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Table S1 — Brief description of the chemistry and aerosol set up within CMIP6 models used in this study

CMIP6 Horiz. Res. Vert Aerosol scheme  Aerosol Species Natural Sources Treatment of SOA Chemistry Chemistry reactions BVOCs Model Ref
Model levels Scheme
(top
level)
Online biogenic emissions
e Hydrophilic OC from from dynamically
sr(l)d“’thCIthﬁg]rj?gl ilic anthropogenic evolving vegetation
ydrophobic), Prescribed DMS seawater emissions but also from computed in the land
Mass-based OM (hydrophilic and . . o CAM-Chem .
126 aerosol scheme hydrophobic, sea salt concentrations VYIth emissions  natural sources (based on 66 ggs—phgse chemical model .BCC—AVIMIZ.O
BCC- 2.813°x2.813° . ’ BTN dependent on wind speed. calculated using a fixed species with 33 following the algorithm of ~ (Wuetal.,
(2914 Prescribed (4 size bins), dust (4 . o . MOZART). . . .
ESM1 . Lo Online emissions of sea-salt yield, assumed to be . photolytic reactions and MEGANV2.1 which has a 2020)
hPa) stratospheric size bins). No Tropospheric S . .
. and dust aerosols. NOx equal to 10% of . 135 kinetic reactions. dependence on light and
aerosols. nucleation or . . o only chemistry.
coagulation of calculated from lightning. monoterpene emissions temperature but alsol .
acrosols (from land surface inhibits isoprene emissions
model) based on CO,.
Explicit calculation of 8;2122;;01%1?; tzmlszt;ns
SOA using volatility prene, penes,
. acetone, methanol, and
basis set (VBS) where
. . . other short and long-
Prescribed climatology of aromatic species, MOZART- 231 gas-phas'e species, chained hydrocarbons)
MAM4 (modal . terpenes and isoprene TSMLT1 150 photolytic reactions, . (Gettelman
DMS seawater concentrations o . L . from dynamically .
scheme, SO4, BC, OM (both L ) are oxidised to produce covering 403 kinetic reactions and . : etal., 2019;
) 5 ° L70 . : . and emissions. Online : evolving vegetation .
CESM2 0.9°x 1.25 ¢  simulating mass primary and .. a range of gas-phase troposphere, 30 heterogeneous . Tilmes et al.,
(6x10 emissions of sea-salt and dust . LS . computed in the
WACCM and number secondary), sea salt, SOA precursors with stratosphere, reactions involving . 2019;
hPa) . aerosols. NOx calculated ) i Community Land Model
concentrations) dust . . . different volatilities. mesosphere and ClOx, BrOx, NOx-HOx- . Emmons et
. from lightning. Soil NOx and . (CLM) using the
with VBS-SOA ocean CO. VOCs from POET Formation of SOA lower Ox, CO, CH4 and MEGAN2.1 aloorithm al., 2020)
’ linked to BVOCs thermosphere NMVOCs. . - algorithm,
.. which has dependence on
emissions from .
. . light and temperature but
interactive land surface S
scheme also inhibits isoprene
) emissions based on CO,.
S04, BC (hydrophilic .
?ré)cgslch}fc and hydrophobic), Prescribed DMS seawater I(:Ifo léz‘irfsentatlon (Michou et
CNRM- 1.4° x 1.4° LI1 aer(?solls) Mass OM (hydrophilic and concentrations. Online Prescribed SOA from tropospheric N/A N/A al., 2019;
ESM2-1 : : (80km) based ae'rosol hydrophobic), sea salt ~ emissions of sea-salt and dust ~ monthly inventory chfmist so Tot Séférian et
(3 size bins), dust (3 aerosols sty al., 2019)
scheme. size bins) considered here.
DMS and sea salt emissions
calculated online as a function . .
of wind speed (and a Online emissions of
prescribed DMS seawater SOA formed simulated 43 photolysis reactions, BVOCs (isoprene and
cubed-sphere . . - . 190 gas-phase kinetic monoterpenes) calculated
. . climatology). Dust emissions using an anthropogenic > . .
(c96) grid, with Bulk mass-based . . R . reactions and 15 from a prescribed (Horowitz et
. L49 N NH4, SO4, NO3, NHy, coupled to interactive source from oxidation Interactive . H .
GFDL- ~100 km native 0.01 scheme. 5 size BC. OM. sea salt vesetation. Lightning NOx of CuHo tracer and a stratosphere- heterogeneous reactions.  vegetation cover using al., 2019;
ESM4 resolution, ; bins are used for > ’ 8 - U8 g . 410 ‘ P NOx-HOx-Ox- chemical MEGAN2.1 algorithm, Dunne et al.,
. hPa) dust calculated online as a function  tracer representing troposphere .
regridded to sea salt and dust. . . cycles and CO, CH4and ~ which has dependence on 2020)
o ° of convection. Natural BVOC emissions from O .
1.0°x 1.25 . . NMVOC oxidation light and temperature but
emissions of NOx, CO, vegetation . e s
reactions also inhibits isoprene

NMVOCs, H,, and NH; from
POET. NHj; from seabird
colonies. Two-way exchange
of NH3 with ocean.

emissions based on CO,.




S04, NO3, NH,4, BC,

inorganic chemistry of
Ox, NOx, HOx, CO, and

Emissions of isoprene

OM treated as . Sea salt, DMS, isoprene and Coupled organic chemistry of from dynamically
externally mixed with Two-product model troposphere- . . .
) dust L CHj, and lumped higher evolving vegetation are
prescribed and . approximation to stratosphere . .
. emission fluxes are calculated . hydrocarbons (only calculated interactively
OMA (one constant size . . . represent SOA chemistry . . .
L40 N interactively. Online NOx . . isoprene and terpenes using the algorithm of
GISS-E2-1- o o moment aerosol distribution. Sea salt . ) . formation from the scheme. Modified L . (Bauer et al.,
2°x2.5 0.1 . calculated from lightning. Soil S . . are explicitly taken into Guenther et al., (1995),
G scheme — mass has two size classes. oxidation of biogenic Carbon Bond . . 2020)
hPa) R NOx, ocean CO, VOCs from . . . account), along with Cl which has dependence on
based) Sectional scheme for VOCs, including NOx Mechanism 4 . .
. . . GEIA. NH; from oceans. SO, g and Br stratospheric light and temperature
dust with 5 size bins . dependent chemistry (CBM-4) . .
from volcanoes as in . . chemistry and Terpene emissions are
that can be coated yields. chemical . .
N AeroCom. . heterogenous reactions prescribed.
with SO4 and NOs to mechanism
. o on PSCs and SO4
increase solubility.
aerosols.
GLOMAP-Mode. Prescribed climatologies of Fixed yield of SOA of
(Modal scheme, S04, BC, OM, sea DMS seawater concentrations  26% calculated from Simplified Oxidation for SO4 and
HadGEM3- 1.25° x 1.875° L85 mass and salt in 5 log-normal and BVOC emissions. No gas-phase oxidation sulphur chemistry  simplified oxidation N/A (Mulcahy et
GC31-LL : ’ (85km)  number). Mass modes and dust in 6 marine source of primary reactions involving for use with scheme (monoterpenes) al., 2020)
based bin scheme  bins organics. Online emissions of  prescribed land-based aerosol scheme for SOA
used for dust. sea-salt and dust aerosols monoterpene sources
S04, BC, OM, sea
salt and Qust in log- Online emissions of DMS, Prescrlbed emissions of Simplified Oxidation for SO, and ) o (Takemura,
MIROCS- L40 normal size sea-salt and dust aerosols. isoprene and terpenes chemistry for use simlified oxidation Prescribed emissions of 2012:
2.813°x2.813° 3.0 SPRINTAS. distributions. External ~ Primary marine organic from GEIA used to . try L isoprene and terpenes from .
ES2L .. .. with aerosol scheme (isoprene and Hajima et al.,
hPa) mixing assumed for aerosol emissions coupled to convert to secondary GEIA.
. X . scheme monoterpenes) for SOA 2020)
SO, sea salt and dust ~ ocean biogeochemistry. organic carbon.
aerosols.
. . . 15% of natural terpene
Interactive online emissions emissions at the surface ~ Simplified
MPI- L47 HAM2.3 (Modal S04, BC, OM, sea of DMS (using prescribed sea (prescribed) form SOA sul flur Reactions involving (Tegen et al
ESM1.2- 1.875° x 1.875° (0.01 scheme, mass and  salt, dust in 7 log- water concentrations), sea-salt p ! . . P SO,, DMS and SO4 N/A g ”
SOA have identical chemistry. Other . . X 2019)
HAM hPa) number) normal modes and dust aerosols dependent . . . including aqueous phase.
properties to primary fields prescribed.
on meteorology. .
organic aerosols
Mass-based scheme . . . 90 chemical species and
N . Interactive online emissions . .
with externally mixed . ) 259 chemical reactions
MRI- T of DMS (using prescribed .
size distributions. . . .. . Chemistry (184 gas-phase
AGCM3.5: Climatological DMS sea No explicit calculation: . : . .
° ° SO4 (three . . Climate Model reactions, 59 photolysis (Deushi and
1.125° x 1.125%, L80 categories), BC water concentrations), sea- 14% of prescribed version 2.1 (MRI-  reactions, and 16 Shibata.
MRI- MASINGAR MASINGAR mk- sores), salt, and dust aerosols monoterpene and 1.68 ’ ’ . Climatological BVOCs ?
. (0.01 (hydrophilic and . L CCM2.1) heterogeneous reactions) . 2011;
ESM2-0 mk-2r4c: 1.875 2rdc . dependent on meteorology. % of isoprene emissions . . - emissions .
o hPa) hydrophobic), OM ) covering involving HOx-NOx- Yukimoto et
x 1.875°, MRI- .o Online NOx calculated from are assumed to form
o (hydrophilic and . . . . troposphere, CH,-CO cycles and al., 2019)
CCM2.1: 2.813 . lightning. Climatological SOA. P
o hydrophobic), sea salt . stratosphere, and NMVOC oxidation
x 2.813 X . soil NOx and ocean CO, .
(10 size bins), dust VOCs emissions mesosphere reactions, and halogen
(10 size bins). ) chemistry (Cl and Br)
Online biogenic emissions
from dynamically
Interactive emissions for sea- evolving vegetation
salt, biogenic primary OM Fixed SOA formation Simplified Oxidation for SO4 and computed in the (Kirkevag et
L32 S04, BC, OM, sea alt, b10g P Y yields of 15% and 5% chemistry for use o o Community Land Model g
NorESM2- 5 o (including MSA) and DMS L . simplified oxidation . al., 2018;
1.9°x2.5 (3.64 OsloAero6 salt, dust. (log-normal . . from oxidation of in aerosol X (CLM) using the
LM over oceans, and interactive scheme (isoprene and . Seland et al.,
hPa) modes) R monoterpenes and scheme. Other MEGAN?2.1 algorithm,
mineral dust and BVOC over . . monoterpenes) for SOA . 2020)
isoprene fields prescribed. which has dependence on

land

light and temperature but
also inhibits isoprene
emissions based on CO,.




UKESMI-
0-LL

1.25°x 1.875°

L85
(85km)

GLOMAP-Mode.
(Modal scheme,
mass and
number). Mass
based bin scheme
used for dust.

S04, BC, OM, sea
salt in 5 log-normal
modes and dust in 6
bins

Dynamic vegetation and
interactive ocean
biogeochemistry used for
online emissions of DMS,
sea-salt and dust aerosols, as
well as emissions of primary
marine organics and biogenic
organic compounds. Online
NOx calculated from
lightning, soil NOx and ocean
CO, VOCs from POET

Fixed SOA yield of
26% from gas-phase
oxidation reactions
involving interactive
land-based monoterpene
sources.

UKCA coupled
stratosphere-
troposphere.
Interactive
photolysis

84 chemical tracers.
Simulates chemical
cycles of Ox, HOx and
NOx, as well as
oxidation reactions of
CO, CH4 and NMVOCs.
In addition,
heterogeneous processes,
Cl and Br chemistry are
included.

Dynamic vegetation and
land surface model used to
calculate interactive
emissions of Isoprene and
monoterpenes using light
and temperature, but
isoprene emissions are
inhibited based on CO,.
Isoprene emissions
coupled to chemistry and
affect tropospheric O3 and
methane lifetime.
Monoterpenes only affect
SOA.

(Archibald et
al., 2020;
Mulcahy et
al., 2020)
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Figure S1 — Definition of regions used in the study, based on those used in Phase 2 of the Hemispheric Transport of Air Pollutants

(HTAP2)
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50 Figure S2 — Annual and seasonal mean surface O3 concentrations from UKESM1-0-LL in a) Annual mean, c¢) December January,
February (DJF) and e) June, July, August (JJA) over the 2005-2014 period. Difference between the UKESM1 mean and TOAR
observations for b)Annual mean, d) DJF and f) JJA.



a) Annual mean Surface O3 from BCC-ESM1 b) Annual mean Surface O3 Bias from BCC-ESM1
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55 Figure S3 — Annual and seasonal mean surface O3 concentrations from BCC-ESM1 in a) annual mean, ¢) December January,
February (DJF) and e) June, July, August (JJA) over the 2005-2014 period. Difference between the BCC-ESM1 mean and TOAR
observations for b) annual mean, d) DJF and f) JJA.

a) Annual mean Surface O3 from CESM2-WACCM b) Annual mean Surface O3 Bias from CESM2-WACCM
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Figure S4 — Annual and seasonal mean surface O3 concentrations from CESM2-WACCM in a) annual mean, ¢) December January,
60 February (DJF) and e) June, July, August (JJA) over the 2005-2014 period. Difference between the CESM2-WACCM mean and
TOAR observations for b) Annual mean, d) DJF and f) JJA.



b) Annual mean Surface O3 Bias from GFDL-ESM4

10 20 30 40 50 60 70 -16 -12 -8 -4 -1 1 4 8 12 16
Surface O3 (ppbv) Surface O3 Difference (ppbv)

Figure S5 — Annual and seasonal mean surface O3 concentrations from GFDL-ESM4 in a) Annual mean, ¢) December January,
February (DJF) and e) June, July, August (JJA) over the 2005-2014 period. Difference between the GFDL-ESM4 mean and TOAR
65 observations for b) Annual mean, d) DJF and f) JJA.

a) Annual mean Surface O3 from GISS-E2-1-G b) Annual mean Surface O3 Bias from GISS-E2-1-G
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Figure S6 — Annual and seasonal mean surface O3 concentrations from GISS-E2-1-G in a) Annual mean, c) December January,
February (DJF) and e) June, July, August (JJA) over the 2005-2014 period. Difference between the GISS-E2-1-G mean and TOAR
observations for b) Annual mean, d) DJF and f) JJA.



a) Annual mean Surface O3 from MRI-ESM2-0 b) Annual mean Surface O3 Bias from MRI-ESM2-0
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Figure S7 — Annual and seasonal mean surface Oz concentrations from MRI-ESM2-0 in a) Annual mean, ¢) December January,
February (DJF) and e) June, July, August (JJA) over the 2005-2014 period. Difference between the MRI-ESM2-0 mean and TOAR
observations for b) Annual mean, d) DJF and f) JJA.
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75 Figure S8 — Annual mean PM2s dust component calculated for each individual CMIP6 model over the period 2005-2014
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Figure S9 — Annual mean PM:s5 SO4 component calculated for each individual CMIP6 model over the period 2005-2014
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Figure S10 — Annual mean PMzs BC component calculated for each individual CMIP6 model over the period 2005-2014
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Figure S11 — Annual mean PMzs OA component calculated for each individual CMIP6 model over the period 2005-2014
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Figure S12 — Annual mean PM:z s SS (sea salt) component calculated for each individual CMIP6 model over the period 2005-2014
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85 Figure S13 — Annual and seasonal mean PMa.s NO; (nitrate) component calculated for each individual CMIP6 model that made the
data available over the period 2005-2014
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Figure S14 - Annual mean surface O3 concentrations across 6 CMIP6 models over the period 2005-2014 (top row), 1980-1989 (middle
row) and 1850-1859 (bottom row).
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Regions are defined in Figure S1.
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Figure S18 — Pre-industrial (1850-1859 mean) to present day (2005-2014 mean) changes in the regional and global annual mean
surface PMz.s concentrations (PM) and that from each individual component (BC — black carbon, DU — dust, SU — sulphate, OA —
organic aerosol and SS —sea salt). Individual circles represent each annual and seasonal mean changes from the 11 individual CMIP6

models, with the multi-model mean represented by the solid bar. The. Regions are defined in Figure S1.
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Figure S19 — Annual mean surface O3 concentrations and future response in ssp370 across 6 different CMIP6 models. Top row
shows the 2005-2014 annual mean surface Oz concentrations in each model from the historical simulations. Middle row shows the

110  surface Os response in 2050, relative to 2005-2014 mean, in each model for ssp370. Bottom row shows the same as the middle but
for 2100. No data is presented in 2100 for BCC-ESM1 as data for ssp370 only extended out to 2055.
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Figure S20 - Annual mean surface O3 concentrations and future response in ssp370-lowNTCF across five different CMIP6 models.
Top row shows the 2005-2014 annual mean surface O3 concentrations in each model from the historical simulations. Bottom row
115 shows the surface O3 response in 2050, relative to the 2005-2014 mean, in each model for ssp370-lowNTCF.
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Figure S21 — December January February (DJF) mean surface O3 concentrations and future response in ssp370 across 6 different

CMIP6 models. Top row shows the 2005-2014 DJF mean surface O3 concentrations in each model from the historical simulations.

Middle row shows the surface DJF Os response in 2050, relative to 2005-2014 mean, in each model for ssp370. Bottom row shows
120  the same as the middle but for 2100. No data is presented in 2100 for BCC-ESM1 as data for ssp370 only extended out to 2055.
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Figure S22 — Annual mean emissions of total biogenic volatile organic compounds across 5 CMIP6 models. Top row shows the 2005-

2014 annual mean emissions in each model from the historical simulations. Middle row shows the change in emissions in 2050,

relative to 2005-2014 mean, in each model for ssp370. Bottom row shows the same as the middle but for 2100. The total BVOC
125  emissions from each model includes a different number of individual BVOC species (Table S1).
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Figure S23 — Annual mean emissions of isoprene across S CMIP6 models. Top row shows the 2005-2014 annual mean emissions in
each model from the historical simulations. Middle row shows the change in emissions in 2050, relative to 2005-2014 mean, in each
model for ssp370. Bottom row shows the same as the middle but for 2100.
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Figure S24 — Annual mean surface PMzs black carbon concentrations and future response in ssp370 across four different CMIP6
models. Top row shows the 2005-2014 annual mean surface PMz.s black carbon concentrations in each model from the historical
simulations. Middle row shows the decadal mean surface PM..s black carbon response in 2050 (2045-2055), relative to 2005-2014
mean, in each model for ssp370. Bottom row shows the same as the middle but for 2095 (2090-2100).
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Figure S25 — same as Fig S24 but for PM: s sulphate

2005-1
MIROC ESZL CESM2 WACCM GFDL ESM4 UKESM1

A PM; 50A (pg m™3)

Figure S26 — same as Fig S24 but for PM:.sorganic aerosol
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140  Figure S27 — same as Fig S24 but for PM2.s dust
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Figure S28 — same as Fig S24 but for PM:s sea salt
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