up to 20 µgm−3) between
the different CMIP6 models (Fig. 5b, e, h and Fig. S8).
High concentrations of PM2.5 (> 40 µgm−3) are also sim-
ulated over the large anthropogenic source regions of South
and East Asia, particularly in DJF, when there is enhanced
variability across CMIP6 models due to the different con-
tribution from anthropogenic PM2.5 components (Figs. S9–
S11). The diversity in the CMIP6 models is particularly evi-
dent in the organic-aerosol concentrations across Asia, with
higher present-day values simulated by CESM2-WACCM
and UKESM1-0-LL and lower values in CNRM-ESM2-
1 and MIROC-ES2L (Fig. S11). Lower PM2.5 concentra-
tions (< 10 µgm−3) are predicted across both North Amer-
ica and Europe, with more agreement between CMIP6 mod-
els. Across the biomass-burning regions of South America
and Southern Africa, PM2.5 concentrations are elevated in
JJA, with larger diversity in the CMIP6 models due to the
differing contributions of the BC and OA components, par-
ticularly shown in NorESM2-LM, GISS-E2-1-G and GFDL-
ESM4 (Figs. S10 and S11). Relatively consistent PM2.5 con-
centrations of < 10µgm−3, with small model diversity (<
5 µgm−3), are shown across oceanic regions, mainly from
emissions of sea salt (Fig. S12). Apart from the natural
sources of aerosol, which are subject to meteorological vari-
ability, the CMIP6 models are relatively consistent when
simulating PM2.5 concentrations across most regions.

Compared to the ground-based observations from the
GASSP database, the CMIP6 multi-model mean underpre-
dicts the observed PM2.5 values by up to 10 µgm−3 in both
seasons, with a slightly larger underestimation in DJF than
JJA. As discussed in Sect. 2.3, an underestimation was antici-
pated from comparing approximate PM2.5 concentrations de-
rived from CMIP6 models to observed values. Nevertheless,
the evaluation highlights that fine particulate matter (PM2.5)
is generally underrepresented in the CMIP6 models across
North America, Europe and parts of Asia for which obser-
vations are available, a similar result to other studies eval-
uating global and regional models (Tsigaridis et al., 2014;
Pan et al., 2015; Glotfelty et al., 2017; Solazzo et al., 2017;
Im et al., 2018). Numerous reasons potentially exist for the
model observation discrepancy shown here and in other stud-
ies, including uncertainties in emission inventories (e.g. local
dust sources), errors in the wet and dry deposition schemes,
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Figure 3. Multi-model (six CMIP6 models) annual and seasonal mean surface O3 concentrations over the 2005–2014 period in (a) annual
mean; (d) December, January and February (DJF); and (g) June, July and August (JJA). The SD of the multi-model mean in (b) annual mean,
(e) DJF and (h) JJA. The difference between the multi-model mean and TOAR observations in (c) annual mean, (f) DJF and (i) JJA (colour
bar saturates).

the absence or underrepresentation of aerosol formation pro-
cesses (e.g. secondary organic aerosols), and the coarse res-
olution of global models leading to errors in emissions and
simulated meteorology. Understanding the causes of model
observational discrepancies is an area of active research and
should be explored in further research, for example in a
global multi-model sensitivity study that examines model un-
certainties.

The simulated regional mean annual cycle in surface
PM2.5 from different CMIP6 models against observations is
shown in Fig. 6. The low model bias in PM2.5 concentra-
tions is highlighted across all regions, except for the ocean
region, where there is a relatively large diversity in model
simulations, particularly MIROC-ES2L and NorESM2-LM,
at these observation locations. Across North America, the re-
gion with the most observations, the annual cycle is simu-
lated relatively well, with a peak in concentrations in JJA

and a lower model bias, although a larger model bias (factor
of ∼ 1.5 to 2) occurs in winter and spring. Across Europe,
there is a larger underestimation of observed PM2.5 concen-
trations by CMIP6 models in DJF (factor > 2) than JJA. Ni-
trate aerosols are observed and modelled (from two CMIP6
models in Fig. S13) to contribute between 1 and 5 µgm−3 of
the total aerosol mass over Europe (Fagerli and Aas, 2008;
Pozzer et al., 2012), explaining part, but not all, of the model
observational discrepancy here. Additionally, in Fig. 6 the
CMIP6 models also underestimate the MERRA-2 reanalysis
product (which does not include nitrate aerosols), indicating
that other aerosol sources and processes are underrepresented
across Europe and other regions in the models. The limited
number of observations across other regions makes it diffi-
cult to infer particular model observational biases. However,
over Asia CMIP6 PM2.5 concentrations tend to be within a
factor of 2 of the observations and represent the seasonal
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Figure 4. Individual and multi-model (six CMIP6 models and HTAP_param) monthly mean surface O3 concentrations across different world
regions compared with the regional monthly values from all the TOAR observations within the region for the period 2005–2014. The number
of observations within a region is shown in parentheses. The shading shows variability in observations across all sites within the region.

cycle relatively well at these locations. Over Asia, larger
PM2.5 concentrations are simulated in the CMIP6 models
CESM2-WACCM, HadGEM3-GC31-LL and UKESM1-0-
LL, mainly due to the larger OA component (Fig. S11).
Across South Asia, concentrations are relatively well sim-
ulated in JJA, but a larger discrepancy (15 µgm−3) exists in
DJF between the model and observations.

3.2.2 MERRA reanalysis product

An additional comparison of surface PM2.5 concentrations
from the MERRA-2 aerosol reanalysis product is made with
that simulated by the CMIP6 models to improve the spa-
tial coverage and provide a more consistent evaluation of
the approximate PM2.5 concentrations. Fig. 7 shows the
same comparison as in Fig. 5 but now using the approxi-
mate PM2.5 obtained from the MERRA-2 reanalysis prod-
uct over the period 2005–2014. In comparison to MERRA-

2, the CMIP6 models are shown to underpredict PM2.5 con-
centrations across North America, Europe and Eurasia but
by a smaller amount in comparison to ground-based obser-
vations. A similar seasonal-cycle comparison is shown for
Europe and North America (regions with most ground-based
observations) in both Figs. 6 and 8, providing confidence that
the underestimation of PM2.5 by CMIP6 models is robust
over these regions. Across all other regions, the MERRA-
2 reanalysis product provides much greater spatial coverage
for each region, and therefore the features shown in the site-
level comparison (Fig. 6) will not necessarily apply here.
A large overestimation of the MERRA-2 reanalysis product
by the CMIP6 multi-model mean is shown across East and
South Asia. Figure 8 shows that on a regional mean basis,
most CMIP6 models are within the spread of the MERRA-2
concentrations for East Asia, although MERRA-2 was pre-
viously shown to underestimate PM2.5 concentrations across
East Asia (Buchard et al., 2017; Provençal et al., 2017) and
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Figure 5. Multi-model (11 CMIP6 models) annual and seasonal mean surface PM2.5 concentrations over the 2000–2010 period in (a) annual
mean; (d) December, January and February (DJF); and (g) June, July and August (JJA). The SD of the multi-model mean in (b) annual mean,
(e) DJF and (h) JJA. The difference between the multi-model mean and PM2.5 observations in (c) annual mean, (f) DJF and (i) JJA (colour
bar saturates).

also in Fig. 6. CESM2-WACCM and MRI-ESM2-0 are the
exceptions to this, with distinctly higher PM2.5 concentra-
tions over East Asia, potentially due to larger OA concen-
trations and more dust aerosols within the western side of
this region (Figs. S8 and S11). Across the South Asian re-
gion, CMIP6 models consistently overestimate MERRA-2
by more than 10 µg m−3 in certain months. UKESM1-0-LL,
MRI-ESM2-0 and CESM2-WACCM simulate particularly
high monthly PM2.5 concentrations of 20–40 µgm−3 over
South Asia due to large contributions from SO4, dust and
OA. Across North Africa there is considerable variability in
PM2.5 within this region as CMIP6 models both under- and
overestimate the MERRA-2 PM2.5 concentrations, although
this results in a relatively good regional mean representa-
tion (Figs. 7 and 8). The annual mean cycle in MERRA-
2 PM2.5 concentrations across South America is well rep-
resented by the CMIP6 models, although the peak in the

biomass-burning season is underestimated by 5–10 µgm−3

in some models. A more pronounced annual cycle is exhib-
ited by UKESM1-0-LL across Southern Africa due to the
larger contributions from the OA fraction (Fig. S11), poten-
tially from enhanced biogenic emissions that result in sec-
ondary OA formation (SOA). Across oceanic locations all of
the CMIP6 models underestimate the MERRA-2 PM2.5 con-
centrations by 5 µgm−3, although MERRA-2 was previously
shown to overestimate sea salt concentrations (Buchard et al.,
2017; Provençal et al., 2017), accounting for some of this
discrepancy. Overall, comparisons of CMIP6 models with
the MERRA-2 reanalysis product show biases across Europe
and North America that are consistent with the comparison
to ground-based observations. Additionally, similar compar-
isons are shown in annual mean cycles across other regions,
for which appropriate ground-based data are lacking.
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Figure 6. Individual and multi-model (11 CMIP6 models) monthly mean surface PM2.5 concentrations across different world regions com-
pared with the regional monthly values from all the PM2.5 observations (3) and the MERRA-2 reanalysis product (×) within the region for
the period 2000–2010. The number of observations within the region is shown in parentheses. The shading and errors bars show variability
in observations and the reanalysis product across all sites within the region.

4 Air pollutants from the pre-industrial period to
present day

4.1 Surface ozone

The simulated changes in surface O3 across six CMIP6 mod-
els and the HTAP_param are shown in Fig. 9 and Figs. S14–
S15 over the historical period of 1850 to 2014. The CMIP6
multi-model mean shows that global annual mean surface
O3 has increased by 11.7± 2.3 ppb since 1850 (±1 SD), al-
though the change could be as large as 14 ppb (from BCC-
ESM1) or as little as 7 ppb (from UKESM1-0-LL). Globally
and over most regions there has been a larger historical in-
crease in surface O3 in JJA than in DJF (Fig. S16). The 1850
to 2000 multi-model annual mean change in surface O3 from
the CMIP6 models of 10.6 ppb is in good agreement with the
10± 1.6 ppb simulated by the CMIP5 models used in AC-

CMIP (Young et al., 2013). An evaluation of the long-term
changes in surface O3 over the historical period simulated
by the CMIP6 models at specific measurement locations is
presented separately in the tropospheric O3 CMIP6 compan-
ion paper of Griffiths et al. (2020). This shows that CMIP6
models can reasonably represent long-term changes in sur-
face ozone since the 1960s, providing a degree of confidence
in the future projections of changes in the CMIP6 scenarios.
However, long-term changes in simulated surface O3 from
the previous generation of global coupled chemistry–climate
models (used in CMIP5) were found to underestimate the ob-
served trend at Northern Hemisphere monitoring locations
(Parrish et al., 2014). Further comparisons of historical sur-
face O3 simulated by CMIP6 models with long-term histori-
cal observations are outside the scope of the current work but
will be the subject of future research.
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Figure 7. Multi-model (11 CMIP6 models) annual and seasonal mean surface PM2.5 concentrations over the 2005–2014 period in (a) annual
mean; (d) December, January and February (DJF); and (g) June, July and August (JJA). The SD of the multi-model mean in (b) annual mean,
(e) DJF and (h) JJA. The difference between the multi-model mean and MERRA-2 reanalysis for (c) annual mean, (f) DJF and (i) JJA.

A large diversity in the simulated historical changes
is shown across the different regions analysed here, with
UKESM1-0-LL tending to simulate the smallest historical
change and GISS-E2-1-G or BCC-ESM1 the largest. The
large diversity across CMIP6 models in the surface O3 re-
sponse over the historical period can be attributed to the dif-
ferent magnitude of simulated O3 concentrations in the 1850
period (Fig. S14) and the rate of change in regional mean
O3 concentrations (Fig. S15), which is related to the differ-
ent chemical sensitivity of O3 formation in each model to
changing NOx concentrations (Fig. S17). Larger differences
between CMIP6 models are shown in the DJF mean histor-
ical changes over Northern Hemisphere regions than what
occurred in JJA (Fig. S16), reflecting the differences shown
in the model evaluation (Fig. 4) and the strong seasonality of
the changes. Even though the historical surface O3 response
is small in UKESM1-0-LL, it is shown to have larger tropo-

spheric changes in O3 over the historical period compared to
other CMIP6 models (Griffiths et al., 2020).

South Asia is the region with the largest diversity in sim-
ulated historical changes in surface O3, between 16 and
40 ppb, with a larger range in DJF (10–40 ppb) than in JJA
(19–36 ppb). The large diversity in CMIP6 models is at-
tributed to the large differences in simulated NOx concentra-
tions and hence chemical sensitivities of O3 formation occur-
ring across South Asia over the historical period (Fig. S17).
In addition, the large historical change in PM2.5 over this
region (Fig. S18) could alter the heterogeneous loss rate of
radicals to aerosols and therefore also affect O3 formation.
Surface O3 is simulated to have increased by between 10 and
30 ppb on an annual mean basis and by a larger amount in JJA
(12 to 37 ppb) over the major northern anthropogenic source
regions since 1850, driven mainly by the large increases in
anthropogenic precursor emissions of CH4, NOx , CO, and
NMVOCs over this period.
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Figure 8. Individual and multi-model (11 CMIP6 models) monthly mean surface PM2.5 concentrations across different world regions com-
pared with the regional monthly values from the PM2.5 MERRA-2 reanalysis within the region for the period 2005–2014. The number of
reanalysis points within the region is shown in parentheses. The shading shows variability in the values of the MERRA-2 reanalysis products
across the region.

A qualitative estimate of the influence of non-emission-
driven processes (chemistry and climate change) can be as-
certained by comparing results from the HTAP_param, an
emission-only-driven model, to those of the CMIP6 models.
Simulated historical changes in surface O3 from UKESM1-
0-LL are comparable to those from the HTAP_param, indi-
cating that the magnitude of change simulated by UKESM1-
0-LL is similar to that solely from changes in precursor emis-
sions. However, the global annual mean surface O3 response
of 7.6± 0.7 ppb from HTAP_param over the historical pe-
riod is 4.1 ppb lower than the CMIP6 multi-model mean,
indicating globally that non-emission-driven processes have
contributed to approximately 30 % of the change in surface
O3, although this contribution varies regionally. The differ-
ent magnitude of response across models could be due to
non-emission-driven processes, e.g. from different chemistry
schemes and climate change signals within models.

4.2 Surface PM2.5

The simulated change in annual mean surface PM2.5 across
11 CMIP6 models is shown in Fig. 10 over the historical pe-
riod of 1850 to 2014. CMIP6 models simulated an increase
in global annual and seasonal mean surface PM2.5 concen-
trations of < 2 µgm−3 (15 %–20 %) since 1850. Larger re-
gional increases in surface annual mean PM2.5 of up to
12 µgm−3 are simulated across South and East Asia, with
changes in DJF (up to 21 µgm−3) larger than those in JJA
(up to 12 µgm−3; Fig. S16), reflecting the strong seasonal-
ity of PM2.5 concentrations in these regions. The historical
increase in surface PM2.5 is primarily driven by the large in-
crease in anthropogenic aerosol and aerosol precursor emis-
sions over the 1850–2014 period (Hoesly et al., 2018). The
largest model diversity is also exhibited over the Asian re-
gions, with variations in the response between models of
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Figure 9. Changes in the regional and global annual mean surface O3 concentrations, relative to a 2005–2014 mean value, across six CMIP6
models and the HTAP_param. The multi-model annual mean 2005–2014 surface O3 concentrations (±1 SD) are shown in the top left of each
panel. Regions are defined in Fig. S1.

up to 50 % and larger differences between models in DJF
than JJA (Fig. S16), reflecting the differences shown in the
present-day model evaluation (Fig. 6). The inter-model dif-
ferences can be attributed to the different simulation of his-
torical changes in the anthropogenic components sulphate,
black carbon and organic aerosols (Fig. S18). The largest
inter-annual variability in surface PM2.5 concentrations oc-
curs over the North African and Middle East regions as
they are located near large sources of dust, whose emissions
are highly dependent on meteorological fluctuations (wind
speed). Over Europe and to a lesser extent Russia, Belarus,
Ukraine and North America, the increase in surface PM2.5
concentrations since 1850 peaked in the 1980s at 4 µgm−3

above the 2005–2014 mean value before decreasing over the
last 30 years. There are limited long-term multi-decadal ob-
servational data available to assess changes in aerosols sim-
ulated by global models. Previous studies using long-term
data since the 1980s, mainly over Europe and North Amer-
ica, have found that global models are able to reproduce the

observed multi-decadal changes in aerosols relatively well
(Pozzoli et al., 2011; Leibensperger et al., 2012; Tørseth et
al., 2012; Chin et al., 2014; Turnock et al., 2015; Aas et al.,
2019). More recently, global composition models, including
some CMIP6 models, were shown to be able to reproduce the
observed changes in AOD, sulphate and particulate matter
over the last 2 decades (Mortier et al., 2020). The ability of
global composition models to reproduce historical changes
in aerosols provides a degree of confidence in the future pro-
jections under the CMIP6 scenarios. Further model obser-
vational comparisons of multi-decadal changes in aerosols
will need to be undertaken to improve the understanding of
changing aerosol properties and processes.

5 Air pollutants from present day to 2100

An analysis is now made of the future projections of air pol-
lutants in the CMIP6 Tier 1 scenarios, including ssp370-

https://doi.org/10.5194/acp-20-14547-2020 Atmos. Chem. Phys., 20, 14547–14579, 2020



14562 S. T. Turnock et al.: Historical and future changes in air pollutants from CMIP6 models

Figure 10. Changes in the regional and global annual mean surface PM2.5 concentrations, relative to a 2005–2014 mean value, across 11
CMIP6 models. Changes for each region are computed as 10-year running means over the historical period. The multi-model mean 2005–
2014 surface PM2.5 concentrations (±1 SD) are shown in the top left of each panel. Regions are defined in Fig. S1.

lowNTCF. A comparison is made of the projected future
changes in 2050 and 2100 from the four CMIP6 models
(CESM2-WACCM, GFDL-ESM4 and UKESM1-0-LL for
both O3 and PM2.5 along with BCC-ESM1 for O3 and
MIROC-ES2L for PM2.5) that had the most data available
for the ssp370 scenario.

5.1 Surface ozone

Global annual mean surface O3 is reduced by more than
5± 1.2 ppb (±1 SD value of the multi-model mean) in the
near-term (2050) and by 9±1.6 ppb in 2100 in the strong air
pollutant and climate mitigation scenario ssp126 (Fig. 11).
Smaller reductions in global annual mean surface O3 of
4±1.7 ppb are predicted for the middle-of-the-road pathway
(ssp245) by 2100, whereas for the weak climate and air pol-
lutant mitigation scenario ssp370, a global annual mean in-
crease in surface O3 of 1.6±0.9 ppb in 2050 and 0.6±1.0 ppb
by 2100 is predicted. However, implementing strong emis-

sion controls for SLCFs on top of a weak climate mitigation
scenario (ssp370-lowNTCF) shows that previous increases in
global annual mean surface O3 can be substantially reduced
to values that are 2.5± 0.5 ppb below the 2005–2014 mean
value in 2050, with benefits to air quality and climate (Allen
et al., 2020). For ssp585, which has weak climate mitiga-
tion measures but strong air pollution controls, a near-term
increase in global annual mean surface O3 of 1.4± 0.8 ppb
is predicted in 2050, but by 2100 surface O3 reduces by
2.7± 1.5 ppb, relative to 2005–2014, due to the implemen-
tation of air pollutant controls in the latter half of the 21st
century.

The global response in annual mean surface O3 concen-
trations to the different scenarios is also repeated across the
different world regions, albeit with differing magnitudes. In
ssp370, increases in annual mean surface O3 are predicted to
occur across North America (+1.6 ppb), Europe (+5.4 ppb)
and East Asia (+5.9 ppb), with the largest increase, of 15.1±
9.6 ppb, predicted in South Asia by 2100. Despite the re-
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ductions in O3 precursor emissions across North America,
Europe and East Asia by 2100 (Fig. 2), surface O3 concen-
trations have continued to increase up to the end of this pe-
riod, indicating the importance of future changes in chem-
istry, global CH4 abundances and climate to the response of
surface O3 in ssp370 (Wild et al., 2012; Gao et al., 2013;
Rasmussen et al., 2013; Young et al., 2013; Colette et al.,
2015; Fortems-Cheiney et al., 2017; Li et al., 2019; Turnock
et al., 2019). South Asia shows the largest increase in surface
O3 as precursor emissions are anticipated to increase across
this region on top of the large climate change signal and
growth in CH4 abundance. Additionally, the largest diver-
sity in projections between the CMIP6 models is shown over
South Asia, indicating that there is some disagreement be-
tween the models as to the magnitude and extent of changes
over this region. Surface O3 across oceanic regions (back-
ground) is predicted to remain at or near current values in
ssp370 due to the increases in water vapour in a warming
world, leading to more O3 destruction (Johnson et al., 1999;
Doherty et al., 2013). The impact of more aggressive near-
term reductions to emissions of SLCFs (but not CH4) on top
of the ssp370 pathway is shown by the smaller changes in the
ssp370-lowNTCF (Figs. 11 and S19–S20 for individual mod-
els). In this pathway, surface O3 concentrations are reduced
globally and across most regions to be at or near 2005–2014
values, a substantial benefit to surface O3 air quality com-
pared to ssp370. Surface O3 concentrations are predicted to
have almost halved by 2050 across South Asia in ssp370-
lowNTCF. However, across East Asia the additional precur-
sor emission reductions in ssp370-lowNTCF have resulted in
smaller benefits to surface O3 concentrations being simulated
by the CMIP6 models than in other regions (Fig. S20), which
is attributed to an increase in surface O3 concentrations over
eastern China (a part of the larger East Asian region shown in
Fig. S1). This increase in surface O3 results from the slight
increase in NMVOC emissions (Fig. 2) and a reduction in
the NOx titration of O3 due to the large decreases in NOx

emissions in ssp370-lowNTCF. In addition, a reduction in the
heterogeneous loss of radicals due to decreases in PM2.5 con-
centrations in ssp370-lowNTCF could also lead to increased
surface O3 concentrations (Li et al., 2019).

Surface O3 concentrations predicted across Northern
Hemisphere regions in ssp585 are similar to ssp370 due to
comparable changes in air pollutant emissions and climate
change. However, a notable exception is a reduction in sur-
face O3 across regions towards the latter half of the 21st cen-
tury (post-2080), when there are additional reductions in pre-
cursor emissions and global CH4 abundances by 2100. Sur-
face O3 shows a slightly slower increase until the mid-21st
century over South Asia in ssp585 than what occurred in
ssp370. This can be attributed to a slightly different tempo-
ral evolution of NOx emissions over this region in that they
peak earlier (by 2040) and decline more rapidly in ssp585
when compared to the continual increase in NOx emissions
in ssp370 (Fig. 2), which results in a different response of O3

formation within CMIP6 models, In addition, there are more
CMIP6 models with data available for ssp370 (six models)
than ssp585 (four models; Table 1), which could affect the
multi-model mean response shown in Fig. 11.

The future scenario ssp245 (middle of the road) predicts
annual mean surface O3 concentrations that tend to remain
at or near the 2005–2014 mean values by 2100 across the
major anthropogenic source regions of the Northern Hemi-
sphere, whereas for other tropical and Southern Hemisphere
regions surface O3 concentrations are reduced by more than
4 ppb. The changes in ssp245 are driven by larger precur-
sor emission controls, a smaller climate change signal and
controlling CH4 so that global abundances are below 2015
values by 2100 (Fig. 1g). In ssp245 a near-term (up to 2040)
increase in surface O3 is shown across East Asia and South
Asia, which could be attributed to the peaking of global CH4
abundances at this point prior to then reducing.

The Tier 1 future scenario with the strongest climate and
air pollutant mitigation measures, ssp126, shows substan-
tial decreases in surface O3 concentrations across most re-
gions due to the large reduction in precursor emissions,
global CH4 abundances and small climate change signal. Re-
ductions in surface O3 of more than 10 ppb are predicted
across anthropogenic-emission source regions of the North-
ern Hemisphere, with smaller reductions across Southern
Hemisphere regions.

Projections from the CMIP6 models show that to achieve
global benefits for regional surface O3, it is important to
control O3 precursor emissions (including CH4) in addition
to limiting future climate change. However, scenarios with
large climate change signals (ssp370 and ssp585) but differ-
ent post-2050 controls on O3 precursors (most notably CH4
and NOx) show different long-term changes in regional sur-
face O3 concentrations, which could have important conse-
quences for any potential human health impacts.

A more detailed comparison of future surface O3 pro-
jections between CMIP6 models has been undertaken for
ssp370 as it is the scenario with the largest number of avail-
able models (Table 1). The regional change in annual and
seasonal mean surface O3, relative to 2005–2014, in 2050
(2045–2055 mean) and 2095 (2090–2100 mean) for ssp370
from four CMIP6 models and the HTAP_param is shown in
Fig. 12. An analysis of the relationships, in terms of cor-
relation coefficients, between future annual mean surface
O3 concentrations and other variables (CH4 concentrations,
surface air temperature, NOx concentrations, emissions of
BVOCs and anthropogenic emissions of NMVOCs) is un-
dertaken for CMIP6 models in the ssp370 scenario (Fig. 13).
Discrepancies in the simulated response of background O3
across the ocean region (as well as the South Pole and Pa-
cific, Australia and New Zealand) are noticeable between
individual models, with UKESM1-0-LL predicting a de-
crease in surface O3 compared to the small increase from the
HTAP_param and most other models in both 2050 and 2095
(Fig. S19). The future surface O3 response in UKESM1-0-

https://doi.org/10.5194/acp-20-14547-2020 Atmos. Chem. Phys., 20, 14547–14579, 2020



14564 S. T. Turnock et al.: Historical and future changes in air pollutants from CMIP6 models

Figure 11. Future global and regional changes in annual mean surface O3, relative to 2005–2014 mean, for the different SSPs used in
CMIP6. Each line represents a multi-model mean across the region, with shading representing the±1 SD of the mean. See Table 1 for details
of models contributing to each scenario. The multi-model regional mean value (±1 SD) for the years 2005–2014 is shown in the top left
corner of each panel.

LL over the ocean region exhibits a large negative correla-
tion with surface temperature changes (Fig. 13), indicating
the importance of future climate change in this model over
remote regions. UKESM1-0-LL is a model with high equi-
librium climate sensitivity (ECS; 5.4 K) compared to other
CMIP6 models (Forster et al., 2019; Sellar et al., 2019) and
therefore will exhibit a larger climate response (surface tem-
perature and water vapour), leading to enhanced background
O3 destruction via water vapour and the hydroxyl radical
(OH). Over the North Pole region all models show surface
O3 increases that are larger than the HTAP_param, with a
larger increase in DJF than JJA. The large future temperature
response over the Arctic and changes in NOx concentrations
and emissions of NMVOCs are particularly important drivers
of surface O3 changes across most CMIP6 models in this re-
gion with comparatively low local emissions (Fig. 13).

Differences in the predicted surface O3 between mod-
els exist across South Asia, where CESM2-WACCM (and

BCC-ESM1 in 2050) predicts a response that is twice as
large as UKESM1-0-LL and GFDL-ESM4. The lower an-
nual mean response over South Asia in UKESM1-0-LL and
GFDL-ESM4 is driven by a reduction in DJF in these mod-
els (Fig. S21), which results in the DJF change in 2050 being
lower than the 2005–2014 annual mean value (Fig. 12). The
large increase in NOx emissions in ssp370 over South Asia
(∼ 80%) has resulted in areas of NOx titration, particularly
in DJF, near the Indo-Gangetic Plain in both UKESM1-0-LL
and GFDL-ESM4, reducing surface O3 concentrations (Figs.
S19 and S21). This strong feature of NOx titration of O3 in
DJF is absent in both CESM2-WACCM and BCC-ESM1, re-
sulting in larger O3 production over South Asia. The compar-
ison in Fig. 12 shows how the O3 chemistry within models
responds differently across a particular area in a future sce-
nario with a large climate change signal and over a region
with large increases in local precursor emissions but that all
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the drivers related to regional O3 change in South Asia are
similarly important across all models (Fig. 13).

Over South America and Southern Africa, particularly the
tropical areas (Fig. S19), larger future changes in surface
O3, particularly by 2100, are predicted by GFDL-ESM4 and
UKESM1-0-LL than by CESM2-WACCM. These changes
over South America are larger in JJA in all models, with
small seasonal differences over Southern Africa. Over this
region, biogenic emissions (particularly isoprene) are an im-
portant source of O3 formation. Discrepancies in the future
response of these BVOC emissions between models could
be occurring due to the differing magnitudes of climate and
land-use change and how they are coupled within individ-
ual CMIP6 models (Table S1), which could affect future sur-
face O3. Future changes in the total emissions of BVOCs
and those solely from isoprene obtained from five CMIP6
models (Figs. S22 and S23) show that CESM2-WACCM has
larger total BVOC emissions over the period 2005–2014 (due
to the inclusion of more BVOCs), which then increase in
the future ssp370 scenario, along with isoprene emissions,
resulting in a smaller increase (and even decrease in some
parts of the region) in O3. In contrast, UKESM1-0-LL shows
a larger increase in O3 and a reduction in BVOC emis-
sions, mainly from isoprene (Fig. 23), over parts of South
America and tropical Africa. Figure 13 shows that there are
differing relationships between future surface O3 concen-
trations, BVOC emissions and NOx concentrations across
CMIP6 models over South America and Southern Africa.
Over Southern Africa, UKESM1-0-LL shows a different re-
lationship between BVOC emissions and surface O3 concen-
trations than other CMIP6 models, indicating that this could
be leading to the different future O3 response in this model
over this region. Similarly, Fig. 13 shows that over South
America, CESM2-WACCM has a different relationship be-
tween surface O3 and the variables considered here than in
other CMIP6 models, particularly for BVOCs, leading to the
different future responses in this model over this region. Fig-
ure 13 shows that there are differences between models in
the surface O3 response over regions such as South Amer-
ica and Southern Africa, which are potentially linked to the
land-surface response and are important to understand more
in future work.

Whilst there are disagreements between models over some
regions, there is also substantial consistency in the predicted
increase in annual mean surface O3 in ssp370 over North
America, Europe and East Asia, which is larger than that
from HTAP_param. However, BCC-ESM1 tends to predict
a larger increase than the other three models, potentially due
to the coarser resolution of this ESM. There are differences
in simulated seasonal response across these regions, with all
models showing a smaller increase in JJA than DJF across
North America and Europe, whilst across East Asia there
tends to a be a larger future surface O3 increase in JJA than
DJF. Figure 13 shows that there is a negative correlation be-
tween surface O3 and NOx concentrations as well as between

O3 and NMVOC emissions for most CMIP6 models across
these regions, reflecting that, as most anthropogenic pre-
cursor emissions (including NOx) decrease in this scenario
(Fig. 2), surface O3 is simulated to increase. An exception
to this is across East Asia, where the increase in NMVOC
emissions in ssp370 (Fig. 2) is positively correlated with sur-
face O3, indicating different chemical drivers of future O3
across this region. In addition, there are positive correlations
between the other variables (temperature, CH4 and BVOCs)
for most CMIP6 models, indicating that changes in climate
and global CH4 abundances are also important drivers of sur-
face O3 increases over these regions.

The differences between the individual CMIP6 models
highlight the importance of further understanding how future
O3 chemistry is affected by changes to precursor emissions
and climate. The predicted differences in models can be quite
pronounced over regions like South Asia, where changes in
one model can be double that of another model, which could
have important consequences for the ability of models to sim-
ulate future regional air quality.

5.2 Surface PM2.5

Relatively small global changes in annual mean surface
PM2.5 are predicted for all CMIP6 models across all scenar-
ios (Fig. 14), with an increase in ssp370 and a reduction in
the others. Small reductions in PM2.5 are predicted for all
scenarios across Europe (0.3 to 3 µgm−3) and North Amer-
ica (0.0 to 1.3 µgm−3) due to the reduction in aerosol and
aerosol precursor emissions. Differences in PM2.5 between
scenarios are highlighted across a number of regions.

For the weak climate and air pollutant mitigation sce-
nario ssp370, increases in annual mean surface PM2.5 are
predicted across South Asia (7.3± 4.1 µgm−3 by 2050 and
3.1±3.1 µgm−3 by 2100), South East Asia (2.7±4.7 µgm−3

by 2100), Southern Africa (1.6± 3.7 µgm−3 by 2100), Cen-
tral America (2.8± 3.2 µgm−3 by 2100) and South Amer-
ica (2.9± 3.6 µgm−3 by 2100). The increases in PM2.5 are
driven mainly by the increase in aerosol and aerosol precur-
sor emissions in this scenario (Fig. 2), shown by the positive
correlations between emissions and surface PM2.5 in CMIP6
models across these regions (Fig. 16). However, there is a
degree of uncertainty associated with all of these future pro-
jections, indicated by the large diversity across the CMIP6
models. Some of the largest predicted increases in surface
PM2.5 occur across South Asia in ssp370, a region with al-
ready high present-day PM2.5 concentrations. The increase in
PM2.5 peaks in 2050 across this region, which coincides with
the increase in SO2, BC and OC emissions before declin-
ing to 2100, when emissions reduce. Over East Asia, annual
mean PM2.5 concentrations are simulated to remain at or near
2005–2014 values until the latter half of the 21st century,
when the decrease in emissions reduces PM2.5 concentra-
tions by 2.5±2.7 µgm−3. The impact of reductions in SLCFs
on top of the ssp370 scenario acts to constrain any increases
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Figure 12. Future global and regional changes in the annual and seasonal mean surface O3, relative to the 2005–2014 mean, for the ssp370
pathway used in CMIP6. Each black circle represents the annual mean response for an individual model in (a) 2045–2055 and (b) 2090–
2100, with the coloured bars showing the SD across the annual mean. The DJF and JJA seasonal mean response averaged over the relevant
10-year period is shown by squares and triangles, respectively. The multi-model regional mean over the period 2005–2014 is given towards
the left of each panel. The response from the HTAP_param in each time period is shown by the separate gold circle.

in PM2.5 concentrations to near present-day values across
most regions. However, substantial reductions in PM2.5 con-
centrations of 5.6± 2.0 µgm−3 and 5.3± 2.1 µgm−3 below
2005–2014 values are achieved by 2050 across East and
South Asia, respectively, by implementing these measures.
Due to the short lifetime of aerosols in the atmosphere, PM2.5
concentrations respond rapidly to the large cuts in emissions
that occur in ssp370-lowNTCF and show the benefits of tar-
geting these emissions, although there could be a potential
climate impact (Allen et al., 2020).

Reductions in annual mean surface PM2.5 are simulated
across all regions for ssp126, ssp245 and ssp585. Differences
exist in the magnitude and timing of PM2.5 reductions across
regions linked to the changes in emissions. The largest reduc-
tions in PM2.5 occur over South Asia in 2100 and range from
11.1± 2.8 µgm−3 in ssp126 to 8.6± 2.9 µgm−3 in ssp585,
a substantial benefit to regional air quality. Similar benefits
to PM2.5 are achieved over East Asia by 2100, although the
more rapid improvements occur over this region in the first
part of the 21st century.

The response of PM2.5 concentrations is more variable,
with a larger diversity across CMIP6 models within regions

that are close to natural aerosol emission sources. This is par-
ticularly noticeable over North Africa, where the variability
across CMIP6 models in dust emissions from the Saharan
source region (Fig. S8) results in an uncertain PM2.5 response
across this region. A similar response is also exhibited across
the Middle East and Central Asia. The potential influence of
BVOCs on SOA formation (Figs. S22 and S26) could also be
contributing to the diversity in the CMIP6 model responses
across the South America and Southern Africa regions.

The CMIP6 models show that future reductions in aerosols
and aerosol precursors will lead to a decrease in surface
PM2.5 concentrations across most world regions and a bene-
fit to regional air quality (and human health), consistent with
that from CMIP5. However, if emissions are not controlled
over economically developing regions such as South Amer-
ica, Asia and Africa, then surface PM2.5 is anticipated to in-
crease and worsen future regional air quality. Targeting emis-
sion reductions in SLCFs in the short term shows the poten-
tial for rapid improvements in surface PM2.5 and air quality.

In a similar analysis to that for surface O3, a more de-
tailed comparison has been undertaken of four CMIP6 mod-
els predicting changes in annual and seasonal surface PM2.5
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Figure 13. Correlation coefficients calculated when comparing future annual mean surface O3 concentrations against individual variables of
surface CH4 concentrations, surface air temperature (TAS), emissions of biogenic volatile organic compounds (BVOCs), NOx (NO+NO2)
concentrations and anthropogenic emissions of non-methane volatile organic compounds (NMVOCs) from individual CMIP6 models over
the period 2015 to 2100 in the ssp370 scenario.

in 2050 and 2095 under ssp370 (Fig. 15). In addition, an
analysis of the relationships, in terms of correlation coeffi-
cients, between future annual mean surface PM2.5 and other
variables (total surface precipitation; surface air temperature;
and emissions of BVOCs, SO2, BC and organic aerosol)
has been undertaken for CMIP6 models in the ssp370 sce-
nario (Fig. 16). Small reductions in annual mean surface
PM2.5 concentrations (< 2µgm−3) are simulated consis-
tently by all CMIP6 models across North America and Eu-
rope in ssp370, with larger reductions simulated in DJF than
JJA. The reductions in annual mean PM2.5 over Europe and
North America are mainly attributed to decreases in the BC
and SO4 components (Figs. S24 and S25), as indicated by
the strong correlations with BC and SO2 emissions across
CMIP6 models (Fig. 16). However, by 2095 a small increase
(up to 2 µgm−3) is simulated in JJA by UKESM1-0-LL and
CESM2-WACCM over North America, which could be at-
tributed to changes in climate due to the strong positive cor-

relations in both models for temperature, precipitation and
BVOCs (Fig. 16).

South Asia, the region with the largest simulated future
change in annual mean surface PM2.5, of up to 12 µgm−3,
shows fairly good agreement between three CMIP6 mod-
els (UKESM1-0-LL, GFDL-ESM4 and CESM2-WACCM)
as projections in 2050 and 2095 are all within the range of
each of the individual models. The future increases in annual
mean surface PM2.5 appear to be strongly driven by emis-
sion changes as there are strong positive correlations between
these variables across South Asia in all models (Fig. 16).
Across South Asia, all models simulate a larger increase in
DJF mean surface PM2.5 concentrations, of up to 18 µgm−3

by 2050, than what occurs in JJA, reflecting the seasonal-
ity shown in the model evaluation. The MIROC-ES2L model
predicts smaller future increases in surface PM2.5, of up to
5 µgm−3, than the other models across South Asia in both
2050 and 2095. This is a result of smaller changes in the BC,
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Figure 14. Future global and regional changes in annual mean surface PM2.5, relative to 2005–2014 mean, for the different SSPs used in
CMIP6. Each line represents a multi-model mean across the region, with shading representing the±1 SD of the mean. See Table 1 for details
of models contributing to each scenario. The multi-model regional mean value (±1 SD) for the years 2005–2014 is shown in the top left
corner of each panel.

OA and sulphate aerosol components in the MIROC-ES2L
model despite increases in aerosols and aerosol precursor
emissions across South Asia in ssp370 (Fig. S24–S26).

Disagreements in both the sign and magnitude of simu-
lated future annual and seasonal mean surface PM2.5 changes
between CMIP6 models are also exhibited across East Asia.
Small regional annual mean increases are predicted in 2050
due to PM2.5 increases in JJA from all models apart from
GFDL-ESM4. A larger reduction in the SO4 component is
simulated over East Asia by GFDL-ESM4 than in other mod-
els (Fig. S25), resulting in an overall decrease in PM2.5. In
2095 most models simulate a reduction in PM2.5 concentra-
tions in both seasons across East Asia, apart from CESM2-
WACCM due to the increase in JJA. All models simulate
continual reductions out to 2100 for SO4 across this region,
whereas BC increases in the near term before decreasing out
to 2100. For OA, CESM2-WACCM shows larger increases
over East Asia in both 2050 and 2095 compared to the other

models, which show a smaller increase in 2050 and a reduc-
tion by 2095 (Fig. S26). CESM2-WACCM includes a more
complex treatment of SOA formation, showing a strong re-
sponse to climate and historical trends in OA (Tilmes et al.,
2019). Positive correlations are shown for CESM2-WACCM
between surface PM2.5 and emissions of BVOC as well as
between surface PM2.5 and temperature (Fig. 16), which are
not present in other models and could explain the differences
between this model and others across East Asia. The dis-
crepancies in CMIP6 models are not as obvious over South
Asia as the effect of the increase in OA over South Asia
in CESM2-WACCM is masked by coincident increases in
other components across other models, as indicated by the
strong correlations with emissions here. CESM2-WACCM
also shows larger simulated increases in PM2.5 over South
America, Central America, Southern Africa and South East
Asia than other models, which can be attributed to the larger
increase in the OA fraction (Fig. S26) and the strong corre-
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lations in this model with changes in temperature and emis-
sions (BVOCs and SO2). Over Southern Africa UKESM1-
0-LL shows a reduction in future PM2.5 in contrast to other
models due to a reduction in the BC, OA and dust aerosol
components (Figs. S24, S26 and S27). UKESM1-0-LL ex-
hibits particularly strong negative correlations for surface
PM2.5 when compared with temperature and precipitation.
These relationships over Southern Africa are quite differ-
ent to other CMIP6 models, which is also highlighted in the
model evaluation over this region (Fig. 8) and indicates that
climate change influences aerosol concentrations differently
over this region in this model (Fig. 16). In addition, there is a
slight positive correlation of PM2.5 with BVOC emissions
in UKESM1-0-LL over Southern Africa. Future biogenic
emissions (including monoterpenes) reduce here in ssp370
(Fig. S22), potentially due to land-use vegetation change as
UKESM1-0-LL has dynamic vegetation coupled to BVOC
emissions (Table S1 in the Supplement). This could also re-
duce PM2.5 concentrations over this region because monoter-
pene emissions are the main precursor to SOA formation in
UKESM1-0-LL (Mulcahy et al., 2020).

The annual and seasonal mean PM2.5 response is variable
across individual CMIP6 models over regions close to natu-
ral sources of particulate matter (North Africa; Central Asia;
and Pacific, Australia and New Zealand). Over these regions
there is a large range in both the sign and magnitude of the
annual and seasonal PM2.5 response, which can be mainly
attributed to the dust fraction (Fig. S27) and the fact that
this aerosol source has a large inter-annual variability in its
emission strength. There is also a lack of consistency across
CMIP6 models in the correlations of PM2.5 with any indi-
vidual driver, indicating the variability of aerosol sources in
these regions within models. Interestingly, the CMIP6 mod-
els do not agree in the sign and magnitude of future changes
to dust concentrations in ssp370 (Fig. S27).

Across the ocean and North Pole regions, all the CMIP6
models tend to simulate a small increase in PM2.5 concen-
trations, which can be attributed to increases in sea salt con-
centrations (Fig. S28). A strong increase in sea salt concen-
trations is simulated in all models across the Southern Ocean
(and other oceans), potentially driven by changes to meteo-
rological conditions (reflected by the positive correlations of
PM2.5 with the climate variables temperature and precipita-
tion in Fig. 16), which increase wind speed and sea salt emis-
sions. As ssp370 is a scenario with a large climate change
signal, the increases in PM2.5 across the North Pole, partic-
ularly in 2100, can be attributed to the melting of sea ice
increasing sea salt emissions, which again is reflected in the
positive correlations of PM2.5 with climate variables over this
region. However, the magnitude of this response is different
in the CMIP6 models due to the underlying ECS and the re-
sponse of Arctic surface temperatures within the individual
model.

The differences in the simulated future PM2.5 changes
across the CMIP6 models in ssp370 highlight that it is im-

portant to consider how natural sources of aerosol respond
in a future climate in addition to changes from anthro-
pogenic emissions. Particular differences between models
have been shown for dust, sea salt and also organic (sec-
ondary) aerosols, which should be explored further. In ad-
dition, the different representations of aerosols within indi-
vidual models, e.g. organic aerosols, are an important con-
sideration as they can make a large difference to any future
regional projection of PM2.5.

6 Conclusions

In this study we have provided an initial analysis of the his-
torical and future changes in air pollutants (O3 and PM2.5)
from the latest generation of Earth system and climate mod-
els that have submitted results from experiments conducted
as part of CMIP6. Data were available from the historical ex-
periments of 6 CMIP6 models for surface O3 and 11 models
for surface PM2.5. Historical changes in regional concentra-
tions of O3 and PM2.5 are presented over the period 1850 to
2014 using data from all models. A present-day model eval-
uation of the CMIP6 models was conducted against surface
observations of O3 and PM2.5 obtained from the TOAR and
GASSP databases, respectively. An additional comparison
was performed for simulated PM2.5 concentrations against
the MERRA-2 aerosol reanalysis product. An assessment is
then made of the changes in surface O3 and PM2.5 simulated
by the CMIP6 models across different future scenarios, rang-
ing from weak to strong air pollutant and climate mitigation.

The six CMIP6 models simulate present-day (2005–2014)
surface O3 concentrations that are elevated in the Northern
Hemisphere summer, with lower values throughout the year
across the Southern Hemisphere. However, a large model di-
versity is shown across the continental Northern Hemisphere
due to the large simulated seasonal cycles in certain mod-
els. Compared to surface O3 measurements, CMIP6 mod-
els overestimate observed annual mean values and in both
summer and winter across most regions by up to 16 ppb (a
similar result to previous multi-model evaluations of global
chemistry–climate models in Young et al., 2018). An ex-
ception to this is at observation locations across Antarctica,
where CMIP6 models tend to underestimate observed values
by 5 ppb.

Large surface PM2.5 concentrations are simulated in
CMIP6 models near dust and anthropogenic-emission source
regions. Model diversity across the CMIP6 models is largest
near the dust source regions due to their sensitivity to meteo-
rological variability, whereas across other regions the CMIP6
models are relatively similar in their simulation of PM2.5
concentrations. Evaluating the approximate PM2.5 calculated
from CMIP6 models (excluding nitrate aerosols) against
ground-based PM2.5 observations shows an underestimation
across most regions of up to 10 µgm−3. The underestimation
of observations by models is larger in the Northern Hemi-
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Figure 15. Future global and regional changes in the annual and seasonal mean surface PM2.5, relative to the 2005–2014 mean, for the
ssp370 pathway used in CMIP6. Each black circle represents the annual mean response for an individual model in (a) 2045–2055 and (b)
2090–2100, with the coloured bars showing the SD across the annual mean. The DJF and JJA seasonal mean responses averaged over the
relevant 10-year periods are shown by squares and triangles, respectively. The multi-model regional mean over the period 2005–2014 is given
towards the left of each panel.

sphere winter than summer, in part due to the absence of ni-
trate aerosols within most CMIP6 models and also due to
underrepresentation of other aerosol processes within global
models (a similar result to other multi-model assessments).
To improve the spatial coverage and consistency of the PM2.5
evaluation with CMIP6 models, an additional comparison
was made to the MERRA-2 aerosol reanalysis product. A
similar but slightly smaller underestimation of PM2.5 con-
centrations over Europe and North America was found in
the comparison of CMIP6 models and MERRA-2, providing
further confidence in the result from the ground-based com-
parison. CMIP6 models overestimated the monthly PM2.5
concentrations in MERRA-2 over South and East Asia by
up to 15 µgm−3, in contrast to the evaluation using ground-
based observations. Mean annual cycles simulated by CMIP6
models and MERRA-2 tend to agree across other regions for
which there are no suitable ground-based observations. The
comparison of surface O3 and PM2.5 simulated by CMIP6
models to observations shows similar biases to previous gen-
erations of global composition–climate models. Further stud-
ies are required (e.g. global sensitivity or process studies) to

explore uncertainties in models and the differences with ob-
servations.

Across the historical period (1850–2014), the CMIP6
models simulated a global annual increase in surface O3 of
between 7 and 14 ppb, with a larger increase in JJA than
DJF. A global multi-model mean increase of 11.7± 2.3 ppb
was simulated by the CMIP6 models, which agrees well with
the change previously simulated by CMIP5 models. A large
diversity in the historical change in surface O3 was simu-
lated by CMIP6 models across South Asia and other North-
ern Hemisphere regions. CMIP6 models predicted larger his-
torical changes in surface O3 than those from an emission-
only-driven parameterisation, indicating a potential climate
change impact (Wu et al., 2008; Bloomer et al., 2009; Weaver
et al., 2009; Rasmussen et al., 2013; Colette et al., 2015)
on surface O3 over the historical period. Small global in-
creases in surface PM2.5 are simulated over the historical pe-
riod by CMIP6 models, with larger regional changes of up
to 12 µgm−3 on an annual mean basis and up to 18 µgm−3

in DJF across East and South Asia. The largest diversity in
the response of CMIP6 models occurs over Asian regions,
with large inter-annual variabilities near dust source regions.
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Figure 16. Correlation coefficients calculated when comparing future annual mean surface PM2.5 concentrations against individual variables
from individual CMIP6 models (that had data out to 2100) over the period 2015 to 2100 in the ssp370 scenario: precipitation; surface air
temperature (TAS); emissions of biogenic volatile organic compounds (BVOCs); and emissions of SO2, black carbon (BC) and organic
carbon (OC).

CMIP6 models simulate the peak in PM2.5 concentrations in
the 1980s across Europe and North America prior to simu-
lating the observed decline in concentrations to present day
(Leibensperger et al., 2012; Tørseth et al., 2012; Turnock et
al., 2015), attributed to the implementation of air pollutant
emission controls over these regions.

The CMIP6 models predict that surface O3 will increase
across most regions in the weak-mitigation scenarios (ssp370
and ssp585), particularly over South and East Asia (up to
16 ppb by 2100) due to a combination of increases in air
pollutant emissions, increases in global CH4 abundances
and climate change. Discrepancies exist in the regional sur-
face O3 response in ssp370 between individual CMIP6 mod-
els due to differences in the response of chemistry (NOx ;
Fig. S17), climate (temperature) and biogenic precursor
emissions (Fig. S22). Benefits to regional air quality from
large reductions in surface O3 are possible across all regions

for scenarios that contain strong climate and air pollutant
mitigation measures, including those targeting CH4.

CMIP6 models predict that surface PM2.5 concentrations
will decrease across all regions in both the middle-of-the-
road (ssp245) and strong-mitigation scenarios (ssp126) by up
to 12 µgm−3 due to the reduction in anthropogenic aerosols
and aerosol precursor emissions, yielding a benefit to re-
gional air quality, whereas for the weak climate and air pollu-
tant mitigation scenario (ssp370), annual and seasonal mean
surface PM2.5 is simulated to increase across a number of
regions. Implementing mitigation measures specifically tar-
geting SLCFs on top of the ssp370 scenario shows imme-
diate improvements in PM2.5 concentrations, restricting any
changes to below present-day values. The largest change in
regional mean PM2.5 concentrations and also largest diver-
sity across CMIP6 models are predicted in ssp370 across
South Asia, an area with already poor air quality. Disagree-
ments in the projection of future changes to regional sur-
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face PM2.5 concentrations between individual CMIP6 mod-
els can be attributed to differences in the complexity of the
aerosol schemes implemented within models, in particular
the formation mechanisms of organic aerosols and emission
of BVOCs over certain regions, along with the strength of the
climate change signal (temperature and precipitation) simu-
lated by models and the impact this has on natural aerosol
emissions via Earth system couplings.

The results from CMIP6 provide an opportunity to as-
sess the simulation of historical and future changes in air
pollutants within the latest generation of Earth system and
climate models using up-to-date scenarios of future socio-
economic development. Large changes in air pollutants were
simulated over the historical period, primarily in response to
changes in anthropogenic emissions. Future regional concen-
trations of air pollutants depend on the particular trajectory
of climate and air pollutant mitigation that the world follows,
with important consequences for regional air quality and hu-
man health. Substantial benefits can be achieved across most
world regions by implementing measures to mitigate the ex-
tent of climate change as well as from large reductions in
air pollutant emissions, including CH4, which is particularly
important for controlling O3. In future scenarios which do
not mitigate climate change and air pollutant emissions, the
regional concentrations of air pollutants are anticipated to
increase. Important differences between individual CMIP6
models have been identified in terms of how they simulate air
pollutants from the interaction of chemistry (O3 and NOx),
climate (temperature and precipitation) and natural precursor
emissions (BVOCs) in the future. Further research and un-
derstanding of these processes are necessary to improve the
robustness of regional projections of air pollutants on climate
change timescales (decadal to centennial).

Data availability. CMIP6 data are archived at the Earth System
Grid Federation and are freely available to download. The data on
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